
Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-1

Appendix A Understanding, Improving and Applying
 Fluid-Flow Models
In order to insure efficient and stable operation of the Internet it is important to be able to
estimate network performance characteristics under TCP traffic, which today constitutes
the bulk of Internet data freight. The obstacle to achieving this goal is posed by the
dynamic nature of TCP congestion control: very complex collective behavior arises as a
result of interactions between congestion control algorithms of concurrent flows. A good
analogy that we will return to below is that of gas or fluid dynamics in which relatively
simple interactions between molecules comprising the substance lead to familiar but
complex bulk properties such as viscosity, temperature, and pressure, which are not
easily understood or computed from the microscopic, molecular description.

As in fluid dynamics there are two possible approaches to gauging the properties
of an aggregate network — by simulating the microscopic dynamics of transmission and
transit of individual packets or by studying heuristically derived high-level
approximations describing the packet traffic as a kind of a continuous substance flowing
along the network links. The advantage of the former approach (adopted in the main body
of this study) is that it yields very detailed information that is easily compared against
traces collected on experimental test beds, for example, for verification. On the other
hand, simulating a network of a realistic size over a large number of network parameter
combinations is still too resource demanding to be feasible. The fluid approximation
models by comparison have very modest resource demands, although they are also less
detailed. Fluid approximation models have another advantage over simulations in that
they can sometimes give precise mathematical relationships between performance and
network parameters, which can then be used as a guide in design of future networks and
protocols as well as to improve the performance of current systems.

We begin in Sec. A.1 by introducing fluid-flow approximation models for TCP
Reno flows and then we discuss the utility and limitations of such models. In Sec. A2, we
use fluid-flow approximation to develop response functions for TCP Reno, as well as
CUBIC [57] and Compound [59] TCP and then compare the estimated equilibrium
throughput of these alternatives. We close in Sec. A.3, where we outline future work
related to fluid-flow approximation of Internet congestion control algorithms.

A.1 Fluid-flow Approximation Models
How would the Internet appear when visualizing packets as points moving along links
and through routers? With hundreds of thousands of packets crossing a typical router
every second they would appear to be an uninterrupted blur of motion, as if a fluid were
flowing through pipes rather than a series of discrete packets flowing along links. This is
the basic idea of fluid approximation: if the number of packets in the network is very
large and they are moving very fast then the packet traffic will be well approximated by
an abstract continuous stream.

Although each individual TCP flow behaves deterministically, aggregate
dynamics, for a network of any significant size, will appear as nearly random. A good
physical analogy is molecular dynamics in a volume of gas: while each molecule obeys
simple Newtonian laws of motion their collective behavior is essentially stochastic.

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-2

Describing the paths of individual molecules is a hopeless and ultimately useless
endeavor; on the other hand, bulk properties such as pressure and temperature are neatly
connected by the ideal gas equations. Similarly, one may hope that for a large collection
of TCP flows the aggregate throughput may be related to the round-trip delay, capacity
and buffer size in a simple way. Thus, the ultimate goal of fluid-flow approximation
models is to develop a kind of TCP network thermodynamics.

We introduce fluid-approximation by briefly describing the congestion window
and throughput dynamics in the case of an isolated flow. To keep the presentation as
simple and clear as possible we will discuss the most basic version of TCP Reno
preserving only the most salient features of the protocol. That is, by TCP we will
henceforth mean TCP Reno without selective acknowledgment, fast retransmit and fast
recovery. Mathematical models incorporating these advanced features of TCP have been
studied elsewhere [123]. For an isolated flow there can only be one bottleneck router
along its path and so the rest of the path contributes only in terms of propagation delay.
We assume further that the bottleneck router is positioned immediately in front of the
source on the outgoing link. The general case is not substantially different. Let the router
capacity at the bottleneck be denoted by C pkts/sec, let its buffer size be B pkts and the
round-trip propagation delay T sec. If the variation in the round-trip time due to queuing
at the router is negligible, the size of the congestion window in the congestion avoidance
phase is approximated by the differential equation

),()(
2
1−= tPtW

Tdt
dW 1 (1)

where W(t) interpolates the discrete congestion window size and P(t) is a sum of delta
functions P(t)= ∑ (t−tj), with tj corresponding to moments of congestion window
reduction due to detection of packet losses. In the case of an isolated connection the
sequence tj is periodic and can be computed explicitly. Note, also, that if the buffer is
large T must be replaced with the equilibrium round-trip time that includes the
equilibrium queuing delay.

