SEARCHING FOR A STANDARD: THE IMPACT THAT METHOD SELECTION HAS ON EVIDENCE RECOVERY IN FORENSIC ARCHAEOLOGICAL INVESTIGATIONS

Dr Laura Evis, University of Exeter.

Professor Tim Darvill OBE, Bournemouth University.

Paul Cheetham, Bournemouth University.

Ian Hanson, International Commission on Missing Persons.

- International Forensics Symposium, Washington DC, Wednesday 22nd of July 2015 -
Overview

• Current research in forensic archaeology.
• Lack of standardisation in forensic archaeology.
• Admissibility of forensic archaeological evidence.
• The search for standardisation in forensic archaeology.
• Experimental research and results.
• Impact for forensic archaeology.
• Forensic archaeology vs. admissibility regulations.
• Recommendations.
• References.
• Acknowledgements.
Forensic Archaeology

• A sub-discipline of archaeology that involves the application of archaeological techniques and theories to assist in the process of a forensic investigation by providing evidence for use in legal proceedings.
Current research in forensic archaeology

- Publications on the development of the field and the use of its methodological approaches.
- Particular focus on the archaeological excavation of single and mass burials.
Recommended methodological approaches

- Great variation in recommended approaches -
 - Arbitrary Excavation
 - Block Excavation
 - Demirant Excavation
 - Quadrant Excavation
 - Vertical Slice Excavation
 - Stratigraphic Excavation

- Extensive variation within individual approaches also.
Block Excavation Method
Stage 1

The ‘grave block’ is placed into an evidence bag and shock-proof container. It is then transported to the laboratory for in-lab excavation.
Demirant (B) Excavation Method

Leave a baulk in place

Second Half

First Half
Quadrant Excavation Method
Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Stage 9

Stage 10

Stage 11

Stage 12

Stage 13

Stage 14

Stage 15

Stage 16

Stage 17

Stage 18

Alternative approach
Vertical Slice Excavation Method
Stratigraphic Excavation Method
Lack of Standardisation

- Inherited their techniques, principles, theories and practices from the wider and long-established sub-discipline of field archaeology.
Source of the problem

• Approaches to archaeological excavation and recording vary greatly from country to country.

• Archaeologists from North America, working primarily on prehistoric burial sites would advocate an Arbitrary Excavation method and a Unit Level recording method.

• Archaeologists from the United Kingdom, working primarily on urban cemeteries, would advocate a Stratigraphic Excavation method and a Single Context recording method.
The issue of admissibility

- Primary aim of forensic archaeological investigations is the provision of evidence to legal proceedings.

- Must meet admissibility regulation requirements –

<table>
<thead>
<tr>
<th>Admissibility regulations</th>
<th>Satisfied this requirement?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Empirical testing</td>
<td>☒</td>
</tr>
<tr>
<td>2. Peer review</td>
<td>☺</td>
</tr>
<tr>
<td>3. Known error rates</td>
<td>☒</td>
</tr>
<tr>
<td>4. Standards controlling their operation</td>
<td>☻</td>
</tr>
<tr>
<td>5. Widely accepted amongst the academic community from which they originate</td>
<td>☻</td>
</tr>
</tbody>
</table>
How has forensic archaeology avoided criticism?

• Law Commission (2011: 12-13) –

“expert evidence is often trusted like no other category of evidence”

“cross-examining advocates tend not to probe, test or challenge the underlying basis of an expert’s opinion evidence”

“do not feel confident or equipped to challenge the material underpinning the expert opinion”
Consequences for forensic archaeology

• Admissibility regulations are now being increasingly enforced.

• Practitioners comforted by the assumption that widespread usage and acceptance correlated with reliability.

• No internationally accepted protocol for forensic archaeological investigations exists.

• Implies a lack of professionalism.
The search for standardisation

• Evis, L.H., 2014. *Digging the Dirt - A Comparative Analysis of Excavation Methods and Recording Systems in Relation to their Applications in Forensic Archaeology.* Bournemouth: Bournemouth University. [Accessible from: http://eprints.bournemouth.ac.uk/21487/].

