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10 Conclusions 
Below, we provide conclusions in two general categories: conclusions (Sec. 10.1) about 
the congestion-control algorithms we studied and conclusions (Sec. 10.2) about the 
methods we applied. Along with each set of conclusions we also provide suggestions for 
related future work.   

10.1 Conclusions about Congestion-Control Algorithms 
The simulation and modeling studies reported here enabled us to draw a range of 
conclusions about the general utility and safety of seven proposed alternate congestion-
control algorithms for the Internet. We were also able to characterize each of the 
congestion-control algorithms we studied. In the end, we developed some 
recommendations about whether it makes sense to deploy alternate congestion-control 
algorithms at large scale on the general Internet. Finally, though our study is quite 
comprehensive, we recognize the need for future work to investigate some questions that 
we did not tackle. We address these topics, in turn, below. 

10.1.1 Utility and Safety of Alternate Congestion-Control Algorithms 
Our simulation and modeling experiments showed that deploying alternate congestion-
control algorithms can provide improved user experience under specific circumstances. 
As discussed below, the nature of such circumstances bound the utility that alternate 
congestion-control algorithms may provide. In addition, the experiments showed that 
some proposed algorithms can be deployed without driving large changes in macroscopic 
behavior throughout a network. On the other hand, other proposed algorithms altered 
behavior in undesirable directions under specific spatiotemporal situations. We address 
these topics in detail.   
 
10.1.1.1 Increase Rate. One of the key questions for any data transport protocol is: How 
fast can the maximum available transfer rate be achieved? Assuming no congestion (i.e., 
no losses) protocols that can quickly converge to the maximum rate will spend the largest 
portion of a file transfer at that rate. Each TCP flow begins without any knowledge of the 
maximum available transfer rate. For this reason, TCP specifies an initial slow-start 
process where the source transmits slowly but then, as feedback arrives from a receiver, 
quickly increases the transmission rate until reaching a specified (initial slow-start) 
threshold or encountering a loss. This initial slow-start process is not altered by any of the 
proposed alternate congestion-control algorithms that we studied. 

Assuming no (or low) congestion, the setting of the initial slow-start threshold can 
be quite important when comparing goodputs experienced by users on TCP flows with 
goodput for users on flows operating under alternate congestion-control algorithms.1 
When the initial slow-start threshold is set arbitrarily high, on average all flows achieve 
                                                 
1 Note that in real TCP flows receivers may convey a receiver window (rwnd) that can restrict goodput 
quite severely because sources pace transmission based on the minimum of the congestion window (cwnd) 
and rwnd. Typically, the following holds: rwnd < cwnd. In our studies, we assume an infinite rwnd in order 
to compare the effects of congestion-control algorithms adjusting the cwnd. The goodput on many TCP 
flows in a real network might well be constrained by rwnd. In such cases, alternate congestion-control 
algorithms would provide little advantage over TCP congestion-control procedures. 
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maximum transfer rate with the same quickness. Under such situations, the goodput seen 
on TCP flows and flows running alternate algorithms appears quite comparable. Flows 
carrying short files (e.g., Web objects and document downloads) tend to complete while 
in initial slow-start, which means that alternate congestion-control procedures (restricted 
to the congestion-avoidance phase of a flow) do not operate. Even flows conveying long 
files can operate for extended periods under initial slow-start because such flows do not 
enter congestion-avoidance until encountering a loss. 

When the initial slow-start threshold is set low (e.g., 64K Bytes) all of the 
alternate congestion-control algorithms that we studied increase transmission rate more 
quickly than the linear increase provided by the TCP congestion-avoidance phase. Thus, 
under low congestion, when the initial slow-start threshold is set low compared to the 
size of files transferred (and assuming the receiver window – rwnd – is not constraining 
transmission rate) users on TCP flows will see much lower goodput than users of 
alternate congestion-control algorithms. The larger the file sizes being transferred the 
larger the goodput advantage of the alternate algorithms. The alternate congestion-control 
algorithms provide different degrees of goodput improvement over TCP congestion-
avoidance procedures. As discussed below (Sec. 10.1.2), these goodput differences can 
be tied directly to the speed with which the alternate algorithms reach the maximum 
available transmission rate. 

Under conditions of heavy congestion the setting of the initial slow-start threshold 
matters less because initial slow-start terminates upon the first packet loss and then a flow 
enters the congestion-avoidance phase, which is where the alternate congestion-control 
algorithms differ from TCP procedures. In such situations, the main difference in goodput 
experienced by users relates to the loss/recovery procedures defined by the alternate 
algorithms. We turn to this topic next. 
 
10.1.1.2 Loss/Recovery Processing. Two key questions arise when a data transport 
protocol experiences a packet loss. (1) How much should the protocol reduce 
transmission rate upon a loss? (2) How quickly should the protocol increase transmission 
rate after the reduction? TCP congestion-avoidance procedures reduce transmission rate 
by one-half on each packet loss. Subsequently, TCP congestion-avoidance procedures 
increase transmission rate linearly. The alternate congestion-control algorithms we 
studied specify various procedures for transmission rate reduction and increase following 
a lost packet. 

One group of algorithms (Scalable TCP, BIC2 and HSTCP) reduce transmission 
rate less than TCP after a packet loss. As a result, these algorithms tend to retain a higher 
transmission rate and associated buffers than is the case for TCP flows. Smaller rate 
reduction can allow these algorithms to provide established flows with higher goodputs 
following packet losses. We found this effect to increase with increasing loss rate and 
also file size. In addition, these algorithms can be somewhat unfair to algorithms (such as 
TCP) that exhibit a more reduced transmission rate following a loss, as well as to flows 
that have not had sufficient time to attain a high transmission rate prior to a loss. 

                                                 
2 Note that on repeated losses occurring close in time, BIC can reduce cwnd substantially more than TCP 
congestion-avoidance procedures; thus, on paths with very severe congestion BIC can actually provide 
lower goodput than TCP and also occupy fewer buffers. 
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A second group of algorithms (CTCP, FAST and FAST-AT) reduce transmission 
rate in half following a loss. HTCP appears to be a hybrid, reducing transmission rate 
variably, mainly between 20% and 50%. The higher reduction occurs when transmission 
rate is increasing substantially in a round-trip time and the lower reduction occurs when 
transmission rate is less variable. To obtain higher goodput, these algorithms increase 
transmission rate more quickly than TCP flows following a rate reduction. As discussed 
below (Sec. 10.1.2), the rate of increase varies with the specific algorithm. Typically, 
HTCP and CTCP are less aggressive than FAST and FAST-AT when increasing 
transmission rate after a reduction. FAST-AT will be less aggressive when sufficient 
congestion exists to force a reduction in the  parameter. An aggressive rate increase 
following a rate reduction can induce additional losses. When such losses affect TCP 
flows, then linear recovery procedures lead to lower goodputs. Under severe congestion, 
CTCP and HTCP can provide better goodput than FAST and FAST-AT, which can 
underperform TCP. 

