The NIST Dual Parallel Cantilever MEMS Scale Micro Positioner

Dr. Nicholas G. Dagalakís, Dr. Jason Gorman
Mr. Sebastien Bergna
NIST/MEL Intelligent Systems Division
Gaithersburg, MD
nicholas.dagalakis@nist.gov, Tel.: (301) 975-5845

Defense Manufacturing Conference ’04
TECHNICAL SESSION I:
MICRO/NANO MANUFACTURING
MONDAY, 29 NOVEMBER 2004
Presentation Objectives

Discuss the possible application of precision micro/nano devices as lightweight distributed sensors for terrain mapping, construction automation, space optical communications and other similar applications
Outline

• List of Contributors
• Motivation
• Micro/Nano Scale Devices
• Why Use Compliant Mechanism Structures
• Planar Dual Parallel Cantilever Micro-Positioners
• 6D Dual Parallel Cantilever Micro-Positioners
• Optical Spacecraft Communications
• Distributed Micro Scanner Arrays
• Conclusions
List of Contributors

Dr. Jason Gorman Mr. Sebastien Bergna
Dr. John Kramar Dr. Andras Vladar
College and HS Students

RPI/CAT Participants

Prof. Harry Stephanou Dr. Woo Ho Lee
Prof. John Wen Dr. Byoung Hun Kang
Motivation

- NIST/MEL/ISD Robot Mobility Project
- NIST/BFRL Construction Automation
- ARL LADAR Work
- JHU/APL/SD Spacecraft Optical Communication
- NASA/GSFC Robot Sensors
- High Precision Micro/Nano Devices for Nano Manufacturing
Micro/Nano Scale Devices

Crossing the Boundaries

1 nm 1 μm 1 mm 1 m 1 km

- Transistors/IC
- Bacteria
- Viruses
- Human Hair
- Sand
- SMOG/Smoke/Dust
- MEMS
- Mesoscopic Systems
- "Sugar Cube to Fist"

- Pumps/Valves
- Reactors/Heat Exchangers
- Thermal Chemical Plants
- Conventional Systems

Kevin Lyons
Manufacturing Engineering Laboratory
Why Use Compliant Mechanism Structures with Embedded Sensors Aligned to the Actuators

• Mechanical backlash and play
• Dynamic and static friction (stiction)
• Abbe errors
• Cosine errors
• Hysteresis
Planar Dual Parallel Cantilever Micro-Positioners

1D Parallel Cantilever Biaxial Design

1D Folding Cantilever Design (Higher Gain, Smaller size)

2D prototype (vs. #1)

1D Si MEMS prototype (vs. #1)

1D Credit Card Prototypes made from Aluminum, Steel, Invar, Beryllium-Copper, Ti alloy

Array of 2D Si MEMS prototypes (vs. #2)
Planar Micro Positioner Schematic of Y Axis
Macro Scale Planar Micro-Positioner Angular Deviation Test Results

Yaw (1) (Rotation about Z)
ΔZ = 0.0439 arcsec

Pitch (Rotation about Y)
ΔZ = 0.11 arcsec

Yaw (2) (Rotation about Z)
ΔZ = 0.115 arcsec

Roll (Rotation about X)
ΔZ = 0.156 arcsec

1 arcsec = 4.845 μrad
1 arcsec = 0.277 mdeg
Maximum rotational errors of the second generation macro scale Dual Parallel Cantilever Planar Micro-Positioner over a range of motion of 130 mm by 130 mm

About the Z axis: 0.115 arcsec = 0.557 μrad = 0.031 mdeg
About the Y axis: 0.110 arcsec = 0.532 μrad = 0.030 mdeg
About the X axis: 0.156 arcsec = 0.755 μrad = 0.043 mdeg
6D Dual Parallel Cantilever Micro-Positioners
Uniqueness of Technology

1. The cantilever transmission design allows a wide range of gain selection.

2. The 2x2 dual parallel cantilever biaxial design virtually eliminates cross talk and angular deviation errors.

3. An integrated cantilever adjustable stop mechanism protects the flexures from overloading.

4. The design allows for the placement of moving stage displacement (feedback) sensors, which are aligned with the axes of the actuators.

5. The planar micro positioner can have up to 3 degrees of freedom.

6. The basic planar 3D design can be extended to 4 and 6 degrees of freedom.

7. The 6D metrology sensor also acts as an over load protection and locking mechanism.
Optical and microwave communications system conceptual design for a realistic interstellar explorer.
High Accuracy Steerable Laser Beam Micro-Arrays
Distributed Micro Scanner Arrays

Multiple micro positioner scanners mounted on a triangular plate

Multiple scanner plates mounted on a convex frame

Micro-mirror array scanner concept under development at NIST
Schematic of a Military Vehicle Equipped with Distributed Arrays of Micro Scanners and LADAR Sensors

Each array contains wide angle scanners and agile fovea scanners.

The red color pyramids in the figures depict the 2D angular scanning range of each array. The gray color cones depict LADAR sensors.
Scanning Micro Mirror Laser Beam Micro-Arrays
Disturbance Rejection Control
Proposed by Dr. Jason Gorman

- Base excitations from the interstellar explorer introduce inertial and Coriolis forces as well as relative motion within an inertial reference frame, which can severely degrade beam pointing and tracking performance.

- The disturbance can be rejected using a sliding modes and base excitation estimation approach.

- The relative motion errors can be compensated by an inertial motion estimator which updates the trajectory based on acceleration feedback.
Multi-Loop Control
Proposed by Dr. Jason Gorman

- Sensors provide measurements of the actuator displacement, x_a, micropositioner displacement, x_m, and beam angle, θ, with mixed resolution and bandwidth
- Multi-loop control utilizes all of the measurements, which provides robustness to unmodeled system uncertainty and fault detection for actuators and sensors
- Loops with detected faults can be opened and system stability can be maintained with remaining loops
Summary

- High Performance Dual Parallel Cantilever Positioners
- Macro, Meso, Micro/Nano Prototypes
- Deep Space Optical Communication
- High Performance Distributed Micro Scanner Arrays for Optical Communications, Mobile Robot Terrain Mapping and Construction Automation