• Explored whether method selection impacted evidence recovery.

• Establish a protocol for forensic archaeological investigations.
Archaeological method usage

- Archaeologists, archaeological companies, organisations, institutions, museums and libraries were contacted in the United Kingdom, Ireland, Australasia and North America.

![Pie chart showing the distribution of different excavation methods.]

- Excavation will proceed using the Arbitrary Excavation method (n=64)
- Excavation will proceed using the Stratigraphic Excavation method (n=121)
- Excavation will proceed using either the Demirant or Quadrant Excavation method (n=105)

(Evis 2014:58)
Experimental design
Material evidence selection
Layers evidence selection
Participant selection

- Gained by inviting archaeological organisations to participate.
Results

• 50 individuals participated.

• 40 of the participants had archaeological training.

• 10 of the participants acted as controls. They had never received any archaeological training and had no archaeological knowledge whatsoever.

• Freedom to choose what excavation method and recording system to use.

• Freedom to choose what tools to use.
Material evidence results

<table>
<thead>
<tr>
<th>Excavation Type</th>
<th>Identified</th>
<th>Not Identified</th>
<th>In Situ</th>
<th>Not In Situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratigraphic Excavation</td>
<td>71.11%</td>
<td>28.89%</td>
<td>81.25%</td>
<td>18.75%</td>
</tr>
<tr>
<td>Demirant Excavation</td>
<td>73.33%</td>
<td>26.67%</td>
<td>87.88%</td>
<td>12.12%</td>
</tr>
<tr>
<td>Quadrant Excavation</td>
<td>71.11%</td>
<td>28.89%</td>
<td>93.75%</td>
<td>6.25%</td>
</tr>
<tr>
<td>Arbitrary Excavation</td>
<td>51.11%</td>
<td>48.89%</td>
<td>95.65%</td>
<td>4.35%</td>
</tr>
<tr>
<td>Control Excavation</td>
<td>66.67%</td>
<td>33.33%</td>
<td>71.67%</td>
<td>28.33%</td>
</tr>
</tbody>
</table>
Identification of layers

<table>
<thead>
<tr>
<th></th>
<th>Stratigraphic Excavation</th>
<th>Demirant Excavation</th>
<th>Quadrant Excavation</th>
<th>Arbitrary Excavation</th>
<th>Control Excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contexts not identified</td>
<td>5.00%</td>
<td>2.00%</td>
<td>2.00%</td>
<td>31.00%</td>
<td>26.00%</td>
</tr>
<tr>
<td>Contexts identified</td>
<td>95.00%</td>
<td>98.00%</td>
<td>98.00%</td>
<td>69.00%</td>
<td>74.00%</td>
</tr>
</tbody>
</table>
Overall results

<table>
<thead>
<tr>
<th>Excavation method at its best</th>
<th>Excavation method at its worst</th>
<th>Average result for the excavation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratigraphic excavation</td>
<td>100.00%</td>
<td>75.83%</td>
</tr>
<tr>
<td>Demirant excavation</td>
<td>91.67%</td>
<td>78.75%</td>
</tr>
<tr>
<td>Quadrant excavation</td>
<td>91.67%</td>
<td>75.83%</td>
</tr>
<tr>
<td>Arbitrary excavation</td>
<td>50.00%</td>
<td>39.58%</td>
</tr>
<tr>
<td>Control excavation</td>
<td>66.67%</td>
<td>52.50%</td>
</tr>
</tbody>
</table>
Impact of experience
Testing practitioners

• Experience is not a sufficiently reliable criterion upon which to judge an archaeologist’s ability to excavate and record clandestine burials.

• Practitioners should participate in a forensic archaeology skills test. Repeated every 5 years to maintain standards.

