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Enabling Inventories



• Measured at surface, by plane, by satellite

• Rely on spectroscopic measurement,
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Spectroscopic Measurements

Ozone CO2 CO2 & H2O

Water 
Window
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ABSORPTION SPECTROSCOPY BASICS

Beer-Lambert Law

Line-Shape Relations
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P – power

ℓ – length

() – absorption coefficient (length-1)

( ) ( )    

() – cross-section (area)

ρ – amount-of-substance (amt sub/length3)

S – line-strength (area·frequency)
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– Partial pressure standards

– Humidity in process gases

Background
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“Noisy” signals



Response of a Ring-down Cavity to an 
Arbitrary Excitation
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Frequency Stabilized CRDS
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Measuring Line Strengths
𝑆 =

 𝛼(𝑣) 𝑑𝑣

𝑛  𝑔(𝑣) 𝑑𝑣
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• Critical to satellite retrievals
– Used to get path length

• Comprehensive study of A-band completed
– Line-positions, -intensities, & -shapes,
– Pressure shift & broadening, mixing effects
– Comprehensive study of isotopes

• Comprehensive study 1-band under way
– Line-positions, -intensities, & -shapes,
– Pressure shift & broadening 
– Comprehensive study of isotopes

• Reduced uncertainty in line
parameters by an order of magnitude

Oxygen
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• Water is the most important GHG

• Line intensities & positions

– 7700 cm-1 to 1900 cm-1

• Vapor pressure of ice

Water

VP

NGP

GP

SDVP (as=0)

SDVP

SDNGP (as=0)

SDNGP

pCSDNGP

4 Torr

7892.3021 cm -1

S = 1.856x10- 25 cm molec.-1

(002)        (000) 
(10 5 6) – (9 2 7): Q’ – Q’’

Component %

Hygrometer frost-point temperature 0.45

Line shape uncertainty 0.25

Vapor pressure of ice 0.18

Hygrometer pressure 0.10

Cell pressure 0.10

Departure from ideal gas law 0.10

Uncertainty in FSR 0.10

Enhancement factor 0.05

Gas temperature 0.04

Background H2O in cell 0.01

Isotopic composition of sample 0.007

H2O dimer concentration 0.002

Spectrum measurement reproducibility and fit uncertainty 0.25

Relative combined standard uncertainty 0.64



NIR (1.6 m)

– Line-positions, -intensities, & -
shapes,

– Pressure shift & broadening

– Comprehensive study of isotopes

• Additional work near 2 m

Carbon Dioxide

p = 20 kPa

368 ppm CO2 in air

p = 100 Torr
air-broadening

fit + residual area

etalon

T, p, mole fraction

Total (quadrature sum)

isotopic composition

(30012) – (00001) CO2 band
Spectrum recorded in 8 min
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Scanning

Advantages:
• Overcomes slow mechanical and thermal scanning 
• Links optical detuning axis link to RF and microwave standards
• Wide frequency tuning range (> 90 GHz = 3 cm-1)

Method:
• Use waveguide electro-optic phase-modulator (PM) to generate tunable sidebands
• Drive PM with a rapidly-switchable microwave (MW) source
• Fix carrier and use ring-down cavity to filter out all but one selected side band

MW source

phase modulator

cw laser
ring-down cavity

side-band spectrum

Detector

gas analyte



Photoacoustic Resonator

100 mm50 mm 50 mm

microphoneanti-reflection,
low-loss windows

inlet/outlet located 
at acoustic nodes

6 mm 30 mm

chambers reduce signal 
from window absorption

resonance frequency in air f0  1640 Hz, Q  30
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Calculable Cell Constant
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Standard Reference Materials

WMO DQO*

CO2 ± 0.1 µmol/mol

CH4 ± 2 .0 nmol/mol

N2O ± 0.1 nmol/mol

• Develop new gravimetric primary 
standard mixture (PSM) suites with very 
low uncertainties to meet WMO Data 
Quality Objectives (DQO)
• 0.01 % to 0.05 % 
• CO2, CH4, N2O, CO

• Collaborate with atmospheric research 
laboratories to develop dry, whole air 
SRMs

• Use new PSM suites to certify real air 
samples as SRMs

SRM1720

SRM1721

*k=1 uncertainty



PSM
• Prepared  PSMs for each analyte

using scrubbed air and pure analyte
• Successive dilution with balance 

gas to achieve target level of 
analyte

• Prepare several samples around 
the targeted concentration.

• Challenges
• CO2 loss to cylinder walls and 

transfer lines
• N2O trace level detection and 

possible isotope bias
• CH4 trace level measurement



• CO2: Spectroscopic; Type-A uncertainty (p) of 0.01 %
(0.04 µmol/mol)

• CH4: GC/FID;  p = 0.01 – 0.08 % (0.18 – 1.4 nmol/mol)
Spectroscopic;  p = 0.01 % (0.18 nmol/mol)

• N2O: GC/ECD;  p = 0.01 % (0.18 nmol/mol)
Spectroscopic;  p = 0.01 % (0.03 nmol/mol)

• CO: Spectroscopic; p = 0.01 % (0.02 nmol/mol)

Analysis Methods

Previous PSMs
(nmol/mol)

New PSMs
(nmol/mol)

CH4 1804. ± 7. 1836.16 ± 0.75

N2O 317.6 ± 1.6 317.95 ± 0.07



Projected Certifications

Projected Assigned
Values

CO2 393. 32 ± 0.14 µmol/mol

CH4 1873.8 ± 1.0 nmol/mol

N2O 323.04 ± 0.20 nmol/mol

CO 160 ± 4 nmol/mol



FUTURE DIRECTIONS



QUESTIONS


