UNIVERSITAT)
KOBLENZ - LANDAU visions.

Institute of Computational Visualistics, Active Vision @mp vision-robotics.de

KOBLENZ LOG FILE FORMAT
FORROBOTIC APPLICATIONS

Johannes Pellenz, Frank Neuhaus, Denis Dillenberger, Biagamg, Dietrich Paulus

Document history

| Version | Status | Date | Author | Description
0.9 draft 2009-10-01| Frank Neuhaus) Initial version
Denis Dillenberger
0.91 draft 2009-12-03| Dagmar Lang English version
1.0 draft 2010-06-03| Johannes Pellenz | Added 2D LRF data
1.1 draft 2010-06-08| Johannes Pellenz | Added introduction

draft, for QA, released

Contents
1 Introduction
2 Simple Data Types

3 File Format

3.1 Overall structure ofthelogfile
3.2 File Header with Magic Number
3.3 Index

3.4 Serialized Messages

341 OBDDataM e
3.42 GPSDataM e
343 ImageM e
3.4.4 RobotPoseM
3.45 \elodyneRawDataM
3.4.6 LaserRangez2DDataM,

4 Other topics
4.1 End of file recognition
4.2 Adding new file types

1 Introduction

This document describes the file format of the log files usduedt/niversity of Koblenz-Landau.
Frank Neuhaus, Denis Dillenberger and Johannes Pellenz tihe University of Koblenz-
Landau (German) have developed this flexible sensor datéléoigrmat. Compared to simple
text-file formats, it has the following advantages:

1. Itis compact.The amount of data produced by text file — when data from a 3Budag
device is used — is giant. This binary format faciliates toeyate small files, even if
multiple 2D and 3D sensors are used.

2. Itis fast and easy to writeBinary objects can directly be written to disk.

3. Itis fast and easy to readCreate your object, and fill it with the data read from disk. No
need for parsing each piece of data.

4. It has an indexUsing the index, you can jump to the interesting points innjog file.

5. It has a time stampSo you can see when the data packages arrived - and generate th

packages in real time when playing back.

6. It supports multiple types of sensoldle used it to capture 3D sensor data along with the

data from three webcams.

7. It keeps the data of all sensors in one fifesingle file is easy to archive, and the order of
the sensor data is stored correctly.

8. It supports multiple sensors of the same tyBg.assigning a name for a sensor, you can
distinguish different laser scanners or cameras.

9. It supports version numbers for the file form&b different versions of the log file can be
read.

10. It supports version numbers for each serialized mess&ge.different versions of the
messages can be read.

The format is provided "as-is" and is open source. It is n@® aked and maintained by the
V&R Vision & Robotics GmbH (Koblenz, Germany).

2 Simple Data Types

The following table presents an overview of the used datasymd their respective characteris-
tics.

Size in Bytes| Remarks |

| Type
unsigned char
unsigned short
int

unsigned int
long long
bool

float

double 8
string 4+n String lengthn (as unsigned int) + characters

ArrhoOP~BANMDPR

All data types are stored ilittle-endian (default by x86 systems) and the data types "float"
and "double" are stored in the usual IEEE 754 format.

3 File Format

3.1 Overall structure of the log file

The log file consists of three parts in the denoted order:

o file header with magic number (see Sec. 3.2),
e index (see Sec. 3.3), and

e serialized messages (see Sec. 3.4).

The mentioned parts are described in the following subsesti

3.2 File Header with Magic Number

\ Name/Value

{OxA4, "V" ,"E", "L"}

Major Version (currently 0x0001
Minor Version (currently 0x0001

| Size in Bytes|
4

2
2

| Type

unsigned char[4]
unsigned short
unsigned short

3.3 Index

Valid start positions for the deserialization of the messagre specified in the index. The po-
sitions are absolute e. g. relative to the beginning of tha fie. Every entry represents one
second of the log file. The first entry points to the beginnifthe first second, the second entry
points to the second second and so on.

| Name | Type | Size in Bytes|
Index Size:n | unsigned int| 4
Index0 long long 8
Indexn — 1 | long long 8

3.4 Serialized Messages

The header described in this section prepends to all destnitessages in this chapter:

| Name/Value | Type | Size in Bytes

Message size in bytes unsigned int 4

(Size of the message incl. header

"1" (Hex: 0x49) unsigned char 1

("1" indicates a valid message)

Message typésee below) int 4

Message versio(see below) | int 4

Message timestamp double 8

(in ms, since program startip

Message data complex, see next section"Message size*17
("Message size" minus header)

Different messages can be identified using "Message typhé structure of "Message data"
for particular messages is described in the following sesti
3.4.1 OBDDataM

Message type: 0x00014043
Described version: 100

\ Name

Type | Size in Bytes|

Speedif km/H | int 4
Engine RPM int 4
unused float | 4
unused int 4
unused int 4
Throttle Position| float | 4
unused int 4

3.4.2 GPSDataM

Message type: 0x00014A32
Described version: 100

Name Type | Size in Bytes
| [Type | |

Time-Hour (UTC) int 4
Time-Minute (UTC) int 4
Time-Second (UTC) int 4
Warning (0 or 1) int 4
Latitude double | 8
Longitude double| 8
Speedif km/H float 4
Course float 4
Date-Day int 4
Date-Month int 4
Date-Year int 4
Quality int 4
O=invalid, 1=gps, 2=dgps, 6=estimated
Number of satellites int 4
Accuracy HDOP float 4
Height float 4
Geoid height float 4
Accuracy VDOP float 4
Accuracy PDOP float 4

3.4.3 ImageM

Message type: 0x000109C9

Described Version: 100

| Name | Type | Size in Bytes \
Source Id int 4
IsCompressedc(rrently always trug | bool 4
Width int 4
Height int 4
Size of image data unsigned int | 4
Data unsigned char Size of image data

The image data is compressed as JPEGs and can be decomfingssiing common libraries
(e.g. libjpeq).
3.4.4 RobotPoseM

Message type: 0x0001E342
Described Version: 100

| Name | Type | Size in Bytes|
Orientation Quaternion float[4] | 16
Acceleration Vector float[3] | 12

3.4.5 VelodyneRawDataM

Message Type: 0x0003112B
Described Version: 100

| Name | Type | Sizein Bytes |
Number of Velodyne packets unsigned int 4
Velodyne packets VelodynePacket[] Numberx 1206

The Velodyne packets are exactly those packets receivedtfre Velodyne scanner.

3.4.6 LaserRange2DDataM

Message Type: 0x00030910
Described Version: 101

| Name | Type | Size in Bytes
Sensor type string 4 + string length
Sensor name string 4 + string lenght
Number of measurements unsigned int| 4

Distance measurements in mm as generatadsigned int Number of measurements 4
by the sensor

Contains (original) 2D laser range data in polar-coordisgt = (¢, r)), where only the ranges

r are stored here. The sensor type identifies the brand angpbeof the sensor and can be
Hokuyo URG 04LXor Hokuyo UTM 30LX. The sensor hame is an arbitrary name for the
sensor and can be used to describe the position of the senidwr @bot (using another data
structure, such as a scene graph).

4 Other topics

4.1 End of file recognition

The end of file is reached, when eitlarthe following conditions is true:
e The file pointer is at the end of file.
e The message size was read as OxFFFFFFFF.

e The available amount of data in the file is not smaller tharspiexified message size.

4.2 Adding new file types

If you want to add a new filetype, generate a new Message Tymifir by using the function
BaselLi b:: String::sinpleHash("MyDataM') .

