Characterization of Clocks and Oscillators

Edited by
D.B. Sullivan
D.W. Allan
D.A. Howe
F.L. Walls

Time and Frequency Division
Center for Atomic, Molecular, and Optical Physics
National Measurement Laboratory
National Institute of Standards and Technology
Boulder, Colorado 80303-3328

This publication covers portions of NBS Monograph 140 published in 1974. The purpose of this document is to replace this outdated monograph in the areas of methods for characterizing clocks and oscillators and definitions and standards relating to such characterization.
PREFACE

For many years following its publication in 1974, "TIME AND FREQUENCY: Theory and Fundamentals," a volume edited by Byron E. Blair and published as NBS Monograph 140, served as a common reference for those engaged in the characterization of very stable clocks and oscillators. Monograph 140 has gradually become outdated, and with the recent issuance of a new military specification, MIL-0-55310B, which covers general specifications for crystal oscillators, it has become especially clear that Monograph 140 no longer meets the needs it so ably served in earlier years. During development of the new military specification, a process involving discussion and input from many quarters, a key author of the specification, John Vig of the US Army Electronics Technology and Devices, urged the National Bureau of Standards (now the National Institute of Standards and Technology, NIST) to issue a revised publication to serve as reference for the characterization of clocks and oscillators. With NIST having agreed to this task, the framers of the military specification used the nomenclature "NBS Monograph 140R" in their document, anticipating a revised (R) volume which had not yet been prepared.

Considering the availability of a number of newer books in the time and frequency field, the rewriting of a major volume like Monograph 140 seemed inappropriate. The real need has not been for rework of everything in Monograph 140, but only for those parts which provide reference to definitions and methods for measurement and characterization of clocks and oscillators, subjects which are fully covered in a number of papers distributed through a variety of conference proceedings, books, and journals. For the near term, we concluded that the most effective procedure would be to collect a representative set of these papers into one reference source with introductory comments which permit the reader to quickly access material required to meet particular needs. Thus, we arrived at this particular collection. The editors' challenge has been to select representative papers, to organize them in a convenient manner, and to deal with errata and notation inconsistencies in a reasonable manner. In the longer term, the material in this volume needs to be more completely integrated. This task would profitably await further developments in the area of phase noise measurements.

Donald B. Sullivan
David W. Allan
David A. Howe
Fred L. Walls

Boulder, Colorado
February 28, 1990
Characterization of Clocks and Oscillators

D.B. Sullivan, D. W. Allan, D. A. Howe, and F.L. Walls, Editors

This is a collection of published papers assembled as a reference for those involved in characterizing and specifying high-performance clocks and oscillators. It is an interim replacement for NBS Monograph 140, Time and Frequency: Theory and Fundamentals, an older volume of papers edited by Byron E. Blair. This current volume includes tutorial papers, papers on standards and definitions, and a collection of papers detailing specific measurement and analysis techniques. The discussion in the introduction to the volume provides a guide to the content of the papers, and tables and graphs provide further help in organizing methods described in the papers.

Key words: Allan variance, clocks, frequency, oscillators, phase noise, spectral density, time, two-sample variance.
A. INTRODUCTION

A.1 OVERVIEW .......................................................... TN-1
A.2 COMMENTS ON INTRODUCTORY AND TUTORIAL PAPERS ................. TN-2
A.3 COMMENTS ON PAPERS ON STANDARDS AND DEFINITIONS ............... TN-3
A.4 COMMENTS ON SUPPORTING PAPERS .................................. TN-3
A.5 GUIDE TO SELECTION OF MEASUREMENT METHODS ..................... TN-5
A.6 RELATIONSHIP OF THE MODIFIED ALLAN VARIANCE TO THE ALLAN VARIANCE .............................................................................................................. TN-9
A.7 SUPPLEMENTARY READING LIST ........................................ TN-13

B. INTRODUCTORY AND TUTORIAL PAPERS

B.1 Properties of Signal Sources and Measurement Methods
D.A. Howe, D.W. Allan, and J.A. Barnes
35th Annual Symposium on Frequency Control, 1981 Proceedings ............ TN-14

1. The Sine Wave and Stability ................................................... TN-14
2. Measurement Methods Comparison ........................................... TN-20
3. Characterization ...................................................................... TN-22
4. Analysis of Time Domain Data .................................................. TN-23
5. Confidence of the Estimate and Overlapping Samples .................... TN-26
7. Example of Time Domain Signal Processing and Analysis .............. TN-30
8. Spectrum Analysis .................................................................... TN-32
10. Pitfalls in Digitizing the Data .................................................... TN-39
13. Conclusion ................................................................................ TN-55

B.2 Frequency and Time - Their Measurement and Characterization
Samuel R. Stein
Precision Frequency Control, Volume 2, Chapter 12, 1985 ...................... TN-61

