Ultraviolet Absorption Spectrum of CF$_3$I

Askar Fahr, Akshaya K. Nayak, and Robert E. Huie

Chemical Kinetics & Thermodynamics Division
National Institute of Standards & Technology
Gaithersburg, MD 20899

Abstract.

The ultraviolet absorption spectrum of CF$_3$I has been measured in the gas phase over the wavelength range 160-350 nm at 295 K and over the wavelength range 240-350 nm for temperatures ranging from 218 to 333 K. Two absorption bands centered at 171 nm and 267.5 nm were observed. At wavelengths greater than about 280 nm, the absorption cross section decreased with decreasing temperature. At the maximum at 267.5 nm, the absorption mainly increased with decreasing temperature.
Background

The most important chemical fire extinguisher presently in use is CF$_3$Br. This compound is quite stable in the troposphere and diffuses to the stratosphere, where it is broken down by photolysis. The recent discovery that a chemical cycle involving bromine could be responsible for a considerable fraction of the halogen-induced ozone loss in the lower stratosphere123 has resulted in an impending ban on the use of CF$_3$Br.4 Bromine is important in stratospheric chemistry even though its concentration is exceeded by chlorine by more than a factor of one hundred. This is due to the greater efficiency of the bromine cycle and to coupling reactions which allow bromine to act synergistically on the chlorine cycle.

CF$_3$I has been identified as a possible replacement for CF$_3$Br.5,6 In addition, CF$_3$I shows promise in blends for use as refrigerant fluids.7 Unlike CF$_3$Br, CF$_3$I can be removed in the troposphere by photolysis

\[\text{CF}_3\text{I} + \text{hv} \rightarrow \text{CF}_3 + \text{I} \]

or reaction with OH

\[\text{CF}_3\text{I} + \text{OH} \rightarrow \text{CF}_3 + \text{HOI} \]

The former process is probably the more important channel.

Because the lifetime of CF$_3$I in the atmosphere depends on the rate of its photolysis, accurate absorption cross sections are needed. In addition, a fire
extinguishing agent such as this is likely to be released not only at ground level
but also at high altitude where the temperature is quite low. Therefore, the
determination of the temperature dependence of the absorption cross section is
essential for more accurate assessment of the atmospheric impact of CF₃I.

Experimental Procedure:

Ultraviolet absorption spectrum and the temperature dependencies of the
absorption cross sections were determined employing a one meter, single beam,
vacuum monochromator provided with interchangeable vacuum UV and UV
photomultipliers, a deuterium light source, analog to digital circuitry, a computer
controlled wavelength stepping motor drive, and computerized data
acquisition." A band-pass optical filter with maximum transmission between
320 and 350 nm was used to eliminate the scattered light for more accurate
measurement of low absorptions. The variable temperature cell (ℓ = 18 cm) is
jacketed and is housed in a vacuum chamber. Temperature regulation from
about 220 to 330 K is achieved through circulation of cooled or heated propanol.
Thermal equilibrium is usually obtained after about one hour or less with a
typical temperature gradient of 1°K. Adherence to Beer-Lambert absorption law
was assured through variation of the sample pressure. The reported absorption
cross sections at each temperature were obtained by combining and averaging
independent measurements each at a different pressure. The sample pressure
for each measurements depended on the wavelength range and the magnitude of the absorption. Pressure measurements were made using capacitance manometers operating in the range 0 to 1.3 KPa and 0 to 1.3 MPa. Sample pressures were chosen such that appreciable absorption (more than 15% and less than 85%) was observed so that the absorption cross sections can be determined with good accuracy and with a typical precision of 2%.

Results and Discussion:

The ultraviolet absorption spectrum of CF₃I was measured between 160 and 350 nm at 295 K and between 240 and 350 nm for temperatures of 218, 233, 253, 273, and 333 K. The absorption spectrum (Figure 1) exhibits two bands, one centered about 171 nm and a weaker, broad, band centered about 267 nm.