• Competency tests exist already in forensic anthropology – American Board of Forensic Anthropology.
Forensic archaeology vs. admissibility regulations

- *Error rates cannot* be established for the discipline of forensic archaeology.

 a) Great variability in how single clandestine graves are constructed and what they may contain.

 b) Great variability in recovery rates between archaeologists.

- Experimental results can be used to indicate how each of the methods perform against one another in a controlled setting.
Recommendations

1. When conducting forensic archaeological investigations the Quadrant Excavation method should be used. If this approach is unable to be utilised the Demirant Excavation method or the Stratigraphic Excavation method should be used. Any deviation from these recommended approaches should be justified in the forensic archaeologist’s report.

2. A forensic archaeology skills test should be created and an overseeing testing body established.

3. The applicability of the Quadrant, Demirant and Stratigraphic Excavation methods and their associated recording systems should be tested on mass graves.

Theoretical assistance:
Bournemouth University
Kennesaw University
Pre-Construct Archaeology
Brockington and Associates Inc.
Bergen Museum
University of Exeter
Foundations Archaeology
Birmingham University
University of York
Cotswold Archaeology
Cranfield University
Statistical Research Inc.
Bermuda Maritime Museum
Cultural Resource Analysts Inc.
College of Lake County
Northern Lights Heritage Services Inc.
Valdosta State University
Murray State University
Northwest Cultural Resources Institute
University of Tennessee, Knoxville
Southeast Archaeological Centre
URS Corporation

Manual/Guideline contributors:
Archaeological Project Services
Archaeology South East
Birmingham Archaeology
CFA Archaeology Ltd.
Cornwall Archaeological Unit
Cotswold Archaeology
Dyfed Archaeological Trust Ltd.
John Moore Heritage Services
L-P Archaeology
Museum of London Archaeology
Nexus Heritage
Oxford Archaeology
Phoenix Consulting Archaeology Ltd.
Pre-Construct Archaeology Ltd.
SHARP Archaeology
SLR Consulting
Surrey County Archaeology Unit
Thames Valley Archaeological Services
The Environmental Dimension Partnership
University of Winchester
University College London
University of Leicester Archaeological Services
Warwickshire Museum Field Services
Waterman Group
Wessex Archaeology
Worcestershire Archaeological Service
Achill Field School
Eachtra Archaeological Projects Group
Gahan and Long Ltd.
Headland Archaeology Ltd.
Judith Carroll and Company Ltd.
Margaret Gwen and Co. Ltd.
Northern Ireland Environmental Agency
The Archaeology Company
University College Dublin
Archaeological and Heritage Management Solutions Ltd.

Experimental work:
Birkbeck College
Bournemouth University
Clwyd-Powys Archaeological Trust
Context One Archaeological Services Ltd
North Cornwall Heritage
SHARP Archaeology
Trust for Thanet Archaeology
University Centre Peterborough
University College London
University of Cambridge
University of Nottingham
University of York

Acknowledgements: The research team would like to thank the following institutions –