If B≈CT and the variation in queuing delay is significant, queue length has to be
explicitly included in the model. Equation (1) then becomes

dW
dt (t) =

1
T+Q(t−T)/C−

1
2W(t)P(t) (2)

dQ
dt (t) =

⎝⎜
⎛

⎠⎟
⎞

W(t)
T+Q(t−T)/C−C χ[0,B](Q(t)), (3)

where χ[0,B](x) is the characteristic function of [0,B].

While equations (1) and (2) describe the evolution of congestion window the
quantity of real interest is usually the transmission rate. It is not hard to see that the rate at
which the TCP sliding window advances, and hence the transmission rate, is equal to

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-3

W(t) divided by the total round-trip delay T+Q(t)/C. So long as queuing delay is small
relative to the total round-trip propagation time the transmission rate, X(t), can be
approximated by W(t)/T. Dividing (1) through by T we have

dX
dt =

1
T2−

1
2X(t)P(t). (4)

Note that, as expected, transmission rate attains its maximum value C at W=CT and stays
at this value even as W continues to increase. This means that when the buffer size is
comparable with the bandwidth-delay product X(t) does not carry enough information to
reconstruct the system state completely because it is impossible to compute X(t)
following a congestion window reduction given only the value of X(t) before the
reduction. In this case, throughput has to be computed by solving (2) first.

When considering the case of multiple flows, the complexity of the problem increases
in two ways. First, as the number of flows increases the simple periodic congestion
window dynamics described above breaks down because packet loss now depends on the
collective behavior of all flows. As the number of flows increases the evolution of
congestion windows becomes more and more complex and chaotic. The difficulty of the
problem also increases with increasing complexity of the network structure. As the web
of interactions among flows becomes increasingly complicated so does the global
dynamics of the network. This topological aspect of the problem has so far received
comparatively little mathematical treatment, mainly because describing a large number of
flows in a simple topology is already a formidable challenge. Most mathematical models
in current literature treat very simple network topologies. The one most often considered
is that of a single bottleneck link shared by a large number of identical flows. While this
simple topology may not exhibit the full range of dynamics that may exist in more
complicated networks it is, nevertheless, an important special case both practically and
theoretically. We turn to this case next.

A.1.1 Modeling Many Flows on One Link
We briefly outline the derivation of the fluid approximation for the one-link-many-flows
case. Let the number of flows N be large and let capacity and buffer size of the router
scale with N as NC and NaB, 0≤a≤1, respectively. Then the number of packets passing
through the shared link per unit time will be large, satisfying the intuitive condition
necessary for the fluid approximation to hold. While the system as a whole will remain
deterministic as N grows the packet loss process will be increasingly well approximated
by a stochastic one. Thus it makes sense to model evolution of congestion windows with
a corresponding collection of random process. Let WN(t) be the random process
describing aggregate congestion window size when the number of concurrent flows is N

 WN(t)= ∑
i=1

N
 WN

i (t), (5)

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-4

where WN
i (t) describes the congestion window size of flow i at time t. Since the flows are

identical it is reasonable to assume that the WN
i (t) are identical random processes. We will

also assume that the WN
i (t) become independent as N tends to infinity. Applying the law

of large numbers we have that 1/N WN(t) converges to some deterministic process w(t) as
N goes to infinity. The deterministic process w(t) is the fluid approximation of WN(t).

Considering the simpler case of small buffers a<1 [116], first, we have from (1)
and (5)

dWN

dt (t)=
N
T−

1
2 ∑

i=1

N
 WN

i (t)PN
i (t). (6)

Note that PN

i (t) are now coupled random variables. Dividing through by N and letting N
go to infinity we obtain the governing equation for w(t)

dw
dt (t)=

1
T−

1
2w(t)p(t), (7)

where p(t)=
lim

N→∞1/N ∑
i=1

N
 Pi(t) (assuming the limit exists) is the aggregate loss density

function. If the variation in round-trip time is small, p(t) can be assumed to depend only
on w(t−T) (ignoring the rest of the network parameters for the moment). Furthermore, the
number of packets lost per unit time can be approximated as p(w(t−T))w(t−T)/T, where
p(w) now stands for the probability that an arriving packet will be dropped due to buffer
overflow when the aggregate congestion window size is w. Note that because of the
round-trip delay the source detects packet loss only after a round-trip time T so that p
depends on the transmission rate T seconds in the past. Formula (7) can be approximated
as

dw
dt (t)=

1
T−

1
2

w(t)p(w(t−T))w(t−T)
T . (8)

If the buffer is large a=1 then p(w) will depend not only on w(t−T) but also on buffer
content q(t−T). Using equations (2) and (5) gives

)(t
dt
dw =

1
T+q(t−T)/C−

1
2

w(t)p(w(t−T),q(t−T))w(t−T)
T+q(t)/C

dq
dt (t) =

⎝⎜
⎛

⎠⎟
⎞

w(t)
T+q(t−T)/C−C χ[0,B](q(t)), (9)

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-5

where we assume that the per flow buffer content q(t)=
lim

N→∞QN(t)/N converges to a

continuous deterministic variable.

