
Institute of Computational Visualistics, Active Vision Group vision-robotics.de

KOBLENZ LOG FILE FORMAT

FOR ROBOTIC APPLICATIONS

Johannes Pellenz, Frank Neuhaus, Denis Dillenberger, Dagmar Lang, Dietrich Paulus

Document history

Version Status1 Date Author Description

0.9 draft 2009-10-01 Frank Neuhaus,
Denis Dillenberger

Initial version

0.91 draft 2009-12-03 Dagmar Lang English version
1.0 draft 2010-06-03 Johannes Pellenz Added 2D LRF data
1.1 draft 2010-06-08 Johannes Pellenz Added introduction

1draft, for QA, released

Contents

1 Introduction 2

2 Simple Data Types 3

3 File Format 4
3.1 Overall structure of the log file 4
3.2 File Header with Magic Number .. . 4
3.3 Index . 4
3.4 Serialized Messages .. . 4

3.4.1 OBDDataM . 5
3.4.2 GPSDataM . 5
3.4.3 ImageM . 6
3.4.4 RobotPoseM . 6
3.4.5 VelodyneRawDataM . 7
3.4.6 LaserRange2DDataM . 7

4 Other topics 8
4.1 End of file recognition .. 8
4.2 Adding new file types . 8

1

1 Introduction

This document describes the file format of the log files used atthe University of Koblenz-Landau.
Frank Neuhaus, Denis Dillenberger and Johannes Pellenz from the University of Koblenz-
Landau (German) have developed this flexible sensor data logfile format. Compared to simple
text-file formats, it has the following advantages:

1. It is compact.The amount of data produced by text file – when data from a 3D capturing
device is used – is giant. This binary format faciliates to generate small files, even if
multiple 2D and 3D sensors are used.

2. It is fast and easy to write.Binary objects can directly be written to disk.

3. It is fast and easy to read.Create your object, and fill it with the data read from disk. No
need for parsing each piece of data.

4. It has an index.Using the index, you can jump to the interesting points in your log file.

5. It has a time stamp.So you can see when the data packages arrived - and generate the
packages in real time when playing back.

6. It supports multiple types of sensors.We used it to capture 3D sensor data along with the
data from three webcams.

7. It keeps the data of all sensors in one file.A single file is easy to archive, and the order of
the sensor data is stored correctly.

8. It supports multiple sensors of the same type.By assigning a name for a sensor, you can
distinguish different laser scanners or cameras.

9. It supports version numbers for the file format.So different versions of the log file can be
read.

10. It supports version numbers for each serialized message.So different versions of the
messages can be read.

The format is provided "as-is" and is open source. It is now also used and maintained by the
V&R Vision & Robotics GmbH (Koblenz, Germany).

2

2 Simple Data Types

The following table presents an overview of the used data types and their respective characteris-
tics.

Type Size in Bytes Remarks

unsigned char 1
unsigned short 2
int 4
unsigned int 4
long long 8
bool 4
float 4
double 8
string 4 +n String lengthn (as unsigned int) +n characters

All data types are stored inlittle-endian (default by x86 systems) and the data types "float"
and "double" are stored in the usual IEEE 754 format.

3

3 File Format

3.1 Overall structure of the log file

The log file consists of three parts in the denoted order:

• file header with magic number (see Sec. 3.2),

• index (see Sec. 3.3), and

• serialized messages (see Sec. 3.4).

The mentioned parts are described in the following subsections.

3.2 File Header with Magic Number

Name/Value Type Size in Bytes

{0xA4, "V" , "E" , "L"} unsigned char[4] 4
Major Version (currently 0x0001) unsigned short 2
Minor Version (currently 0x0001) unsigned short 2

3.3 Index

Valid start positions for the deserialization of the messages are specified in the index. The po-
sitions are absolute e. g. relative to the beginning of the data file. Every entry represents one
second of the log file. The first entry points to the beginning of the first second, the second entry
points to the second second and so on.

Name Type Size in Bytes

Index Size:n unsigned int 4
Index0 long long 8
...

...
...

Indexn− 1 long long 8

3.4 Serialized Messages

The header described in this section prepends to all described messages in this chapter:

4

Name/Value Type Size in Bytes

Message size in bytes unsigned int 4
(Size of the message incl. header

"1" (Hex: 0x49) unsigned char 1
("1" indicates a valid message)

Message type(see below) int 4
Message version(see below) int 4
Message timestamp double 8
(in ms, since program startup)

Message data complex, see next section"Message size"−17
("Message size" minus header)

Different messages can be identified using "Message type". The structure of "Message data"
for particular messages is described in the following sections.

3.4.1 OBDDataM

Message type: 0x00014043
Described version: 100

Name Type Size in Bytes

Speed (in km/h) int 4
Engine RPM int 4
unused float 4
unused int 4
unused int 4
Throttle Position float 4
unused int 4

3.4.2 GPSDataM

Message type: 0x00014A32
Described version: 100

5

Name Type Size in Bytes

Time-Hour (UTC) int 4
Time-Minute (UTC) int 4
Time-Second (UTC) int 4
Warning (0 or 1) int 4
Latitude double 8
Longitude double 8
Speed (in km/h) float 4
Course float 4
Date-Day int 4
Date-Month int 4
Date-Year int 4
Quality int 4
0=invalid, 1=gps, 2=dgps, 6=estimated
Number of satellites int 4
Accuracy HDOP float 4
Height float 4
Geoid height float 4
Accuracy VDOP float 4
Accuracy PDOP float 4

3.4.3 ImageM

Message type: 0x000109C9
Described Version: 100

Name Type Size in Bytes

Source Id int 4
IsCompressed (currently always true) bool 4
Width int 4
Height int 4
Size of image data unsigned int 4
Data unsigned char Size of image data

The image data is compressed as JPEGs and can be decompressedby using common libraries
(e. g. libjpeg).

3.4.4 RobotPoseM

Message type: 0x0001E342
Described Version: 100

Name Type Size in Bytes

Orientation Quaternion float[4] 16
Acceleration Vector float[3] 12

6

3.4.5 VelodyneRawDataM

Message Type: 0x0003112B
Described Version: 100

Name Type Size in Bytes

Number of Velodyne packetsunsigned int 4
Velodyne packets VelodynePacket[] Number× 1206

The Velodyne packets are exactly those packets received from the Velodyne scanner.

3.4.6 LaserRange2DDataM

Message Type: 0x00030910
Described Version: 101

Name Type Size in Bytes

Sensor type string 4 + string length
Sensor name string 4 + string lenght
Number of measurements unsigned int 4
Distance measurements in mm as generated
by the sensor

unsigned int Number of measurements× 4

Contains (original) 2D laser range data in polar-coordinates (~r = (ϕ, r)), where only the ranges
r are stored here. The sensor type identifies the brand and the type of the sensor and can be
Hokuyo_URG-04LX or Hokuyo_UTM-30LX. The sensor name is an arbitrary name for the
sensor and can be used to describe the position of the sensor at the robot (using another data
structure, such as a scene graph).

7

4 Other topics

4.1 End of file recognition

The end of file is reached, when eitherof the following conditions is true:

• The file pointer is at the end of file.

• The message size was read as 0xFFFFFFFF.

• The available amount of data in the file is not smaller than thespecified message size.

4.2 Adding new file types

If you want to add a new filetype, generate a new Message Type identifier by using the function
BaseLib::String::simpleHash("MyDataM").

8