In areas and at times of extreme congestion, most of the alternate algorithms we 
studied include procedures to adopt TCP congestion-avoidance behavior. These 
procedures appear motivated by the theory that when congestion is sufficiently severe 
then existing TCP behavior provides the best approach to fairly share the limited 
available transmission rate. The most typical technique employed is to set a low-window 
threshold. When the congestion window (cwnd) is below the threshold then TCP 
congestion-avoidance is used. When cwnd is above the threshold then alternate 
congestion-avoidance procedures are used. Specific values for the threshold vary among 
the alternate congestion-control algorithms. The combination of different thresholds and 
different file sizes can lead to modest differences in user goodputs. 

HTCP handles adaptation to TCP procedures somewhat differently than most 
other alternate algorithms. After a loss, HTCP adopts linear rate increase for a time. The 
time period is an HTCP parameter, set in these experiments to one second. We found that 
HTCP then adapts to TCP linear increase after every loss, regardless of file size or cwnd 
value. For larger files, which tend to have higher cwnd and to experience more losses 
during transmission, this approach tends to lower goodput significantly relative to other 
alternate algorithms, which do not adopt linear increase after every loss. 

 FAST and FAST-AT do not use TCP congestion-avoidance procedures under 
any circumstances. In times and areas of heavy congestion, failure to adopt less 
aggressive rate increase can lead to oscillatory behavior and to an associated increase in 
loss rate. Increased losses lead to lower user goodputs. FAST-AT does somewhat better 
under heavy congestion because the  parameter can be lowered; this causes less 
aggressive rate increases. Still, under many conditions, FAST-AT can exhibit a similar 
increased loss rate to FAST. 
 
10.1.1.3 Fairness. Comparing alternate congestion-control algorithms with respect to 
TCP fairness can be somewhat difficult because the alternate algorithms are designed to 
give better goodput than TCP for large file transfers on high bandwidth-delay paths. 
Thus, for example, all of the alternate algorithms can increase transmission rate more 
quickly than TCP given a low initial slow-start threshold and large file sizes. Further, all 
alternate algorithms take steps to provide loss/recovery improvements over the standard 
TCP congestion-avoidance procedures. On the other hand, most of the alternate 
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algorithms take steps to adopt TCP congestion-avoidance procedures when congestion is 
sufficiently high. Given these factors, one would expect all alternate congestion-control 
algorithms to provide better goodput than TCP under optimal conditions. In addition, 
most of the alternate algorithms are assured of performing no worse than TCP under 
suboptimal conditions. The usual measures of fairness do not apply in such circumstances 
because they would tend to measure how much of a goodput advantage a given alternate 
algorithm provides over TCP procedures. We measured fairness by ranking the average 
goodput achieved by TCP flows when they competed with each alternate congestion-
control algorithm under the same conditions. We considered the average rank across four 
file sizes: Web objects, documents, software service packs and movies. In this way, we 
could tease out the relative TCP fairness of the alternate algorithms.  

We found that CTCP and HTCP were most fair to TCP flows. We found FAST-
AT third fairest to TCP flows under high initial slow-start threshold. Under low initial 
slow-start threshold, FAST-AT proved more unfair to TCP flows because of its quick 
increase in transmission rate upon entering congestion avoidance. Injecting more FAST-
AT packets into the network induced more losses in TCP flows, which could not recover 
very quickly. 

We found Scalable TCP, BIC and FAST to be most unfair to TCP flows. 
Established Scalable and BIC flows (large files) tended to maintain higher transmission 
rates after losses, while competing TCP flows cut transmission rates in half. By 
maintaining higher transmission rates and, thus, more buffer space, Scalable and BIC 
flows induced more losses in TCP flows. FAST could recover more quickly from losses 
than TCP flows and so FAST flows could occupy more buffers and induce more losses in 
TCP flows. In addition, like FAST-AT, FAST exhibited unfairness under low initial 
slow-start threshold because of its quick increase in transmission rate upon entering 
congestion avoidance. 

HSTCP appeared moderately fair to TCP flows, especially under conditions of 
lower congestion and under a low initial slow-start threshold. HSTCP showed TCP 
unfairness, similar to Scalable TCP, under conditions of heavy congestion. 

We believe that Scalable TCP, BIC and HSTCP could also be unfair to competing 
flows that are newly arriving. Given that some large flows operating under Scalable, BIC 
and HSTCP have established relatively high transmission rates and associated large 
buffer state and that newly arriving flows induce losses, the established flows will not 
reduce transmission rate very much and will maintain large buffer state. The newly 
arriving flows will be forced into congestion avoidance on the loss. Further, Scalable and 
HSTCP do not increase transmission rate very fast early in a flow’s life; thus, the newly 
arriving flows will face difficulty increasing transmission rate. 
 
10.1.1.4 Utility Bounds. We showed that alternate congestion-control protocols could 
provide increased utlity (goodput) for users; however, we also found that this increased 
utility would be maximized only under specific, bounded circumstances. First, the rwnd 
must not be constraining flow transmission rate. Second, a flow must be using a relatively 
low initial slow-start threshold. Third, a flow must be transmitting a large file. Fourth, a 
flow’s packets must be transiting a relatively uncongested path (i.e., experiencing only 
sporadic losses from congestion or corruption) or else users must be willing to accept 



Study of Proposed Internet Congestion-Control Mechanisms NIST 

Mills, et al. DRAFT 10-5 

marked unfairness (e.g., as seen with Scalable TCP) in trade for increased goodput. These 
bounds arise from some simple factors. 

 If a flow is restrained by receipt of a relatively small rwnd, then the ability of 
alternate congestion-control regimes to increase to a high cwnd cannot be used to 
transmit faster on a flow. Assuming rwnd does not constrain flow goodput, flows can 
increase goodput in concert with cwnd by using slow-start to discover the maximum 
transmission rate. Given a high initial slow-start threshold, then all flows can discover the 
maximum cwnd with the same quickness. In this case, TCP flows would reach maximum 
cwnd on average with the same pace as flows running alternate algorithms. Only when 
the initial slow-start threshold is low, forcing entry into congestion avoidance, could 
flows using alternate algorithms reach maximum cwnd more quickly than TCP. If flows 
are transferring large files, then the ability to reach maximum transmission rate quickly 
provides a substantial goodput advantage: the larger the file, the greater the advantage. 
Under small files the transmission could complete under initial slow-start and, thus, the 
advantage inherent in congestion-avoidance increase procedures for the alternate 
algorithms would not be realized. When flows transit heavily congested paths in the 
network, then most of the alternate congestion-control algorithms adopt TCP congestion-
avoidance procedures, which negate any goodput advantage over TCP flows. Though 
FAST and FAST-AT do not adopt TCP congestion-avoidance procedures, we found that 
heavy congestion can cause oscillation in the transmission rate, which leads to higher loss 
rates, more retransmissions and lower goodput. 

We are unable to determine how likely a particular flow is to operate under the 
bounded circumstances required for alternate congestion-control algorithms to provide 
improved goodput over TCP. Certainly it would be possible to engineer a network, or 
segments of a network, to provide specific users with high utility from alternate 
congestion-control algorithms. On the other hand, we suspect a rather low probability for 
such circumstances to arise generally in a network. Thus, we conclude that alternate 
congestion-control algorithms can provide improved user goodput; however, most users 
seem unlikely to benefit very often.   
 
