Abstract
An investigation of the external aerodynamics of canine olfaction is presented. Extending upon the previous work done by Settles (2002) and Craven (2010), we have developed an anatomically-correct artificial dog nose. The nose is modeled from detailed MRI imaging of a female Labrador Retriever and fabricated using a 3D printer and sniffs with realistic flow rates and frequencies. Flow visualization experiments using schlieren imaging enable real-time examination of the dogs remarkable ability to attract and sample vapors from extended distances. During exhalate, a turbulent air jet emanates from each nostril and entrains fluid from ahead of the nose, sometimes at a distance of many tens of centimeters. This vapor is now readily available for inhalation during which the nose now acts as a potential-flow inlet. During active sniffing, this exhalate/inhale cycle is repeated at a frequency of around 5Hz. We have learned that the dog is an active aerodynamic sampling system, utilizing fluid dynamics to increase its aerodynamic reach to sample vapors at increasingly large distances.

We are in the process of measuring the differences in performance characteristics of a dog that sniffs regularly vs. a dog that could inhale only. These measurements require the development of unique vapor-collection and LCMS chemical detection techniques to evaluate the collection of trace vapors associated with the detection of TNT via aerodynamic sampling. As a form of biomimicry, we are now utilizing bio-inspired design principles from the dog and applying them to optimize current- and next-generation vapor sampling technology.

Canine Olfaction Background
- Canines are considered the gold standard in trace chemical sampling.
- Sensitivity is comparable to instrumental systems, however sample collection, signal processing and analysis, and cycle times are almost instantaneous.
- Tracking people – criminals, search/rescue operations
- Law enforcement – narcotics and explosives
- Arson – accelerants vs. combustion by-products
- Medical – cancer/melanoma
- Physiological – epileptic seizures

(Johnston, Waggoner et al., Auburn University)

Previous Work – Fluid Dynamics of Canine Olfaction
- Schlieren imaging of real dog sniffing

External Canine Olfaction
The world’s first anatomically-correct actively-sniffing dog’s nose

Printed on a variety of 3D printers

What’s the point? -- Biomimicry
Once we learn how nature does things, can we apply it to technology development now, or help optimize the current generation of COTS equipment?

Vapor Sampling Experiments
- 30 mm height
- 30 mm standoff distance
- 20 min sampling time
- 6.PPM peak-to-peak sniffing
- 46 LPM RMS inhale only

Experiments show a factor of 4 increase when the dog is sniffing vs. inhale only. During inhale, the dog nose acts as a potential flow inlet (with minimal aerodynamic reach). Exhaling air jets act to augment this limited reach via fluid entrainment.

Summary and Next Steps
- Artificial dog nose is more competitive than a real dog in a schlieren system.
- An assisted sniffing (active) is used by the dog to augment potential flow inhale, thus increasing the aerodynamic reach for vapor particle sampling.
- We can optimize improve COTS vapor detectors using biomimicry.
- Next-generation samplers may benefit from bio-inspired design principles.
- 2-dimensional measurements to map aerodynamic reach.
- GMTI interface for real-time measurements of vapor collection.
- New sniffing mechanisms/front-ends for other vapor-based detectors.

Questions? Email: matthew.staymates@nist.gov