A.1.2 Utility of Fluid-flow Approximation Models
There are two main types of results that can be obtained from models such as equations
(8) and (9). First, one can deduce existence and uniqueness of the equilibrium, and its
dependence on network parameters. Secondly, one can analyze stability properties of the
equilibrium solution and how it depends on the network parameters. Both types of results
have clear practical applications, the first for optimal resource utilization and the second
for stable network design. We will give a brief survey of both types of results.

By setting the right side of (8) and (9) to 0 we can obtain the expression for the
equilibrium mean congestion window size w*

 w*=
2
p*, (10)

where p*=p(w*) or p(w*,q*) respectively. This shows that an equilibrium exists, since
p*≠0 is satisfied. Making the natural assumption that p(w) is monotonically increasing in
w, equation (10) also shows that the equilibrium is unique [118]. Formula (10) is close to
experimental measurements [113] and also agrees with first principles derivations [113].
Unfortunately, the dependence of w* on T and B is hidden inside the unknown function
p(w), which limits the usefulness of (10) for making a priori throughput estimates. Simple

forms for p(w) such as ⎝⎜
⎛

⎠⎟
⎞

w
CT

B

 corresponding to buffer overflow probability in an

M/M/1/B queuing system have been found to be far from accurate [108-109]. Recently,
an alternative packet loss model based on the Anick-Mitra-Sondhi on-off fluid queuing
model has been proposed [108, 110] and found to be substantially more accurate at
reproducing dependence of packet loss on w and the network parameters than the
M/M/1/B model has.

Even without knowing the exact expression for p(w), however, sufficient
conditions for linear stability of equilibrium (10) can be deduced in terms of p* and
p'*=p'(w*). Using standard methods of control theory it has been shown [122] that
equilibrium (10) of equation (8) will be stable in linear approximation provided that

 w*(2p*+w*p'*)<
π
2. (11)

Inequality (11) is a necessary but not a sufficient condition for stability, i.e. if it is
violated the equilibrium will definitely be unstable but satisfying (11) does not guarantee
(non-linear) stability. Based on (11) one can conclude, for example, that p'* must
decrease with increasing bandwidth-delay product in order for the equilibrium not to lose
stability, since larger bandwidth-delay product corresponds to larger equilibrium
congestion window size w*. With more advanced methods it is also possible to derive
conditions guaranteeing global stability of equilibrium (10), although, the resulting
inequalities are considerably more complicated and less enlightening than (11) [120].

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-6

Fluid approximation models have also been used in a global optimization
framework for the Internet, originally developed by F.P. Kelly et al. [121] to show that
per-flow TCP congestion control can be viewed as optimizing a certain global utility
function. That is, TCP congestion control can be seen as a decentralized iterative
algorithm for solving a network wide optimization problem. This point of view
revolutionized understanding of the effect of TCP congestion control on global network
dynamics. In particular, it paved the way toward a top-down protocol design, where
starting with a desirable global network state, first, the end-to-end congestion control can
be tailored to achieve this global state.

Finally, fluid approximation models have been used to create fast simulators for
large networks [102, 115] by leveraging fast numerical methods for solving systems of
differential equations. While not as accurate or detailed as packet level or meso-scale
simulators the results from the first implementations are encouraging.

A.1.3 Limitations of Fluid-flow Approximation Models
In spite of great theoretical value, and even some practical applications, the fluid
approximation framework falls short of being truly useful to practitioners of network and
protocol design mainly due to lack of accuracy [108-109]. The main obstruction to the
accuracy of fluid approximation models is the lack of an accurate packet loss process
model, which determines the equilibrium as well as dynamic behavior of the network. At
the outset, the packet loss process was assumed to be well approximated by the loss
process in an M/M/1/B queuing system. However, there is experimental evidence against
the Poisson packet arrival hypothesis [114]. Based on packet traces collected from the
Internet it was shown that the packet arrival process has rather different statistical
properties from a Poisson process. In particular, it was observed that it is much burstier
and is, moreover, bursty on all time scales. Due to the difficulty of mathematical analysis
of queuing systems fed by such self-similar traffic, relatively little headway has been
made toward obtaining a closed form expression for packet loss usable in the fluid
approximation framework. In fact, it is still common in current publications [108, 116,
118, 119] to find computations based on the M/M/1/B queuing system.