10.1.1.5 Safety. Given that on occasion some users could benefit from the increased 
goodputs available from alternate congestion-control algorithms, we need to consider 
whether widespread deployment of such algorithms could induce undesirable 
macroscopic characteristics into the network. In other words, are there significant costs 
that might offset the modest benefits associated with deploying alternate congestion-
control algorithms? We can answer this question only in part because we simulated 
networks that used either a single congestion-control regime or a single alternate 
congestion-control algorithm mixed with TCP congestion-control procedures. There 
could be additional cautionary findings that arise from a heterogeneous mixture of 
alternate congestion-control algorithms. We postpone such findings to future work. 

  In our experiments, we simulated a wide range of conditions and we considered 
numerous scenarios comparing network behavior under specific alternate congestion-
control algorithms, sometimes mixed with TCP procedures. For most algorithms under 
most conditions, we found little significant change in macroscopic network 
characteristics. One exception relates to FAST and FAST-AT. In spatiotemporal realms 
with high congestion, where there were insufficient buffers to support the flows transiting 
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specific routers, FAST and FAST-AT entered an oscillatory behavior where the flow 
cwnd increased and decreased rapidly with large amplitude. Under these conditions, the 
network showed increased loss and retransmission rates, a higher number of flows 
pending in the connecting state and a lower number of flows completed over time. Thus, 
FAST and FAST-AT should be deployed on a wide scale only with great care. There 
appears to be some possibility that FAST could cause significant degradation in network 
performance in selected areas and for selected users. We recommend the need for 
additional study of FAST and FAST-AT prior to widespread deployment and use on the 
Internet.  

10.1.2 Characteristics of Individual Congestion-Control Algorithms 
Below, we provide a brief summary of the characteristics found from our experiments for 
each alternate congestion-control algorithm. We discuss the algorithms in alphabetical 
order. 
 
10.1.2.1 BIC. Clearly, among the seven algorithms we studied, BIC is the most complex 
to code and implement, requiring a potentially substantial amount of processing to adjust 
the cwnd. BIC uses standard TCP congestion-avoidance procedures when cwnd is below 
a low-window threshold (14 packets, here). Under congestion with losses spaced 
sufficiently in time, BIC reduces cwnd less quickly than standard TCP; thus, BIC can 
achieve higher goodputs under sporadic losses by maintaining a high transmission rate 
and associated buffer state. This can be somewhat unfair to newly arriving flows. On the 
other hand, when congestion becomes severe, with losses spaced closely in time, BIC 
reduces cwnd much more quickly than TCP. Under such circumstances, BIC can take 
substantial time (average 71.3 s in our experiments) to recover maximum goodput after 
congestion eases. When considering the rate of increase in transmission speed under low 
congestion after reaching initial slow-start threshold, BIC averaged about 18.8 s to reach 
maximum transfer speed on long-lived flows. This rate of increase ranked fifth (of six) 
overall, and was competitive with HTCP, Scalable TCP and HSTCP. 

  
10.1.2.2 CTCP. The algorithm for CTCP requires periodic processing to adjust an 
auxiliary delay window (dwnd), which increases the processing cost beyond that found in 
standard TCP congestion control. Under congestion, CTCP reduces transmission rate by 
one-half and then recovers relatively quickly. The advantage of CTCP recovery 
procedures appears most obvious after a period of severe congestion on a path. Under 
easing congestion, dwnd can increase quite quickly. Since CTCP augments the cwnd with 
the dwnd, transmission rate can also increase quickly – returning to maximum rate in an 
average 2.9 s in our experiments. In fact, in some situations, the rate of increase in dwnd 
appears unbounded. CTCP implementations should probably require a bound on 
maximum dwnd. Under periods of heavier congestion, increase in dwnd is constrained. In 
addition, the CTCP algorithm appears quite fair to competing CTCP flows as well as 
TCP flows. CTCP had the highest default low-window threshold (41 packets, here) 
among the algorithms we studied. Further, CTCP averaged about 7.9 s to reach maximum 
transfer speed on long-lived flows under low congestion and low initial slow-start 
threshold. This rate of increase ranked second overall behind only FAST and FAST-AT, 
which tied for first. 
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10.1.2.3 FAST. The algorithm for FAST requires periodic processing to adjust the target 
cwnd. While each adjustment demands little computation, the default periodicity (20 ms, 
here) can require multiple adjustments within a single round-trip. FAST does not have a 
low-window threshold; thus, after initial slow-start, FAST flows never use standard TCP 
congestion-avoidance procedures. Under congestion, FAST reduces transmission rate by 
one-half and then recovers very quickly. The advantage of FAST recovery speed appears 
under both sporadic losses and when congestion eases following a period of severe 
congestion on a path. Under easing congestion, FAST recovered maximum transmission 
rate in an average of 6.6 s in our experiments. On the other hand, for flows transiting 
congested areas, with insufficient buffer space for all flows, FAST exhibits oscillatory 
behavior that increases losses and, thus, retransmissions, which reduces user goodput. 
Under severe conditions, FAST causes an increase in flows pending in the connecting 
state because SYN packets are loss with increased probability. In addition, FAST can 
significantly reduce the number of flows completed over time in a network. Among the 
algorithms we studied, FAST achieves maximum available transmission rate in the 
shortest time (3.7 s average) on long-lived flows under low congestion and low initial 
slow-start threshold. The ability of FAST to accelerate transmission rate led to superior 
goodputs (under low congestion and low initial slow-start threshold) for file sizes larger 
than Web objects, and the advantage of FAST increased with file size. The ability of 
FAST to quickly attain high transmission rates for large files tended to induce losses in 
competing flows. Since TCP flows could not recover quickly, FAST flows could attain 
much higher goodputs than competing TCP flows. 
 
10.1.2.4 FAST-AT. The FAST-AT algorithm augments FAST with periodic procedures to 
monitor throughput and tune the  parameter used when adjusting the target cwnd. 
Without  tuning, FAST sets the  parameter to a fixed value. FAST-AT monitors 
throughput every round-trip time and tunes the  parameter periodically (every 200 s, 
here). As throughput improves past specified thresholds  is increased and as throughput 
declines past specified thresholds  is decreased. FAST-AT exhibits many of the same 
positive and negative properties as FAST. The main difference was that, under severe and 
sustained congestion, FAST-AT reduced the  parameter from a default setting of 200 to 
as low as 8. In such, circumstances FAST-AT recovers much more slowly than FAST. 
When throughput begins increasing, FAST-AT adjusts the  parameter only every 200 s 
and must make two adjustments (8 to 20 followed by 20 to 200) before reaching the 
maximum recovery rate. In our experiments, when recovering from sustained periods of 
heavy congestion, FAST-AT took longer (26 s average) to reach maximum transmission 
rate than all alternate algorithms except BIC. On the other hand, by recovering 
transmission rate more slowly under heavy congestion, FAST-AT proved more TCP 
friendly than FAST. This occurred because under such circumstances FAST-AT did not 
induce as many losses in competing TCP flows.   
 
