UNIVERSITAT)
KOBLENZ - LANDAU visions.

Institute of Computational Visualistics, Active Vision @mp vision-robotics.de

KOBLENZ LOG FILE FORMAT
FORROBOTIC APPLICATIONS

Johannes Pellenz, Frank Neuhaus, Denis Dillenberger, Biagamg, Dietrich Paulus

Document history

| Version | Status | Date | Author | Description
0.9 draft 2009-10-01| Frank Neuhaus) Initial version
Denis Dillenberger

0.91 draft 2009-12-03| Dagmar Lang English version

1.0 draft 2010-06-03| Johannes Pellenz | Added 2D LRF data

1.1 draft 2010-06-08| Johannes Pellenz | Added introduction

1.2 draft 2010-06-13| Frank Neuhaus Clarifications and fixes, Removed
some project-specific messages, Added
a section on sensor hames/types

1.3 draft 2010-06-25| Johannes Pellenz | Added version 102 for LRF 2D data

1.4 draft 2010-07-06| Johannes Pellenz | Fix for version 102 for LRF 2D data
sensor timestamp

draft, for QA, released

Contents
1 Introduction
2 Simple Data Types

3 File Format

3.1 Overall structure ofthelogfile
3.2 File Header with Magic Number

33 Index
3.4 Serialized Messages
341 ImageM
3.42 IMUStateM

3.4.3 LaserRange2DDataM
3.4.4 LaserRangez2DConfigM

4 Other topics

4.1 Sensortype/name
4.2 End of file recognition . . .

4.3 Adding new message types

(6]

»

1 Introduction

This document describes the file format of the log files usduedt/niversity of Koblenz-Landau.
Frank Neuhaus, Denis Dillenberger and Johannes Pellenz tihe University of Koblenz-
Landau (German) have developed this flexible sensor datéléoigrmat. Compared to simple
text-file formats, it has the following advantages:

1. Itis compact.The amount of data produced by text file — when data from a 3Budag
device is used — is giant. This binary format faciliates toeyate small files, even if
multiple 2D and 3D sensors are used.

2. Itis fast and easy to writeBinary objects can directly be written to disk.

3. Itis fast and easy to readCreate your object, and fill it with the data read from disk. No
need for parsing each piece of data.

4. It has an indexUsing the index, you can jump to the interesting points innjog file.

5. It has a time stampSo you can see when the data packages arrived - and generate th

packages in real time when playing back.

6. It supports multiple types of sensoldle used it to capture 3D sensor data along with the

data from three webcams.

7. It keeps the data of all sensors in one fifesingle file is easy to archive, and the order of
the sensor data is stored correctly.

8. It supports multiple sensors of the same tyBg.assigning a name for a sensor, you can
distinguish different laser scanners or cameras.

9. It supports version numbers for the file form&b different versions of the log file can be
read.

10. It supports version numbers for each serialized mess&ge.different versions of the
messages can be read.

The format is provided "as-is" and is open source. It is n@® aked and maintained by the
V&R Vision & Robotics GmbH (Koblenz, Germany).

2 Simple Data Types

The following table presents an overview of the used datasymd their respective characteris-
tics.

Size in Bytes| Remarks |

| Type
unsigned char
unsigned short
int

unsigned int
long long
bool

float

double 8
string 4+n String lengthn (as unsigned int) + characters

ArrhoOP~BANMDPR

All data types are stored ilittle-endian (default by x86 systems) and the data types "float"
and "double" are stored in the usual IEEE 754 format.

3 File Format

3.1 Overall structure of the log file

The log file consists of three parts in the denoted order:

o file header with magic number (see Sec. 3.2),
e index (see Sec. 3.3), and

e serialized messages (see Sec. 3.4).

The mentioned parts are described in the following subsesti

3.2 File Header with Magic Number

| Name/Value | Type | Size in Bytes|
{OxA4, "V" ,"E", "L"} unsigned char[4] 4
Major Version (currently 0x0001) unsigned short | 2
Minor Version (currently 0x0001) unsigned short | 2

3.3 Index

Valid start positions for the deserialization of the messagre specified in the index. The po-
sitions are absolute e. g. relative to the beginning of tha fie. Every entry represents one
second of the log file. The first entry points to the beginnifthe first second, the second entry
points to the second second and so on. Unused entries ageexsshe value-1. The time is
relative to the timestamp of the first message. If the firstaags has a timestamp of 10s for
example, the first index will still point to this message. Heeond index will point to the first
message with a timestamp greater than or equal to 11 s.

| Name | Type | Size in Bytes|
Index Size:n | unsigned int| 4

Index0 long long 8

Indexn — 1 | long long 8

The index table is really an optimization that allows fashping to specific positions inside
the log file. If you do not want to generate indexing inforroatior want to generate the index
in a post-processing step, simply set all index valuestoThe file will still be valid.