Elsewhere [108] we proposed and tested a new expression for packet loss based
on a queuing model of Anick, Mitra and Sondhi (AMS) [117]. Briefly, the model consists
of a single fixed rate server fed by a superposition of fluid, fixed-rate, on-off sources with
exponentially distributed “on" and “off" periods. This model is essentially a packet level
fluid approximation. Observations [108, 110-111] of ns2 traces suggest that TCP sources
tend to concentrate packets in bursts (corresponding to a single congestion window)
rather than transmitting packets at a uniform rate on the time scale of a round-trip time.
Thus setting the mean duration of the "on" periods to the congestion window size allows
us to simulate burstiness arising from the non-uniformity in the transmission rate at the
round-trip time scale.

The resulting mathematical model turns out to have a closed form solution in
terms of the basic system parameters such as the number of sources, the server and source
rates and the mean duration of the “on" and “off" periods. While this model is certainly
only an approximation, since, for example, the window size distribution is expected to be
non-exponential [103, 106], numerically it produces much better results than the
commonly used M/M/1/B model [108]. Moreover there are some indications that the

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-7

AMS packet loss model maybe applicable to any unpaced TCP variant and not just TCP
Reno for which it was developed. Assuming this is so we can then use the fluid
approximation framework to easily compare alternative congestion control algorithms in
a variety of different network set ups with varying link bandwidths, buffer sizes and
propagation delays. Next, we show how this can be accomplished.

A.2 Applying Fluid-flow Approximation Models to Compare
 Alternate Congestion Control Algorithms
In what follows, we briefly illustrate how the fluid approximation framework can be used
to compare throughput performance of different TCP variants in a simple network.
Specifically we consider an extension of the dumbbell topology — a network with a
single link shared by a large number of continuously transmitting TCP flows with similar
round-trip times (RTTs). We concentrate our attention on the standard TCP Reno and two
other TCP variants —CUBIC [57] and Compound [59] TCP — which are currently
gaining deployment in the Internet due to their inclusion in Linux and Windows Vista
Server operating systems respectively [105]. In the following we will be interested only
in the equilibrium throughput and so we will ignore the transient convergence dynamics
described by the fluid approximation differential equations model and concentrate on the
equilibrium solution. As previously explained because congestion control mechanisms
regulate transmission speed by opening and closing the congestion window, it is this
window rather than throughput that is typically the main variable in mathematical models
of TCP. The throughput is roughly proportional to the congestion window size divided by
the round-trip time (including propagation and the queuing delay).

The equilibrium mean congestion window size is described by a system of
equations of the form

 w* = w(p*) (12)

 p* = p(w*,C,B,T,N)

where w* and p* are the equilibrium congestion window size and packet loss probability
respectively. In special cases w(p) may also depend on other network parameters such as
RTT.

Generally speaking one might expect that the second equation in (12), describing
the dependence of packet loss on network parameters and equilibrium congestion
window size, is roughly the same for all congestion control algorithms that use ACK self-
clocking, i.e., insert new packets into the network only in response to acknowledgments
from the sink. The reason for this is that the sliding window algorithm in combination
with ACK self-clocking largely determines the statistics of the aggregate packet arrival
process at the bottleneck router, which, in turn, determines the statistics of packet loss.
The packet loss statistics will vary with the TCP congestion control algorithm to the
degree to which the equilibrium congestion window size distribution varies with
congestion control algorithm. Unfortunately, due to the complexity of the problem
relatively little is known about the properties of this distribution. For TCP Reno the
stationary congestion window distribution has been computed under the assumption of
Poisson losses [103, 106] and for more general additive-increase multiplicative-decrease

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-8

algorithms [112]. On the other hand, the packet loss probability function under the
assumption of exponential congestion window size distribution has also been deduced
[108].