10.1.2.5 HSTCP. The HSTCP algorithm is a relatively straightforward; updating the 
cwnd no more frequently than standard TCP. The HSTCP cwnd updates involve 
somewhat costly logarithmic and exponentiation operations. HSTCP uses standard TCP 
congestion-avoidance procedures when the cwnd is below a low-window threshold (31 
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packets, here). HSTCP reduces cwnd less on a loss than standard TCP and provides more 
than linear increase in cwnd during congestion avoidance. Under both sporadic and heavy 
congestion, HSTCP retains a higher transmission rate (and associated buffers) than TCP. 
By maintaining more buffered packets, HSTCP can induce losses in competing flows. In 
such situations, newly arriving HSTCP flows can have difficulty increasing transmission 
rate, especially on paths with longer propagation delays. In addition, losses induced on 
competing TCP flows hurt goodput for TCP users because TCP recovers only linearly. 
When recovering from periods of sustained heavy congestion, HSTCP performed third 
best (10 s average) in our experiments; however, the short recovery time can be attributed 
mainly to the fact that, in comparable situations, HSTCP flows did not reduce 
transmission rate as much as most other congestion-control algorithms. Under low 
congestion and low initial slow-start threshold, HSTCP achieved maximum transmission 
rate more slowly (22.4 s average) than all other alternate congestion-control algorithms 
we studied.   
 
10.1.2.6 HTCP. The HTCP algorithm requires a periodic (250 ms, here) process to 
monitor flow throughput. HTCP uses standard TCP congestion-avoidance procedures for 
a specified period (1 s, here) after a packet loss. Under congestion, HTCP behaves like 
standard TCP congestion avoidance. The heavier the congestion, the more time HTCP 
spends using TCP procedures. When recovering from periods of sustained heavy 
congestion, HTCP performed fourth best (10 s average) in our experiments. Under 
sporadic losses, HTCP can spend too much time using TCP’s linear increase. In our 
experiments, this trait led HTCP to provide lower goodput than other alternate 
congestion-control algorithms on large files. On the other hand, by adopting TCP 
congestion-avoidance procedures following packet loss, HTCP is quite TCP friendly. 
Under low congestion and low initial slow-start threshold, HTCP achieved maximum 
transmission rate somewhat slowly (16.6 s average), comparable to BIC, HSTCP and 
Scalable TCP, but significantly slower than CTCP, FAST and FAST-AT.  
 
10.1.2.7 Scalable TCP. The Scalable TCP algorithm is a small modification of standard 
TCP congestion-avoidance. Scalable TCP increases cwnd by a constant on each 
acknowledgment and decreases cwnd by 12.5% on each loss. In addition, Scalable adopts 
standard TCP congestion-avoidance procedures when cwnd is below a low-window 
threshold (16 packets, here). Under congestion, established Scalable TCP flows do not 
reduce transmission rate very quickly. By maintaining more buffered packets, Scalable 
can induce losses in competing flows. In such situations, newly arriving Scalable flows 
can have difficulty increasing transmission rate, especially on paths with longer 
propagation delays. In addition, losses induced on competing TCP flows hurt goodput for 
TCP users because TCP recovers only linearly. When recovering from periods of 
sustained heavy congestion, Scalable performed fifth best (22.5 s average) in our 
experiments; however, the recovery time can be attributed mainly to the fact that, in 
comparable situations, Scalable flows did not reduce transmission rate as much as most 
other congestion-control algorithms. Under low congestion and low initial slow-start 
threshold, Scalable TCP achieved maximum transmission rate somewhat slowly (17.8 s 
average). In fact, Scalable increased transmission rate very slowly for the first few 
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seconds of long-lived file transfers, which means that Scalable provides a steep increase 
in transmission rate only for large files. 

10.1.3 Recommendations 
Under some circumstances, users can benefit from adopting alternate congestion-control 
algorithms to transfer files on the Internet. For that reason, it makes sense to deploy such 
algorithms into computers attached to the Internet. Of course, the probability appears 
quite low that a specific user will see benefits on any particular file transfer. Among the 
alternate congestion-control algorithms we studied, CTCP appears to provide the best 
balance of properties. Under low congestion, CTCP can increase transfer rate relatively 
quickly when operating in the congestion-avoidance phase. Further, CTCP reduces 
transmission rate relatively quickly in the face of sustained congestion and recovers to the 
maximum transmission rate quite quickly when congestion eases. CTCP appears 
relatively friendly to flows using standard TCP congestion-control procedures. CTCP, 
along with most of the other alternate congestion-control algorithms we studied, is 
unlikely to induce large shifts in the macroscopic behavior of the Internet. FAST and 
FAST-AT have some appealing properties, especially with respect to achieving 
maximum transmission rate quickly on high-bandwidth, long-delay paths and recovering 
quickly from sporadic losses. Unfortunately, when transiting highly congested paths with 
insufficient buffers to support the flow volume, FAST and FAST-AT can enter an 
oscillatory regime that could significantly increase loss and retransmission rates. Flows 
transiting affected areas would take longer to connect and complete and would receive 
lower goodputs.  

10.1.4 Future Work 
We studied seven proposed replacement congestion-control mechanisms for the Internet. 
Despite the comprehensive nature of our study, more work remains to be done in at least 
four directions. First, we limited our study to a bounded set of alternate congestion-
control algorithms for which we could find empirical data against which to validate our 
simulations. Researchers have proposed many congestion-control algorithms that were 
not included in our study; thus, one direction for future work is to consider the behavior 
of additional algorithms. Of particular interest is CUBIC, which has replaced BIC as the 
congestion-control algorithm enabled by default in Linux. 

Second, we have not considered scenarios where multiple alternate congestion-
control algorithms are mixed together in the same network. Increasing the heterogeneity 
of algorithms might reveal additional insights about the advantages and disadvantage of 
the various algorithms, as well as uncover undesirable macroscopic behaviors resulting 
from such mixtures. Where undesirable behaviors do not appear, then such a study would 
increase confidence in the safety of deploying alternate congestion-control regimes. Of 
course, conducting such a study would likely require substantial increase in demand for 
computation resources in order to simulate enough network evolution to accumulate 
sufficient samples to reveal statistically significant behavioral patterns. 

Third, we have not validated our findings against live, controlled experiments 
configured in GENI or a similar test bed environment. Conducting such a validation 
would substantially increase confidence in the findings of our study. We intend to 
undertake such a validation as soon as we can gain access to sufficient resources to 
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support our experiments. In the meantime, we also plan to consider how we might 
attempt to validate our findings using test environments of smaller scale. One way to 
approach this may be to make predictions about behaviors we should see replicated even 
at smaller scale than the network sizes and speeds we simulated. 

Fourth, our study revealed various strengths and weaknesses in the congestion-
control algorithms we investigated. Future researchers could exploit our findings to 
propose algorithm improvements that compensate for identified weaknesses, while 
retaining strengths. Further, our general findings may also help other researchers to 
improve future designs for additional congestion-control algorithms. 

10.2 Conclusions about Methods 
The simulation and modeling studies reported here also enabled us to evaluate each of the 
modeling and analysis methods we used. Below, we first discuss the use of discrete-event 
simulation as a technique to model systems at large scale. Subsequently, we evaluate the 
specific methods we applied to solve each of the five hard problems that we identified in 
Sec. 2.4. We than provide some overall recommendations for those seeking to model and 
analyze large distributed systems. We close with suggestions for future work. 