Tardis Cultural Heritage Advisors
CFG Heritage
Clough and Associates Ltd.
Comber Consultants Ltd.
Dept. Planning and Community Development Victoria.
Dortch and Cuthbert Ltd.
Hunter Geophysics
James Cook University
Jo McDonald Cultural Heritage Management Ltd.
Scarp Archaeology
Susan McIntyre-Tamwoy Heritage Consultants
German Archaeological Institute
AECOM
AF Consultants
Alaska Department of Transportation
Alexandria Archaeology
Atuig Museum and Archaeological Repository
AMEC Earth and Environmental Inc.
ANCHOR QEA
Archaeological Consultants of the Carolinas
Applied Earthworks Inc.
Archaeological Damage Investigation and Assessment (ADIA)
Archaeological Legacy Institute
Arizona State University
Aspen CRM Solutions
Bennett Management Services
Big Bend Ranch State Park
BLM-Fairbanks District Office, Alaska
BonTerra Consulting
Boonshoft Museum of Discovery
Boston Landmarks Commission
Brian F Smith and Associates
Brockington and Associates
Brunson Cultural Resource Services
Bryn Mawr College
Buckhorn Archaeological Services
Buffalo State College
Bureau of Land Management
Bureau of Ocean Energy Management
Bureau of Reclamation
CAIRN Underwater Unit
California Department of Transportation
California State College
California State Parks
Calvert County Planning and Zoning, Maryland
Centuries Research Inc.
Chattahoochee-Oconee National Forests
Chicora Foundation Inc.
CH2M HILL
Coastal Carolina Research
Coastal Heritage Society
College Lake County
College of Southern Nevada
Colorado Historical Society
Commonwealth Cultural Resources Group
Connecticut College
Cornerstone Environmental Consulting Inc.
Cox/McLain Environmental Consulting
Chow Canyon Archaeological Centre
Cultural Resource Analysts Inc.
Desert Archaeology Inc.
Earth Search Inc.
ECORP Consulting Inc.
ECS Mid-Atlantic Environmental Services
Far Western Anthropological Research Group Inc.
Federal Preservation Institute
Florida Atlantic University
Florida History
Francis Heritage
Fudan Museum Foundation and Museum of Asian Art
Gateway Archaeology
Georgia Department of Transportation
Hartgen Archaeological Associates Inc.
Haywood Archaeological Services
HDR Inc.
Historical Research Associates
Historic Properties Consultants
History and Museums Division of California State Parks
Human Systems Research Inc.
Illinois Department of Transportation
Indiana University
Purdue University
Interpreting Time’s past
John Milner Associates Inc.
Knudson Associates
Logan Simpson Design
Louisiana Department of Justice
Louisiana State University
Maryland Historical Trust
Mercyhurst College
Metcalfe Archaeological Consultants Inc.
Midwest Archaeological Centre
Montana Heritage Commission
Montana Historical Society
Murray State University
Museum of New Mexico
National Park Service Archaeology Program
New Hampshire Department of Transportation
New South Associates Inc.
Northern Illinois University
Northern Lights Heritage Services
Northwest Cultural Resources Institute
Ohio Historic Preservation Office
Old Pueblo Archaeology Centre
Oregon State Historic Preservation Office
Oregon State Parks and Recreation Department
Orloff G Miller Consulting
Pacific Northwest Resource Consultants
Paciulli, Simmons and Associates Ltd.
Panamerican Consultants Inc.
Past Forward Inc.
Planning and Buildings Department, St. Augustine, Florida
Presidio Archaeology Lab
Redwood National Park
Robert M Lee Trust
Santa Barbara County Planning and Development
SouthArc Inc.
South Carolina Institute of Archaeology and Anthropology
Southeast Archaeological Centre
Southeastern Archaeological Research Inc.
Stantec
Stratum Unlimited
Summit Envirosolutions
SWCA Environmental Consultants
 Territory Heritage Resource Consulting
Tesla Offshore
Tetra Tech EC Inc.
Texas Parks and Wildlife
The Department of Architectural and Archaeological Research
The LAMAR Institute
The Missouri Department of Transportation
University of Oklahoma
University of Texas, Austin
Thunderbird Archaeology
Transportation and Land Management Agency, Riverside County
TRC Solutions Inc.
Tribal Historic Preservation Office
Universidad Autónoma del Estado de Morelos
Université Laval
University of Georgia
University of Hawaii Joint POW/MIA Accounting Command
University of Louisiana at Lafayette
University of Oregon
University of Pennsylvania
University of South Florida
University of Tennessee, Knoxville
University of Wisconsin-Baraboo
University of Wyoming
URS Corporation
US Army Corps of Engineers
US Army Garrison Joint Base Lewis-McChord
US Army Garrison Picatinny, Arsenal, New Jersey
US Forest Service
US Government
Valdosta State University
Walton Enterprises
Wilbur Smith Associates
William Self Associates Inc.