We, first, show how TCP variants can be qualitatively compared without knowing
the form of the packet loss probability function provided it can be assumed to be
approximately independent of the specifics of the congestion control algorithm. Indeed, if
the second equation in (12) is independent of the specific algorithm, then the relative
position of equilibria of TCP variants is determined by the first equation, which strongly
depends on the particular congestion control algorithm used. The function w(p) is often
referred to in literature as the response function of the congestion control algorithm. As
one would intuitively expect it is a decreasing function of p — the less frequent the losses
the larger the equilibrium congestion window. Since the congestion window growth
functions used in congestion control are typically of polynomial growth due to stability
requirements, the response function itself is also typically polynomial in p, i.e., w(p)=cp−α
for some c, α>0. Since the packet loss instances form a random process the form of w(p)
depends not only on the average loss probability but also on the statistics of the loss
process. For simplicity, it is usually assumed that each packet is lost with probability p
independent of previous losses, i.e. packet loss is a Bernoulli process. If TCP throughput
is approximated by (1−p*)w*/RTT then, as Figure A-1 shows, if w0(p) strictly dominates
w1(p) for p∈[0,1] and p* is not too close to 1, TCP0 will have strictly higher throughput
than TCP1

Figure A-1. Response curves of two hypothetical TCP variants TCP0 and TCP1 (blue and red) and
the graph of a hypothetical packet loss function (black).

In practice, p* is usually less than 0.01. One must however keep in mind that this

comparison in itself is rather simpleminded in that it omits certain details such as

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-9

bandwidth lost due to retransmissions, etc., which may in practice lead to significantly
lower overall throughput. For example, if we assume that the packet loss probability is
equal to the blocking probability in an M/M/1/B queue (an admittedly optimistic
scenario) it is not hard to show that the throughput increases with increasing w* even
when p* is near 1, which translates into the best congestion control algorithm being no
congestion control at all! That is, the faster the sources push packets into the network the
higher the predicted throughput. Yet it is equally easy to see that this is a recipe for a
congestion collapse since with packet loss near 1 the network will quickly fill with
retransmitted copies of lost packets driving the overall throughput to zero.

If a dominance relationship between response functions cannot be established,
then information about the packet loss function p(w,…) is necessary to compare
congestion control algorithms. We will base our quantitative comparisons of TCP
variants below on the packet loss model [108] discussed in Sec. A.1.3 above, since it was
shown to produce more accurate results than the M/M/1/B based models.

A.2.1 Computing Response Functions
We begin by computing the congestion response functions of TCP Reno, TCP CUBIC
and Compound TCP. The response function of TCP Reno is well known and has been
extensively experimentally verified [113]. We present a brief outline of the derivation as
a simple illustration, since the computations become more involved for the other two
variants.
A.2.1.1 TCP Reno. Suppose the per packet loss probability is p, then the average number
of packets transmitted before a loss occurs is N=(1−p)/p. Suppose the equilibrium
congestion window size just after a packet loss is w0. Let a round be the number of
packets equal to the current congestion window size and suppose for simplicity that
between consecutive losses the number of rounds delivered is always an integer. Then the
number of rounds k between consecutive losses is related to N by the equation

 N= ∑
i=0

k
 w0+k=(k+1)w0+

1
2k(k+1).

Solving for k gives

 k=
1
2(−2w0−1+ (2w0−1)2+8N).

Thus at the end of a loss free period, just before packet loss occurs, the expected congest
window size will be

 w0+k=w0+
1
2(−2w0−1+ (2w0−1)2+8N).

Since we assume the connection to be in equilibrium w0 should be constant on average so

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-10

 w0=
1
2 ⎝⎜
⎛

⎠⎟
⎞w0+

1
2(−2w0−1+ (2w0−1)2+8N) .

Solving the above equation for w0 and discarding constant terms small in comparison
with N we get

 w0=
2/3
N =

2/3(1−p)
p

Finally, to obtain the equilibrium mean congestion window size we multiply w0 by 3/2

w(p)=
3/2(1−p)

p .

Since in practice p is usually close to 0 an approximation w(p)= (3/2)/p is often used.

A.2.1.2 Cubic TCP. CUBIC TCP differs from TCP Reno in several important respects,
two of which make computation of the response function considerably more difficult as
compared to the Reno computations outlined above. Firstly, CUBIC’s congestion
window growth function depends on time rather than the number of acknowledged
packets. Secondly, the congestion window growth function depends not only on the
congestion window size before the packet loss (as in Reno) but also on how this value
compares with the last maximum achieved. Thus congestion window size alone no longer
determines the full state of the algorithm and an additional parameter — last maximum
achieved — must also be tracked to have a full state. Finally, non-linearity of the
congestion window growth function, the very feature that is supposed to improve
performance, makes computation of expectations hard. In view of these difficulties we
are forced to content ourselves with the few rough approximations that are computable.

Let us begin by considering a very simple case when the packet losses are
periodic in time. In this case the congestion window growth function can be shown to
converge to the convex part of the cubic root, which drastically simplifies computations.
Let the time between losses be τ and the congestion window just before a loss be w0 then
the congestion window at the end of the loss free period will be

c ()τ−k
3

+w0

where k=
3

wβ/c and β and c are constants [57]. Since in equilibrium the w0 is constant
we have

 c ()τ−k
3

+w0=w0.