10.2.1 Discrete-Event Simulation 
Recall that our discrete-event simulation model, MesoNetHS, was constructed because an 
existing cellular-automaton model proved unable to scale to simulate networks of the size 
and speed required for this study. The cellular-automaton model simply demanded far too 
many computation resources. What about discrete-event simulation? We demonstrated 
that MesoNetHS could feasibly simulate a network operating for one hour at 
contemporary router speeds while transporting hundreds of thousands of simultaneous 
flows with a mix of 100 Mbps and 1 Gbps sources and receivers sending flows with sizes 
ranging from tens of kilobytes to gigabytes. Of course, running such a simulation for an 
average parameter combination required about 17 ½ days of processing time. In the best 
case, such a scenario required just over 8 days and in the worst case just over 30 days. 
The speed of individual processors seems unlikely to improve much in the future. 
Instead, computer systems will be outfitted with an increasing number of processors that 
can be used in parallel. Increasing parallelization is a nice match for orthogonal fractional 
factorial experiment designs (see Sec. 10.2.2.3 below); however, each individual 
experiment run must still be completed within a time budget. We conclude that discrete-
event simulation is unlikely to support network simulations much beyond the scale we 
used in our study. Even if one is willing to wait 60 or 90 days for a single simulation run 
to complete, the odds seem low that the underlying hardware, operating system, 
simulation environment and model could run so long without incurring some sort of 
failure. Researchers are investigating parallel simulation as a means to increase the scale 
of runs that can be executed; however, temporal relationships among elements in network 
simulations will probably restrict the degree of speedup that can be achieved. We 
conclude that increasing the scale of a simulated network will likely require a different 
paradigm, such as fluid-flow or hybrid simulations. We discuss such models further in 
Appendices A and B.     
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10.2.2 Scale-Reduction Techniques 
We adopted five specific techniques to reduce the scale of parameter and response spaces 
in our experiments. Below, we evaluate each technique in turn. 
 
10.2.2.1 Model Restriction and Parameter Clustering. Restricting model parameters to 
those germane to this specific study led to substantial reduction in intellectual effort 
associated with identifying and assigning values to both fixed and variable parameters. 
Further, reduction in the parameter space lowered the overall computational demand 
associated with individual experiment runs and with experiment campaigns. Clustering 
individual parameters into groups, each representing a key factor driving a simulated 
network, further reduced the intellectual effort needed to parameterize experiments and 
also to analyze responses to assess the influence of particular input factors. Of course, the 
reductions associated with restricting and clustering input parameters were insufficient 
alone to achieve computational tractability for the experiments in this study. Other 
reductions were required (see Sec. 10.2.2.2 and 10.2.2.3 below). Further, significant 
domain expertise was needed to identify reasonable parameter restrictions and groupings. 
This may impede studies where such expertise is unavailable. In some cases, substantial 
simulation executions and data analyses were required to identify parameter reduction 
decisions that were inappropriate. For example, we required about one week of 
simulation to identify a gradual trend toward an increasing number of active flows. 
Discovering this trend led us to introduce connection-establishment procedures into the 
simulation; illuminating the important role that such procedures play in controlling 
network-wide congestion. 
 
10.2.2.2 Two-Level Experiment Designs. The largest reduction in computation demand 
for simulations in this study arose from the simple act of limiting parameter settings to 
only two levels. Of course, taking this step incurred several drawbacks. First, the 
experiment designer must select specific values for each level. This requires significant 
domain expertise. Second, the results obtained for each experiment are robust only over 
the range defined by the selected level settings. Third, drawing conclusions from a two-
level experiment design entails an assumption that a model behaves linearly within the 
range defined by the selected settings. To mitigate these restrictions, the study adopted 
several experiments and varied level settings between experiments. While some may 
cringe at limiting parameter settings to two levels, we demonstrated in this study that 
significant insight can be gained even under such a severe restriction.    
 
10.2.2.3 Orthogonal Fractional Factorial Experiment (OFF) Designs. OFF experiment 
designs enabled us to further reduce computation demand in cases where simulating all 
combinations of parameter settings proved too costly, even after limiting parameters to 
only two levels. In general, OFF designs allow an experiment designer to simultaneously 
vary parameter combinations in a balanced and orthogonal fashion to provide the 
maximum amount of information given a limit on the affordable number of experiment 
runs. Since each selected combination of parameters represents an independent 
simulation run, OFF experiment designs create an embarrassingly parallel suite of 
simulations that can be spread across all available processors. Recall, however, that each 
individual simulation run must still be computationally feasible (as discussed in Sec. 
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10.2.2.1 above). Another advantage to two-level OFF designs arises from an effective 
match with a ten-step graphical analysis technique developed at NIST (see Sec. 10.2.4.1 
below). Pairing two-level OFF designs with the NIST analysis technique reveals 
substantial information about system behavior – within the restrictions of two-level 
designs (as discussed above in Sec. 10.2.2.2). Of course, OFF designs further reduce the 
potential parameter combinations examined in a particular study. In general, no study can 
cover all potential parameter combinations. The most typical approach adopted by 
network researchers entails fixing all parameter settings except one, which is varied 
across a range of levels. The results of this one-factor-at-a-time approach can produce 
nice x-y plots; however, the resulting conclusions are valid only under a specific 
combination of fixed parameters. OFF designs provide a principled technique to vary 
multiple parameter settings simultaneously, which yields more information about overall 
behavior of a system. Further, OFF designs can identify model errors more readily than 
one-factor-at-a-time experiments because OFF designs probe a model under a larger 
variety of conditions.   
 
10.2.2.4 Correlation Analysis. Correlation analysis proved an effective technique to 
reduce the response space that we needed to examine. In one of our sensitivity analyses 
(see Sec. 4), for example, we showed how 22 potential responses could be reduced to 
only seven. Assuming availability of a domain expert, correlation results may also aid in 
model validation. For example, a domain expert should be able to verify whether or not 
the correlations make sense. A domain expert should also be able to attribute surprising 
correlations to modeling error or to new insights. We found that a given set of correlation 
results apply only to the specific range of parameter combinations used to generate the 
related responses. For example, the correlations identified in Appendix C differ in some 
ways from the correlations identified in Sec. 4. Examination by a domain expert revealed 
that both sets of correlations are valid; differences arose from variations in the range of 
parameters simulated. We conclude that correlation analysis should be applied separately 
to each suite of experiments where level settings differ. 
 
