Model Based Design Tools for Cyber Physical Systems

Ted Bapty, Sandeep Neema
Institute For Software Integrated Systems
Vanderbilt University
Trends in Complex Design
Traditional System Design

- SWaP used as a proxy metric for cost, and disincentivizes abstraction in design.
- System decomposed based on arbitrary cleavage lines.
- Conventional V&V techniques do not scale to highly complex or adaptable systems—with large or infinite numbers of possible states/configurations.
- Resulting architectures are fragile point designs.
- Unmodeled and undesired interactions lead to emergent behaviors during integration.

MIL-STD-499A (1969) systems engineering process: as employed today

- Cost Optimization
- System Functional Specification
- System Layout
- Verification & Validation
- Subsystem Design
- Subsystem Testing
- Component Design
- Component Testing

SWaP = Size, Weight, and Power
Desirable interactions (data, power, forces & torques)
Adaptive Vehicle Make Vision

• **Speed:** Design a system in 1/5 the time of traditional design methods

• **Functional:** *Probabilistic Prediction of Performance*

• **Manufacturing:** Designs can be built

• **Adaptive** to requirements and new tech.

• **Accessible:** Lower the barrier to entry
The META Approach

Component Based Design
- Design Reuse, Distribute Workload
- Leverage cross-domain Component Libraries

Design Space Exploration
- Explore, Evaluate, Understand Tradeoffs
- Maintain Design Flexibility/Agility

Executable Requirements
- Auto-compose models/invoke domain analysis tools
- Minimize repetitive engineering labor

Meta Programmable Tools and Semantic Backplane

Support integration of new tools and analysis
Applicable across new domains and engineering processes

Institute for Software Integrated Systems
The META Design Flow

Design Space and Design Modeling

- Cyber Physical Modeling Language (CyPhy/GME)
- CAD Tool (PTC/Creo – currently)
- META Link
- Synchronized 2D-3D Design Environment
- Testbenches

Requirements

- Stakeholders/End-Users
- Derived Reqts.

Component/Subsystem Libraries

- Multi-Domain Component Model Libraries
- (Sub)System Libraries
- Custom Components/Subsystems

Static Constraint based DSE

- Performance Analysis
- Low Fidelity Manufacturability
- CAD Geometry Analysis
- Structural Analysis
- CFD Analysis
- Blast/Penetration Analysis

Dynamics Simulation based Performance Analysis

- Detailed Manufacturing Analysis

Design Space

- Design Detail/Analysis Fidelity
- Design Space

Data Visualization

MAUF Trades Exploration

Computed Design Metrics

MAUF Weights/Prefs
Component Models

- Represent Behavior Across Domains
 - Electrical, Mechanical, Fluids, Thermal ...
- Support Multiple Tools
 - Dynamics
 - CAD
 - Procurement & Cost
 - Cyber
- Levels of Abstraction
 - Multiple Fidelity
 - Tradeoff Speed and Accuracy
- Conforms to Ontology
 - Interchangeable Components
- Composition
 - Components plug together to make systems
 - Properties of components maintained in systems
 - Semantics Maintained

Caterpillar C9 Diesel Engine: AVM Component

- Weight: 680 kg
- Height: 1070 mm
- Number of Cylinders: 6
- Maximum Power: 330 kW
- Maximum RPM: 2300 rpm
- Minimum RPM: 600 rpm

<table>
<thead>
<tr>
<th>Parameter/property</th>
<th>Interface Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>FEA Geometry</td>
</tr>
<tr>
<td>Height</td>
<td>Low-Fidelity Dynamics</td>
</tr>
<tr>
<td>Number of Cylinders</td>
<td>High-Fidelity Modelica Dynamics Model</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>Low-Fidelity Modelica Dynamics Model</td>
</tr>
<tr>
<td>Maximum RPM</td>
<td>Bond Graph Dynamics Model</td>
</tr>
<tr>
<td>Minimum RPM</td>
<td>Detailed Geometry Model</td>
</tr>
</tbody>
</table>

- Low-Fidelity Dynamics
- Detailed Geometry
- FEA Geometry
Design Spaces Construction & Exploration

Architectures:
- Mobility
 - # Wheels/Legs/Tracks
 - Wheel Articulation
- Power Sources
 - Diesel, Electric, Solar
- Manipulators
- ...
Test Benches to Evaluate FANG Requirements

Simple Test Benches

Complex/Sequenced Test Benches
Dynamic Performance Evaluation: Composition and Execution of Multi-Fidelity Ordinary Diff Equations

Simulation Testbench for Behavioral Properties

Uncertainty Propagation & Estimation

Design Architectures

Multiple Fidelity Behavior Models

Multiple Physics Domains
Geometric Reasoning: CAD Assembly Composition

META Model of Structural Connections

CAD-Independent Assembly

CAD Tool Specific Drivers

BOM, Assembly, GD&T, …

iFAB Interface (partial)
Vehicle 3D Model

Composed Vehicle Geometry as Designed
Finite Element Analysis

Underpinnings
- Annotated 3D Models
- Semantics of 3D Physical
- TouchPoints in Test Bench
- Automated Composition

Challenges
- Scalability
- Stability of Analysis
 - (Production & Detection)
- Portability

End State:
Abaqus, ProE, Open Source
Probabilistic Certificate of Correctness

Qualitative Reasoning

Probabilistic Model Checking

Relational Abstraction

- Hybrid system --> Discrete system
- Model check the (infinite state) discrete system
 - infinite bounded model checking
 - k-induction
- Find: Safe/Unsafe/Goal States
Data Visualization & Trade Space Exploration (Dashboard)

Requirements Analysis

Multi Attribute Utility Function

Design Space Analysis
• Open / Extensible Tool Architecture
• Formal Meta-Models and Interchange formats
• Dual Cloud-based & Local Analysis Execution Infrastructure
• 300 Design Teams, 20+ Finalists
• 9 Amphibious Infantry Combat Vehicle Designs
• Takeaways:
 – AVM Software/Models Used by Uninitiated Group
 – Small Teams designed complex systems quickly
 – Teams pushed the limits of design space, despite narrow component selection
 – Result being built for validation
New/Ongoing Development For 2013-14

- Geometry Focus
 - Interactive CyPhy/CAD Coupling
- PDE Tools
 - CFD, Thermal, Dynamic Stress
- Fault and Reliability Modeling
- Mission Computing and RTOS Integration
- Composition
- Multi-Simulation Integration (HLA)
Transition of AVM Technology

• Application to New Domains
 – Understand various design requirements
 – Define Components
 – Leverage existing tool resources

• Prove Out META Processes In Situ
 – Immediate vs Gradual transition
 – Leverage NRE and Tools
 – Leverage assets (components)