Substituting in for k and solving for w0 we get

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-11

w0=
cτ3

β .

Thus in equilibrium k=τ. We can now compute the equilibrium mean congestion window
size as a function of τ

 w(τ)=
1
τ ⌡⌠

0

τ
 c(t−τ)3+w0=cτ4

⎝⎜
⎛

⎠⎟
⎞

1
β−

1
4 (13)

To convert this into a function of p we compute the number of packets sent during a loss
free period, which is approximately

 N=
1
T ⌡⌠

0

τ
 c(t−k)3+w0dt=

cτ4

T
⎝⎜
⎛

⎠⎟
⎞

1
β−

1
4

where T is the round-trip time, which we assume to be approximately constant. Solving
for τ we get

 τ=
4

NT
c

4β
4−β.

Substituting for τ in (13) we get

 w(p)=
⎝
⎜
⎛

⎠
⎟
⎞

c(4−β)(NT)3

4β

1/4

Finally, assuming only one packet is lost in each congestion event so that p=1/N we get

w(p)=
⎝
⎜
⎛

⎠
⎟
⎞

c(4−β)

4β ⎝⎜
⎛

⎠⎟
⎞

T
p

3 1/4

which for the default settings of β=.2 and c=.4 gives

 w(p)≈1.17 ⎝⎜
⎛

⎠⎟
⎞

T
p

3/4

. (14)

This is also the formula derived by the designers of CUBIC [57].

In practice, however, packet losses are never periodic even in the case when there
is only one connection on the link. Therefore, we consider a more realistic case of a
Poisson loss process with rate λ. That is, we assume that a loss event occurs on average

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-12

every 1/λ seconds. Because the congestion window at the end of a congestion epoch can
now fall below as well as above the last maximum both possibilities have to be
considered. We assume that w0 and k are stationary independent random variables. This is
still not enough to make explicit computations possible and we further replace w0 and k
by deterministic variables equal to the mean values of the respective random variables.
With these, admittedly very crude, simplifying assumptions we can write down a pair of
fixed point equations for w0 and k

 w0 = (1−
β
2) ⌡⌠

0

k
 λe−λt(c(t−k)3+w0)dt+ ⌡⌠

k

∞
 λe−λt(c(t−k)3+w0)dt

 k = ⌡⌠
0

k
 λe−λt

3

β
2c(c(t−k)3+w0)dt+ ⌡⌠

k

∞
 λe−λt

3

β
c(c(t−k)3+w0)dt .

The first equation can be solved numerically in terms of k. Substituting the resulting
equation into the equation for k and solving numerically over a range of λ indicates, as
one might expect, that the equilibrium value of k is very nearly proportional to 1/λ with
coefficient of about 1.3. This gives

w0=
c(3+0.8β)

βλ3 .

for equilibrium congestion window just before a loss and

w(λ)=
.3β+3.8

β
c
λ3

for mean congestion window size. Expressing the above in terms of losses per number of
packets sent and substituting the default values for β and c we get

w(p)≈1.67 ⎝⎜
⎛

⎠⎟
⎞

T
p

3/4

, (15)

which is remarkably close to the simple formula (14).

A.2.1.3 Compound TCP. Compound TCP (CTCP) attempts to use delay measurements to
estimate the number of buffered packets and alleviate congestion. CTCP’s congestion
window is decomposed into two components: the standard Reno congestion window,
which increases by one over the window size for every acknowledgment received, and
the delay based component which grows polynomially but only as long as the number of
buffered packets, as measured by the increase in the round-trip delay, is below a certain
threshold γ, which is itself dynamically adjusted to match available buffer space. Because

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-13

the queue length measurements are performed for every returning acknowledgment and
the congestion window growth rate modified accordingly, the window growth function is
tightly coupled to the queue length. Thus, in general, analysis of CTCP must include an
explicit model of queue lengths along the connection’s path. Unfortunately, modeling
queuing dynamics is in itself a complex and largely unsolved problem and so we are
again forced to make crude simplifying assumptions. Specifically, we will assume that
statistical fluctuations dominate dynamics so that the smoothed round-trip delay remains
roughly constant once the network reaches equilibrium. Under this assumption analysis
of the congestion window response function simplifies because γ does not change over
time. Moreover, dynamic γ tuning insures that on average congestion window growth is
polynomial right up to the moment of loss. Proceeding as before we thus have

⎝⎜
⎛

⎠⎟
⎞

(1−k)α
T τ+w1−k

0

1

1−k

for the congestion window size at the end of a loss free period of duration τ given that the
starting congestion window size is w0 [59]. Since the window is reduced by 1−β upon a
loss the equilibrium w0 is determined by the equation

 w0=(1−β) ⎝⎜
⎛

⎠⎟
⎞

(1−k)α
T τ+w1−k

0

1

1−k
.