10.2.2.5 Principal Components Analysis (PCA). We used PCA to complement correlation 
analysis3. PCA aims to identify orthogonal variations, so-called principal components, in 
response data and to assign weights to indicate the degree to which responses influence 
each identified principal component. For the models simulated in this study, we found 
that most variation in response data could be accounted for by the first three or four 
principal components in a given analysis. This implies, for example, that we might be 
able to analyze three or four responses instead of the 22 used in our sensitivity analysis. 
Further, a domain expert could compare the findings from a PCA against the findings 
from a correlation analysis to determine if the two analyses were consistent. This 
consistency check helps to further validate a model. On the other hand, working with 
PCA results can be somewhat difficult for a few reasons. First, principal components are 
abstract linear weighted combinations of responses; thus, there is no specific domain 
interpretation behind a given component. An analyst or expert must invest considerable 
effort to develop a domain interpretation of even the top two or three principal 
                                                 
3 We also used PCA to identify sources of variation in data related to several experiments throughout our 
study. We evaluate PCA in these applications below in Sec. 10.2.4.3.  
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components. In some cases (e.g., Sec. 4), a clear and reasonable interpretation can be 
achieved. In other cases (e.g., Appendix C), interpretation becomes more difficult. 
Second, principal components can take on both positive and negative values, which 
present an analyst with difficulty assigning meaning. In fact, conducting a main-effects 
analysis of principal components required us to refer to main-effects analyses of 
responses in order to develop an interpretation. Third, PCA sometimes identified 
components that proved coarser than similar response groupings developed with 
correlation analysis. When aiming to reduce the response state space, we conclude that 
PCA provides a reasonable complement to correlation analysis; however, domain experts 
will often find correlation analysis more readily comprehensible than PCA. 

10.2.3 Model-Validation Techniques 
As we discussed in Sec. 2, network researchers typically do not know whether their 
models are valid. For this reason, we took two steps to increase confidence in the validity 
of MesoNetHS. We evaluate each step in turn. 
 
10.2.3.1 Sensitivity Analysis. Sensitivity analysis provided a tractable means to 
investigate the response of MesoNetHS to various changes in model input parameters. 
Using sensitivity analysis we were able to find and fix errors in early model formulations 
and, ultimately, to develop confidence that the model was fit for its intended role in our 
study. Of course, to conduct such analysis we combined many of the individual methods 
evaluated here, including two-level OFF experiment design, correlation and principal-
components analyses and ten-step graphical analysis. For this reason, our approach to 
sensitivity analysis inherited the strengths and weaknesses associated with the individual 
methods. In particular, the two-level design limited the range of our conclusions about 
model validity. To mitigate that, we conducted a supplementary sensitivity analysis (see 
Appendix C) that adopted different level settings for each input factor evaluated. We also 
used preliminary sensitivity analyses to identify factors that did not much influence 
model responses. We could then reduce the search space in subsequent analyses. We 
conclude that rigorous sensitivity analysis is feasible when using a reduced-scale model 
and two-level OFF design, combined with judicious choice of factors to vary. Results 
from sensitivity analyses guided us in designing specific experiments associated with our 
study. We recommend that campaigns of simulation (or analysis) experiments use only 
models that have been examined for sensitivity to changes in input parameters.  
 
10.2.3.2 Key Empirical Comparisons. To increase confidence that we had correctly 
modeled specific congestion-control algorithms we relied on key comparisons between 
simulation results and empirical results. Such comparisons were facilitated by the 
existence of published empirical results measured under controlled circumstances in a 
small (“dumbbell”) topology. We were easily able to model the small topology in 
MesoNetHS and to simulate the same scenarios and parameter settings used in the 
empirical studies. Comparing our simulation results with empirical results enabled us to 
identify errors in modeling several congestion-control algorithms. We were also able to 
correct our models and ensure that we obtained results consistent with empirical results. 
In this way, we gained confidence in our models of the various congestion-control 
algorithms prior to increasing the scale of topology we simulated. As an added benefit, 
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the empirical study identified default parameter settings adopted by congestion-control 
algorithms. We were able to adopt those settings for our large simulations. For a given 
study, empirical results may be unavailable, either because the problem under study is not 
yet implemented or because no one has published empirical results. Where feasible, we 
recommend that a small experimental configuration be used to generate empirical 
measurements in order to ground a mathematical model in reality. Preferably, the 
empirical measurements should be made from implementations developed independently 
from the models. The empirical measurements should capture key aspects of system 
behavior on a small scale. When empirical measurements cannot be made available, 
important aspects of a model may go unconfirmed. From our experiences, the resulting 
model can contain significant errors that lead to invalid behaviors. We recommend that 
significant studies endeavor to compare key model aspects with empirical measurements 
taken at small scale. Any reasonable expense required to obtain empirical measurements 
will be repaid by enhancing confidence in models used to study large-scale systems.   

10.2.4 Data-Analysis Methods 
Data analysis comprises the third axis of our method; modeling and experiment design 
comprise the other two axes. We applied and explored four data-analysis methods during 
our study. We evaluate each method below.  
 
10.2.4.1 Ten-Step Graphical Analysis. In support of exploratory analysis, NIST designed 
a ten-step graphical method (explained in Sec. 4.1.3), where each step generates an 
individual plot designed to answer one specific question regarding a data set. We 
employed this ten-step method as a main part of our sensitivity analysis; we applied all 
ten steps to each response. The analysis method is designed to match well with a two-
level OFF experiment design. Clearly, for our application, the main-effects plot (step 3) 
proved most insightful – revealing changes in system responses resulting from changes in 
input factors. The interaction effects matrix (step 4) also helped to identify that 
MesoNetHS was driven primarily by main effects, rather than by two-term interactions. 
Other plots proved useful for specific, limited purposes. For example, the ordered data 
plot identified specific combinations of factor settings that produced significant effects on 
the responses. The scatter plot summarized how the distribution in responses changed 
with respect to changes in input factors. Several other plots provided redundant 
information, which served to confirm related results or to identify analysis errors. For 
example, the Youden plot identified the most significant factors driving particular 
responses, which could also be ascertained from main effects plots, as well as a number 
of other plots. The |Effects| plot and the cumulative residual standard deviation plot 
helped to visualize whether a linear model could approximate a system’s response to 
input factors. A derived contour plot suggested how specific changes in the two main 
factors influencing a response might drive the response in particular directions. For our 
purposes, the box plot did not provide significant new information. Overall, the ten-step 
graphical analysis proved quite useful in analyzing a model’s sensitivity to changes in 
input parameter settings. We applied all ten steps to our initial sensitivity analysis. 
Subsequently, we used only main effects plots and interaction effects matrices, which 
provided the most important information for our supplementary sensitivity analysis. We 
recommend applying all ten steps of the graphical analysis during early stages of model 
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development and investigation. The various plots reveal a range of confirming and 
complementary information that could prove quite insightful. In later stages of analysis, 
we recommend limiting selected plots to only those necessary to address specific 
questions of interest.  
 
10.2.4.2 Cluster Analysis. We employed cluster analyses to reveal overall patterns of 
similarities and differences in responses. We sought patterns in behavior among selected 
congestion-control algorithms under conditions, composed of combinations of input 
parameters. Because parameter combinations varied greatly, we clustered algorithms only 
with respect to individual conditions. To identify clustering patterns, we needed to 
characterize differences among conditions. Such characterization required external 
analyses. Given dendrograms for each condition, along with characterizations of each 
condition, we were able to identify patterns where selected algorithms clustered together. 
These clustering patterns provided general relationships among algorithms and 
congestion. On the other hand, the patterns did not identify specific relationships among 
responses that led to the patterns; for this we required more detailed analyses (see 
10.2.4.4 below). Cluster analysis appears well suited to identify general patterns where 
such patterns exist. Further, using cluster analysis, we were able to identify close 
correspondence in the behaviors of two congestion-control algorithms, which enabled us 
to make informed decisions about more detailed analyses. On the whole, cluster analysis 
can provide a concise overview of patterns in data sets; however, one should not expect 
cluster analysis alone to provide insight about causality. At best, we found that cluster 
analysis can help to identify aspects of the data that should be given closer scrutiny.  
 