The absorption spectra for CF₃I at the various temperatures, over the wavelength range 240 nm to 350 nm, are compared in Figure 2. The cross section decreases by decreasing temperature at longer wavelengths (about 280 nm to 350 nm). At about 280 nm, absorption cross sections do not significantly change with changing temperature. In the region of the absorption maximum, the cross section increases with decreasing temperature, reaching a maximum at 253 K, and decreases slightly at lower temperatures.

There have been several recent determinations of the absorption cross section for CF₃I at room temperature. Values of λ^{max} are all within 1.5 nm of
the value of 267.5 nm found in the present work: Brouwer and Troe11 and Dvorkin. et al.12 both reported 266 nm; Molina. et al.8 reported 266.1 nm; Walters, et al.13 reported 266.5; and Solomon, et al.14 reported 267 nm. Values of the maximum cross section, σ^m, show about a 15% variation. Our value of $7.05 \times 10^{-19} \text{ cm}^2$ is the greatest, followed by values of $6.92, 6.45, 6.25, 6.20,$ and 6.05 13 (all $\times 10^{-19} \text{ cm}^2$).

The band center is observed to shift somewhat to higher wavelengths with increasing temperature. The shift from room temperature to temperatures in excess of 1000 K. was found to be represented well by a linear equation.11,12 Over the temperature range of the present work, the correction would be predicted to amount to about 1 nm, in agreement with the present observations.

For $\lambda > 280$ nm, all of the results show decreasing cross sections with decreasing temperature. The present data are fit well by the semi-logarithmic expressions, $\sigma_\lambda = \sigma_\lambda^e \exp(-L/\lambda)$, for $\lambda > 320$ nm. and $\sigma_T = \sigma_T^e \exp(-\theta/T)$. Values of these parameters are given in Table I for σ_λ^e and L_e and Table II for σ_T^e and 8. Figure 3 illustrates the plot $\log \sigma$ vs. $1/T$ for six wavelengths.
Acknowledgements:

This work was supported in part by NASA's Upper Atmospheres Research Program under Agreement W-18, 119. the United States Air Force through contract 89CS8204 and the United States Army through MIPR #M-G-164-93. We thank Drs. M. J. Molina, E. A. Walters, and S. Solomon for sending us their results prior to publication.

Figure Captions

Figure 1. Ultraviolet absorption spectrum of CF$_3$I at 295 K.

Figure 2. Absorption spectra for CF$_3$I at different temperatures from 218 to 333 K. Insert: spectrum over the range 260 - 280 nm.

Figure 3. Plot α the uv absorption cross section against $1/T$ at selected wavelengths.
References

Table I. Parameters of the semi-logarithmic expressions for the wavelength dependence of the absorption cross section for \(\lambda > 320 \) nm.

<table>
<thead>
<tr>
<th>(T, K)</th>
<th>(\sigma_0^\lambda)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>218</td>
<td>93.4581</td>
<td>14964</td>
</tr>
<tr>
<td>253</td>
<td>92.3076</td>
<td>14693</td>
</tr>
<tr>
<td>273</td>
<td>92.2627</td>
<td>14729</td>
</tr>
<tr>
<td>295</td>
<td>92.0366</td>
<td>14744</td>
</tr>
<tr>
<td>333</td>
<td>89.5043</td>
<td>14009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\lambda, \text{ nm})</th>
<th>(\sigma_0^T)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>34.4</td>
<td>72.17</td>
</tr>
<tr>
<td>310</td>
<td>19.5</td>
<td>102.5</td>
</tr>
<tr>
<td>320</td>
<td>7.56</td>
<td>113.1</td>
</tr>
<tr>
<td>350</td>
<td>0.207</td>
<td>130.6</td>
</tr>
</tbody>
</table>
Figure 1. Ultraviolet absorption spectrum of CF$_3$I at 295 K.
Figure 2. Absorption spectra for CF$_3$I at different temperatures from 218 to 333 K. Insert: spectrum over the range 260 - 280 nm.
Figure 3.