Computing the equilibrium mean congestion window size as a function of τ we get

 w(τ) =
1
τ ⌡⌠

0

τ
 ⎝⎜
⎛

⎠⎟
⎞

(1−k)α
T τ+w1−k

0

1

1−k
dt

 =
T
τ

 ⎝⎜
⎛

⎠⎟
⎞w1−k

0 +
(1−k)ατ

T

2−k
1−k

−w2−k
0

(2−k)α

Substituting in for w0 we have

w(τ) =
T ⎝⎜
⎛

⎠⎟
⎞

(1−k)ατ
T

2−k
1−k

 ()(1+γ)
2−k
1−k−γ

2−k
1−k

(2−k)ατ

(16)

 γ =
(1−β)1−k

(1−β)1−k−1

The number of packets transmitted in a time interval τ is given by

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-14

 N =
1
T ⌡⌠

0

τ
 ⎝⎜
⎛

⎠⎟
⎞

(1−k)α
T t+w1−k

0

1

1−k
dt

=
 ⎝⎜
⎛

⎠⎟
⎞w1−k

0 +
(1−k)ατ

T

2−k
1−k

−w2−k
0

(2−k)α

 =
 ⎝⎜
⎛

⎠⎟
⎞

(1−k)ατ
T

2−k
1−k

 ()(1+γ)
2−k
1−k−γ

2−k
1−k

(2−k)α

which gives

τ=
T

(1−k)α
⎝
⎜
⎛

⎠
⎟
⎞

(2−k)αN

(1+γ
2−k
1−k)−γ

2−k
1−k

2−k
1−k

Finally, substituting τ into (16) and assuming p=1/N as before we obtain

w(p)=
1−k
2−k ()(1+γ)

2−k
1−k−γ

2−k
1−k

1−k
2−k

 ⎝⎜
⎛

⎠⎟
⎞

(2−k)α
p

1

2−k

for the response function of CTCP. For the default values of α=1/8, β=1/2 and k=3/4 [59]
this is

w(p)≈0.25
1

p4/5 . (17)

A.2.2 Comparing Congestion Control Algorithms
We begin performance comparison with the qualitative method described in the A.2 (see
Fig. A-1). Since all computed response functions are approximations we must allow for
errors in the resulting models. At present, however, there is no theoretical framework for
computing fluid model error bounds and we are forced to make a somewhat arbitrary, but
we hope conservative, assumption that the model equilibrium congestion window size is
within 50% of the average window size that would be observed in a similar physical
network.

Fig. A-2 shows congestion window size as a function of packet loss for CUBIC
and TCP Reno. For TCP Reno we do not plot the error region because for TCP Reno the
response function (2.5) has been shown to be reasonably accurate [113]. As can be seen
from the diagram, for the same probability of packet loss CUBIC is likely to have a larger
congestion window, and so a higher throughput, provided that equilibrium packet loss is
less than about 1%. We note that packet loss rates as high as 1% are rarely observed. The
response function plot for CTCP (Fig. A-3) shows that it will likely have a higher

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-15

throughput than TCP Reno if equilibrium packet loss is below about .1%. For equilibrium
packet loss rates above about .5% TCP Reno may actually outperform CTCP.

Figure A-2. CUBIC response curve and a ±50% error region (blue) and TCP Reno response curve
(red).

Figure A-3. CTCP response curve and a ±50% error region (blue) and TCP Reno response curve
(red).

0.000 0.002 0.004 0.006 0.008 0.010

0

20

40

60

80

100

p

w
�p
�

0.000 0.002 0.004 0.006 0.008 0.010

0

20

40

60

80

100

p

w
�p
�

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-16

Comparing response functions of CTCP and CUBIC (Fig. A-4) we observe that
CUBIC is likely to have higher throughput than CTCP for the same equilibrium packet
loss rate. However, because the error regions overlap considerably it is hard to say
conclusively which of the two algorithms is likely to achieve higher throughput in
practice.

Figure A-4. CUBIC (thick blue) and CTCP (thick red) response curves and corresponding error
regions.