10.2.4.3 Custom Multidimensional Visualizations. Using Dataplot, a statistical scripting 
language and supporting run-time environment developed at NIST, we could construct 
custom visualizations designed to explore specific relationships among multidimensional 
data sets. We developed several custom, multidimensional, visualizations for our study. 
The resultant representations provided substantial insight into overall system behavior. In 
fact, custom visualizations provided launching points for many causality analyses (see 
Sec. 10.2.5). Custom visualization can provide a domain expert with concise and precise 
information regarding the questions under study. Further, detailed custom visualizations 
can be subjected to custom summarizations that identify key patterns in experiment data. 
On the other hand, successful custom visualizations entail collaboration among a 
statistical visualization expert and a domain expert, who must iterate over the design and 
construction of each visualization until a useful result emerges. We found, however, that 
a few (four or five) well-crafted multidimensional visualizations could be reused to 
analyze data from most experiments in our study. We recommend custom 
multidimensional visualizations as a key tool for analysis of data sets for complex 
systems. Of course, we were fortunate that one study participant was expert in the design 
and programming of statistical visualizations. Custom visualizations would be difficult to 
create and apply without access to the necessary expertise.    
 
10.2.4.4 Exploratory Multidimensional Interactive Visualization. Early in our study, we 
collaborated with visualization experts, who constructed DiVisa, a general purpose 
system for interactive exploration of multidimensional data. DiVisa enables an analyst to 
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view multiple, related, data simultaneously, while assigning custom visual attributes to 
represent various dimensions in the data. For example, visual attributes may include 
color, size and shape. Altogether, DiVisa allowed an analyst to assign up to eight 
different attributes to data. In using DiVisa, an analyst needs to remember how attributes 
are assigned. The resulting visualizations proved quite abstract and difficult to interpret. 
Late in development, and at the request of a domain expert, DiVisa was extended to 
support display of topological information associated with a given simulation. Since a 
topology is quite natural for a networking expert, DiVisa acquired increased utility for 
our study. In fact, given voluminous spatiotemporal information, such as queue sizes 
evolving over time in every router in a network topology, DiVisa could replay the 
dynamic behavior of a MesoNetHS simulation, which enabled us to detect unwanted 
behaviors in various simulations and to adjust model parameter settings as necessary to 
achieve desired effects. Unlike custom multidimensional visualizations, interactive 
visualization systems require a domain expert to explore system data and to develop 
revealing representations by assigning attributes to data dimensions. We found this quite 
difficult to do. Perhaps our experience would have been different had we collaborated 
with an expert in interactive multidimensional visualization. We do not recommend using 
abstract interactive systems for visualizing multidimensional data unless the resulting 
displays can be readily related to concepts comprehensible to a domain expert.  

10.2.5 Causality-Analysis Methods 
We chose data-analysis methods mainly based on an ability to reveal overall patterns in 
behavioral data derived from models of large systems. Once significant patterns were 
revealed, we typically needed to delve into more depth in order to determine root causes 
for the patterns. In this study, we adopted four main techniques   
 
10.2.5.1 Principal Components Analysis (PCA). We were sometimes able to apply PCA 
to identify causality underlying variations in response data. For example, when searching 
for causes in goodput variation among many flow groups under generally low congestion, 
PCA was able to identify the main drivers as network speed, propagation delay and file 
size. PCA could also discern cases where congestion-control algorithms did contribute to 
variation in goodput. In general, after using PCA to find the two main principal 
components, an analyst creates a scatter plot of component one vs. component two, where 
each point represents a particular parameter combination. Visual inspection may then be 
used to discriminate clusters, or groupings, of points. Using supplementary analyses, an 
analyst can characterize common factor settings among points in each grouping. Using 
this technique, factors underlying variation in the data can become quite explicit. Further, 
this level of analysis requires little domain expertise and may be accomplished based 
solely on the factors and settings in a two-level OFF experiment design. 
   
10.2.5.2 Detailed Measurements. Causality exploration sometimes requires detailed 
spatiotemporal data related to a specific question under investigation. At other times, an 
analyst may need to peruse spatiotemporal data to determine if a system is behaving as 
expected. We chose to collect detailed spatiotemporal data as an integral part of our 
simulation model, MesoNetHS. In fact, for pattern analysis we generated summary data 
from the detailed measurements. We found several advantages to this approach. First, we 
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could use the spatiotemporal behavior of our model to determine what data to summarize 
in order to avoid transient startup behavior. Second, we could subject our model to 
exploratory analyses (see Sec. 10.2.4.4 and Sec. 10.2.5.4). Third, should patterns from 
data analysis indicate need to further investigate detailed behavior, the data would 
already exist.4 Fourth, should other researchers wish to investigate particular questions 
not addressed in this study, the data would be available for later use. Some drawbacks 
also arise from collecting such detailed data. First, collecting extensive spatiotemporal 
data can require substantial memory within a running simulation. We mitigated this by 
permitting the simulation to periodically dump the measurement buffer to disk and then 
reuse the space for additional measurements. Of course, this increases the failure surface 
of the simulation. In practice, we found that making incremental measurements worked 
effectively, even when writing results to a file server located on a network.5 Second, 
collecting extensive spatiotemporal data requires availability of sufficient disk storage. 
The experiments in this study required approximately 250 GBytes of storage; so this was 
easily accommodated. For studies investigating behavior in large distributed systems, we 
recommend collecting detailed spatiotemporal data regarding every conceivable aspect 
that might be of interest. Summary data can be created from the details, as required for 
analysis. 
 
10.2.5.3 Scientific Method. Given a pattern of interest revealed by data analyses, we used 
the scientific method to search for causality. In general, we would posit a hypothesis to 
explain an observed pattern. We would then suggest detailed behavioral data that should 
exist to confirm our hypothesis. We would investigate the detailed data and either 
confirm or refute the hypothesis. If the hypothesis were refuted, then we would develop 
an alternate hypothesis and repeat. Eventually, we would construct a confirmed 
hypothesis for a given pattern and that would establish a causal link. This approach often 
proved time consuming, especially when a domain expert had insufficient insight to 
formulate a good, initial hypothesis. On the other hand, the rigorous nature of the entire 
modeling and analysis method we used built increasing insight into system behavior as 
the study progressed. For this reason, it became easier over time to generate good 
hypotheses. We were able to establish causality for every pattern of interest to us. Of 
course, our data is available for use by other researchers who might reach different 
conclusions than we have about particular causal links. While we would prefer to suggest 

                                                 
4 In practice, we made initial guesses about the detailed data we needed to collect. During our study, 
specific issues revealed the need to collect additional details, such as the temporal posture of the network 
with respect to the state (e.g., idle, connecting, active) and phase (e.g., initial slow-start, normal congestion 
avoidance, alternate congestion avoidance) of all flows. So, while one can arrange to collect substantial 
detailed data during model construction, the need might arise to add additional measurement data during a 
particular study. 
5 We did find it necessary to modify the simulation to detect network outages that prevented writing 
measurements and then to detect resumption of a network path so that the measurements could be written. 
During times of prolonged network outage the simulation halts while waiting to purge the measurement 
buffer. In some instances, when the file server crashed, the simulation could not write measurement results 
because the file handle was stale. Failure to recover from a stale file handle required a simulation to be 
restarted. Such instances were relatively rare. We were unable to use the SLX checkpoint and restart 
functions because they assume that a simulation would be reloaded into the same memory addresses. We 
could not guarantee that this would be the case. 
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a more direct process to establish causality, we had little recourse but to adopt the 
scientific method in cases where PCA could not provide sufficient insights.  
 