3.4 Serialized Messages

The header described in this section prepends to all descritessages in this chapter:

| Name/Value | Type | Size in Bytes

Message size in bytes unsigned int 4

(Size of the message incl. header, without the size itself)

"1" (Hex: 0x31) unsigned char 1

("1" indicates a valid message)

Message typésee below) int 4

Message versio(see below) int 4

Message timestamp double 8

(in ms, since program startip

Message data complex, see next section"Message size*17
("Message size" minus heade

Different messages can be identified using "Message typhé structure of "Message data"
for particular messages is described in the following sesti
3.4.1 ImageM

Message type: 0x000109C9
Described Version: 102

| Name | Type | Size in Bytes \
Sensor type string 4 + string length
Sensor hame string 4 + string length
IsCompressedc(rrently always trug | bool 4
Width int 4
Height int 4
Size of image data unsigned int | 4
Data unsigned char Size of image data

The image data is compressed as JPEGs and can be decomfmgss#uy common libraries
(e.g. libjpeq).
3.4.2 IMUStateM

Message type: 0x00018D07
Described Version: 102

| Name | Type | SizeinBytes |
Sensor type string | 4 + string length
Sensor hame string | 4 + string length
Orientation Quaternioq = w + xi + yj + zk (stored asvzryz) | float[4] | 16
Acceleration Vector float[3] | 12

3.4.3 LaserRange2DDataM

Message Type: 0x00030910
Described Version: see below

| Name | Type | Size in Bytes | since ver.|

Sensor type string 4 + string length 101
Sensor hame string 4 + string length 101
Number of measurements (range data) unsigned int| 4 100
Distance measurements in mm as generatadsigned int Number of measurements4 | 100
by the sensor

Number of measurements (intensity data) | unsigned int| 4 102
Intensity data unsigned int| Number of measurements4 | 102
Sensor timestamp unsigned int| 4 102

Comments:

e This package contains (original) 2D laser range data inrgmardinates { = (p,r)),

where only the rangesare stored here.

e Errorneous measurements are set to the distance 0.

e The sensor type identifies the brand and the type of the sandaran bélokuyo_URG- 04LX

or Hokuyo_UTM 30LX.

e The sensor name is an arbitrary name for the sensor and cagseleta describe the

position of the sensor at the robot (using another datatsteicsuch as a scene graph).

e TheNumber of measurements (range daayiNumber of measurements (intensity data)
are the same but ease the use of complex datastructures\(bet@rs).

e TheSensor timestamig a timestamp that is provided by the sensor itself.

3.4.4 LaserRange2DConfigM

Message Type: 0x00037DF6
Described Version: 100

Name | Type | Size in Bytes
Sensor type string 4 + string length
Sensor name string 4 + string length
Number of beams unsigned int| 4

Max range (m) unsigned int| 4

Field of view (deg float 4

Orientation Quaternioq = w+xi+yj + zk | float[4] 16

(stored asvzyz)

Position (mm, robot coordinate frame float[3] 12

The robot coordinate frame is defined as follows: The orgyiny position is the point around
the robot turns in place (if not possible the center point)] ais on the ground. The coordinate
system is right-handed with theaxis pointing in the direction of movement. Thus, thaxis
points forwardsy-axis to the left and-axis up.

4 Other topics

4.1 Sensor type/name

The purpose of the sensor type and name in some messagesngtely identify specific
sensors. This system allows having multiple sensors of éneestype (and possibly also of
the same brand) in the same system. All of them will be stosetha same message type.
Both, sensor name and type are ASCII based strings withagtespuse underscores if needed).
Furthermore the sensor name has to uniquely identify theifspeensor instance.
4.2 End of file recognition
The end of file is reached, when eitlarthe following conditions is true:

e The file pointer is at the end of file.

e The message size was read as OxFFFFFFFF.

e The available amount of data in the file is not smaller tharspexified message size.

4.3 Adding new message types

If you want to add a new message type, generate a new mesgegekentifier by using the
functionDat aLog: : detai | : : si nmpl eHash(" MyDat aM') .

