US Army PEO Aviation
Halon Replacement Program

Dave Bryant
Camber Corp
dbryant@camber.com
Overview

• PEO AVN HR IPT Overview
• Program Objectives
• RAH-66 Comanche
• AH-64 Apache
• CH-47 Chinook
 – Ground Test
 – Flight Test
Program Overview

- Army policy – Eliminate ODC Dependency
- PEO Aviation sponsored
 - Inviting all relevant stakeholders from onset
 - All Army Aviation PMs
 - Aviation Engineering Directorate (AED)
 - 46th Test Wing (Wright Patt AFB)
 - US Army Center for Health Promotion and Preventative Medicine (CHPPM)
 - Assistant Sec Army Acq Log Tech ASA (ALT)
 - Manufacturers – Boeing, Sikorsky
Program Objectives

• Initial goals
 • Identify 1 common agent for all Army aviation systems
 • Minimize weight increase
 • Minimize cost
 • Minimize GWP/ODP

• 3 Phase fire and concentration tests
3 Phase Program

• Phase I –
 • Industry wide agent search,
 – HFC 125, CF3I, Novac 1230, HFE 7100, SPGG, HFE
 • Limited fire testing in generic simulator
 – Evaluate effectiveness at extreme temperatures
 • Aerojet review of SPGG and HFE
 • Cursory toxicity screen & material compatibility
 • Design and fabricate system simulator
 • Initial down select to phase II agents
Phase II

• Full testing of agents from Phase I
 – HFC 125, SPGG, SPGG Hybrid
 – Rotorcraft specific nacelle and airflows
 – Hot surfaces to actual engine temps
• Material compatibility coupon testing
• Toxicity study – No testing
• Down select to 1 common agent
• Independent Review Committee
 – NAVAIR, NIST, Boeing, Army IPT
• HFC – 125 selected as single agent
HFC -125 Selection

- Other agents possibly more effective but greater overall cost
- CF3I
 - Significant toxicity testing
 - Final approval - Uphill battle
- SPGG & Hybrid
 - Did not show weight saving over 125
- Active agent SPGG not tested
Comanche

- 0 and 160 flight conditions
- Hot and cold temp
- Initial concentrations required over 6 pounds of agent
- System design and optimization
 - Discharge nozzle design
 - 600 and 800 psi bottle pressure
- Final agent weight 3.25
Apache

• Fire Testing
 – Designed and built engine and nacelle simulator
 – Approximately 10lb/sec airflow
 – 3 initial fire locations
 – 3 out of 3 – no re-lights

• Concentration testing
 – 28 – 33% concentration required
Chinook

• Limited to Concentration testing
 – Fire test impractical
 • Unable to determine airflow dynamics
 – Large screened openings in cowlings for cooling
 – Numerous flow sources – bleed band, rotor tip vortices'
 • Impractical to build simulator able to replicate actual conditions
 – Concentration testing
 • 2 Phase – Ground and Flight Test
Chinook

• Concentration testing
 – Based on TDP Equations
 • 26% concentration required to extinguish fires
 • 6 pound HFC – 125 required to achieve 26%
 – Current system designed for 3 pounds of halon
 – Limited redesign required to accommodate increased agent
Chinook, System Redesign

- Bread Board Testing
 - Conducted at Pacific Scientific to determine plumbing size required for 6 – 8 lbs of 125
 - Maximum discharge time 1 second
 - Enlarge plumbing to 1 in. with varying size ends.
Chinook

• Ground test
 – Replicate conditions in 1969 Boeing study
 – Engines power - 92% n1
 – Discharge sequence – simulated normal EPs
 • Power Control lever off
 • 2 Second delay
 • Bottle discharge
 – Engine speed 60% n1 at discharge
 – System optimization
"% VOLUMETRIC CONCENTRATION vs. TIME
CH47 WITH ENGINE ON AT SEA LEVEL. DISCHARGE TEST WITH 8LBS HFC-125
Pacsci Test No. V306 Date: March 16, 2006"

TIME (SECONDS)
"% VOLUMETRIC CONCENTRATION vs. TIME

CH47 with engine on at sea level. Discharge test with 8 lbs HFC-125
Pacsci Test No. V314 Date: March 21, 2006"
"% VOLUMETRIC CONCENTRATION vs. TIME
CH47 WITH ENGINE ON AT SEA LEVEL. DISCHARGE TEST WITH 8LBS HFC-125
Pacsci Test No. V355 Date: May. 02, 2006"
Path Forward

• Further work on distribution system needed
• Research on internal modification to maintain concentration levels
Acknowledgements

- 46th Test Wing
 WPAFB
 - Mike Bennett
 - Jim Tucker
- Comanche PMO
 - Scott Silies
 - Ken McDonald
- Apache PMO
 - Jim Collier
- Chinook PMO
 - Bruce Park
- AED
 - Dale Cox
 - Ralph Herzmark
 - John Bubash