10.2.5.4 Exploratory Analysis. While the scientific method provides an orderly approach 
to establish causality, we also sometimes adopted a more exploratory approach. In 
general, we would select some related aspects of system behavior and then analyze or 
interact with time varying data to discover trends. We used this technique, for example, 
to characterize the temporal evolution of flow states and phases arising from various 
levels of congestion. We also sometimes used exploratory analysis to develop hypotheses 
about causes underlying patterns arising from analysis of summary data. For example, we 
used exploration of temporal variations in congestion-window size on specific flows to 
create the hypothesis that frequent, high amplitude oscillations in the congestion-window 
were responsible for increased loss rates exhibited by FAST and FAST-AT under high 
spatiotemporal congestion. Of course, to engage in exploratory analysis, one needs to 
have sufficient data collected under various well-understood conditions. 

10.2.6 Experiment-Selection Methods 
Despite the powerful modeling and analysis techniques available to study behavior in 
large systems, significant spatiotemporal patterns can be missed completely if the 
selected experiments do not create the necessary conditions. While domain expertise 
plays a crucial roll in experiment selection, we also adopted two other techniques that 
helped ensure good coverage of key behaviors. 
 
10.2.6.1 Rank Analysis. We exploited the sensitivity analysis of MesoNetHS to identify 
input factors exerting the largest influence on model response. This enabled us to 
concentrate our experiment campaign initially on varying those factors most likely to 
drive model behavior. We were able to keep other factors fixed. This shows how findings 
from sensitivity analysis can help to craft effective experiment designs.    
 
10.2.6.2 Domain Expertise. In designing our initial experiment (described in Sec. 6), we 
relied mainly on domain expertise. A domain expert conceived a temporal scenario that 
started with typical Web browsing traffic, added heavy congestion in a spatiotemporally 
localized form and then removed the heavy congestion to allow for resumption of normal 
Web browsing. A domain expert also introduced three long-lived flows that could 
provide a detailed view of congestion-control behavior. This basic scenario proved well-
suited to investigate many operational aspects of congestion-control algorithms. 
Insufficient domain expertise could create a significant impediment to designing 
insightful experiment scenarios.    
 
10.2.6.3 Incremental Design. We used incremental design to help construct effective and 
efficient experiment campaigns. In incremental design, results of preceding experiments 
are used to select parameters and scenarios for subsequent experiments. For example, our 
first experiment showed that using a large initial slow-start threshold reduced differences 
among most congestion-control algorithms. The initial experiment also identified some 
distinctive behaviors arising from FAST. Given these factors, we were able to craft our 
second experiment (see Sec. 7) to examine any changes that resulted from using a low 
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initial slow-start threshold and from including FAST with  tuning. At the same time we 
were able to determine whether reducing the size and speed of a simulated network 
would reveal new information. We made these changes while retaining the fundamental 
scenario from the initial experiment. We used the findings from the second experiment to 
design a subsequent pair of experiments (discussed in Sec. 8) that examined the influence 
of initial slow-start threshold in an evolving network. At the same time, domain expertise 
injected much lower overall congestion and a richer variety of traffic sources into the 
experiments. Based on findings from these experiments, we decided to design an 
experiment (reported in Sec. 9) that focused on loss/recovery procedures within the 
congestion-control algorithms, while at the same time increasing the size and speed of the 
simulated network. We recommend interweaving domain expertise and incremental 
design to construct the most effective experiment campaign to fit within the allotted time.  

10.2.7 Recommendations 
Investigating the behavior of large distributed systems benefits from rigorous application 
of a coherent set of experiment design and analysis methods. We recommend that such 
investigations adopt two-level6 OFF experiment designs, which can facilitate a wide 
range of analysis methods. We also recommend that system models (whether analytical 
or simulation) be subjected to sensitivity analyses in order to understand response to 
changing input parameters. We advocate the use of incremental design when constructing 
an experiment campaign. We suggest that discrete-event simulations can capture more 
detailed aspects of system behavior than would typically be feasible with more abstract 
models. We found that various scale-reduction methods can lead to tractable simulations 
for systems of significant size; however, there appears to be a limit. We recommend 
validating key model behaviors against empirical measurements, where feasible. We also 
identified several useful data-analysis methods that can reveal overall behavior in large 
systems. Some methods, such as cluster analysis, reveal the presence of behavioral 
patterns without providing much insight into underlying causes. Other methods, such as 
the NIST-developed ten-step graphical analysis, give better insights. We found that 
custom multidimensional visualizations can be quite informative; however, creating such 
visualizations requires significant iteration between a domain expert and an expert in 
statistical visualization. Causality analysis remains largely beyond the grasp of automated 
analysis methods. Investigating causality required iterative application of the scientific 
method: a domain expert developed a hypothesis regarding a macroscopic pattern of 
behavior and then used evidence from detailed spatiotemporal data to confirm or refute 
the hypothesis. For this reason, we recommend capturing data in as much spatiotemporal 
detail as a model will permit. Finally, we found that effective use of software for 
interactively exploring multidimensional data requires visualizations that relate to 
concrete concepts within the domain under investigation.  

                                                 
6 Two-level designs allow a system to be investigated under a wide range of conditions with reasonable 
cost. Once overall behavior of a model is understood, later experiments can focus on fewer factors with 
more levels, as needed to investigate specific aspects of behavior. The quality of these more focused 
experiments will be improved when placed within the context of a well-understood model. 
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10.2.8 Future Work 
We suggest three areas for future work on modeling and analysis methods for large 
distributed systems. First, we recommend investigating methods that enable abstract 
models to yield improved accuracy. For example, some researchers have developed a 
hybrid model combining continuous-time logic with discrete events to achieve efficient 
simulation of system behaviors (see Appendix B). Similarly, we are working to improve 
the accuracy of fluid-flow models of congestion-control algorithms (see Appendix A). 
Such hybrid or fluid-flow models could be augmented with features necessary to support 
the experiments adopted in the current study and then the experiments could be repeated. 
Perhaps one of these abstract models could reveal the same findings at reduced cost. 
Second, we suggest investigating approaches to automate design of custom visualizations 
for multidimensional data. Currently, successful application of custom visualization 
requires substantial collaboration between a domain expert and an expert in statistical 
visualization. Perhaps the knowledge of a statistical-visualization expert can be packaged 
in an automated form that enables a domain expert to create effective visualizations? 
Third, we encourage research into automated support for causality analysis. In this study, 
establishing causality required iteration of the scientific method by a domain expert. This 
approach was error-prone, time-consuming and difficult.    
 