We can also obtain some quantitative measures of the algorithms’ performance by
using a specific packet loss model, such as the one we introduced [108], to compute
equilibrium throughput over a range of network parameters. Specifically we take

p(w)=
Nw
CTe−1.5 ()

C
Nw−

1
T

BN
C −3,

(18)

where N is the number of concurrent flows, T is round-trip propagation delay, C is router
capacity and B is buffer size. Tables A-1 through A-3 show average throughput for 1000
continuously transmitting flows over 1 Gbps link for a range of propagation delays and
buffer sizes. These quantitative results, unsurprisingly, largely agree with the above
qualitative analysis, but they also suggest some unanticipated conclusions. First, for
round trip propagation times below 150ms the alternative TCP variants do no better, and
sometimes even do worse, than TCP Reno. This is presumably because the equilibrium
packet loss rate for these scenarios is relatively high. Of course, CUBIC and CTCP were
by design optimized for links with high capacity and long propagation delay (also called
“long-fat pipes") and so their under-performance on links with relatively low bandwidth-

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-17

delay product is a chosen and accepted trade-off. Note, also, that this justifies the Reno-
to-alternative mode switch present in most of the new TCP variants including CUBIC
and CTCP.

Table A-1. Estimated throughput for CUBIC in pkts/ms for 1000 concurrent flows on a link with a
122pkts/ms capacity (for 1KB packets).

CUBIC

B (pkts)
50 100 150 200 250 300

50 108 114 116 118 118 118
100 98 107 111 113 114 115

T (ms) 150 90 101 106 109 111 112
200 84 96 102 105 108 110
250 79 91 98 102 105 107
300 76 88 94 99 102 105

Table A-2. Estimated throughput for CTCP in pkts/ms for 1000 concurrent flows on a link with a
122pkts/ms capacity (for 1KB packets).

CTCP

B (pkts)
50 100 150 200 250 300

50 112 115 117 117 118 118
100 98 107 111 113 115 116

T (ms) 150 87 98 104 108 110 112
200 78 91 98 102 105 107
250 70 84 92 97 101 103
300 65 79 87 92 96 99

Table A-2. Estimated throughput for TCP Reno in pkts/ms for 1000 concurrent flows on a link with
a 122pkts/ms capacity (for 1KB packets).

TCP Reno

B (pkts)
50 100 150 200 250 300

50 115 116 116 117 117 118
100 102 109 112 114 115 116

T (ms) 150 89 99 105 108 110 112
200 78 91 97 101 104 107
250 70 83 90 95 99 102
300 64 77 85 90 94 97

Study of Proposed Internet Congestion-Control Mechanisms NIST

Mills, et al. DRAFT A-18

A second unexpected observation is that CTCP does not perform significantly
better than TCP Reno even when round-trip delay becomes large, at least for the network
parameters considered. Examining the graph of the CTCP response function (Fig. A-3),
we see that this is most likely the result of a relatively high equilibrium packet loss rate,
in the range of .3% to .5%, where the difference between response functions for CTCP
and TCP Reno is small. On the other hand, in agreement with the qualitative analysis,
CUBIC comes out ahead with an estimated improvement in throughput in the range of
10% to 15% over TCP Reno for networks with round-trip propagation delays longer than
150ms.

While far from being exact or scalable to a network as large and complicated as
the Internet the mathematical models and methods presented here provide a cheap and
fast way for evaluating alternative TCP congestion control algorithms even before any
code is written. The value of these techniques is even greater when they are used as
design guideposts in the earliest stages of the development process of new TCP
congestion algorithms.

A.3 Future Work
Given that accurate modeling of packet loss is the key to accurate fluid approximation
models an important direction for future research is in the improvement and refinement
of queuing models for TCP traffic. While the new packet loss model described in Sec.
A.1.3 performs better than the highly inaccurate M/M/1/B model, there is still room for
improvement. In particular, the finite buffer correction factor is a rather crude patch in
lieu of a solution for the finite buffer system. The model can also be improved by
considering sources with non-exponentially distributed on-off periods since there is
reason to expect that congestion window sizes have a non-exponential distribution.

Utility of the fluid approximation framework would also be greatly improved if
response functions of the various new alternative congestion control algorithms could be
computed more precisely. An important related question is: how do the specifics of the
congestion control algorithm affect the congestion window size distribution? Answering
this question would determine the sensitivity of the packet loss model to the TCP variant
and hence the robustness of the comparison above.

The question of how network topology affects the equilibrium and stability of
TCP traffic is another important direction for future work. Recently fluid approximation
models have begun to be used for numerical simulations of large networks [104]. The
low resource demands and high speed of these simulators permit, for the first time, an
extensive exploration of the space of network topologies under a variety of network
conditions.