12.1 Concepts, Definitions, and Measures of Stability ....................... TN-63
12.1.1 Relationship Between the Power Spectrum and the Phase Spectrum .............................................................................................................. TN-65
12.1.2 The IEEE Recommended Measures of Frequency Stability ........ TN-65
12.1.3 The Concepts of the Frequency Domain and the Time Domain .... TN-71
12.1.4 Translation Between the Spectral Density of Frequency and the Allan Variance .............................................................................................................. TN-73
12.1.5 The Modified Allan Variance ................................................. TN-75
12.1.6 Determination of the Mean Frequency and Frequency Drift of an Oscillator .............................................................................................................. TN-77
12.1.7 Confidence of the Estimate and Overlapping Samples ............... TN-80
12.1.8 Efficient Use of the Data and Determination of the Degrees of Freedom .............................................................................................................. TN-83
12.1.9 Separating the Variances of an Oscillator and the Reference ........ TN-86
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>Direct Digital Measurement</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Time-Interval Measurements</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Frequency Measurements</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Period Measurements</td>
</tr>
<tr>
<td>12.3</td>
<td>Sensitivity-Enhancement Methods</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Heterodyne Techniques</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Homodyne Techniques</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Multiple Conversion Methods</td>
</tr>
<tr>
<td>12.4</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

**B.3 Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision**

Clocks and Oscillators

David W. Allan

*IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1987*

1. Introduction
2. Systematic Models for Clocks and Oscillators
3. Random Models for Clocks and Oscillators
4. Time-Domain Signal Characterization
5. Time and Frequency Estimation and Prediction
6. Conclusions

**B.4 Extending the Range and Accuracy of Phase Noise Measurements**

F.L. Walls, A.J.D. Clements, C.M. Felton, M.A. Lombardi and M.D. Vanek

*42nd Annual Symposium on Frequency Control, 1988 Proceedings*

I. Introduction
II. Model of a Noisy Signal
III. Two Oscillator Method
IV. The New NBS Phase Noise Measurement Systems
V. Conclusion

**C. PAPERS ON STANDARDS AND DEFINITIONS**

**C.1 Standard Terminology for Fundamental Frequency and Time Metrology**

David Allan, Helmut Hellwig, Peter Kartaschoff, Jacques Vanier, John Vig, Gernot M.R. Winkler, and Nicholas Yannoni

*42nd Annual Symposium on Frequency Control, 1988 Proceedings*

1. Introduction
2. Measures of Frequency and Phase Instability
3. Characterization of Frequency and Phase Instabilities
4. Confidence Limits of Measurements
5. Recommendations for Characterizing or Reporting Measurements of Frequency and Phase Instabilities
C.2 Characterization of Frequency Stability
James A. Barnes, Andrew R. Chi, Leonard S. Cutler, Daniel J. Healey, David B. Leeson,
Thomas E. McGunigal, James A. Mullen, Jr., Warren L. Smith, Richard L. Sydnor,
Robert F.C. Vessot, and Gernot M.R. Winkler
*IEEE Transactions on Instrumentation and Measurement, 1971* ..................... TN-146

I. Introduction .......................................................... TN-147
II. Statement of the Problem ................................................ TN-148
III. Background and Definitions ............................................. TN-149
IV. Definition of Measures of Frequency Stability ....................... TN-149
V. Translations Among Frequency Stability Measures ....................... TN-151
VI. Applications of Stability Measures ..................................... TN-153
VII. Measurement Techniques for Frequency Stability .................... TN-154
VIII. Conclusions .......................................................... TN-157

C.3 Characterization of Frequency and Phase Noise
Comité Consultatif International Des Radiocommunications (CCIR)
*Report 580 of the CCIR, 1986* ........................................ TN-162

1. Introduction .......................................................... TN-162
2. Fourier Frequency Domain .............................................. TN-163
3. Time Domain .......................................................... TN-163
5. Measurement Techniques ................................................ TN-166
6. Confidence Limits of Time Domain Measurements ..................... TN-166
7. Conclusion .............................................................. TN-167

D. SUPPORTING PAPERS

D.1 Characterization and Measurement of Time and Frequency Stability
P. Lesage and C. Audoin
*Radio Science, 1979* .................................................... TN-171

1. Introduction .......................................................... TN-171
2. Definitions: Model of Frequency Fluctuations ........................ TN-171
3. Noise Processes in Frequency Generators ................................ TN-173
4. Measurements in the Frequency Domain ................................ TN-174
5. Measurements in the Time Domain ..................................... TN-177
7. Characterization of Frequency Stability via Filtering or Frequency Noise TN-182
8. Spectral Analysis Inferred From Time Domain Measurements .......... TN-183
9. Structure Functions of Oscillator Fractional Phase and Frequency Fluctuations TN-184
11. Conclusion .............................................................. TN-187
D.2 Phase Noise and AM Noise Measurements in the Frequency Domain
Algie L. Lance, Wendell D. Seal, and Frederik Labaar
Infrared and Millimeter Waves, Vol. II, 1984 ........................................... TN-190

I. Introduction ................................................................................ TN-190
II. Fundamental Concepts .......................................................... TN-191
   A. Noise Sidebands .................................................................. TN-194
   B. Spectral Density .................................................................. TN-194
   C. Spectral Densities of Phase Fluctuations in the Frequency Domain .................................................................. TN-197
   D. Modulation Theory and Spectral Density Relationships .................................................................. TN-199
   E. Noise Processes .................................................................. TN-202
   F. Integrated Phase Noise .......................................................... TN-203
   G. AM Noise in the Frequency Domain ..................................... TN-205
III. Phase-Noise Measurements Using the Two-Oscillator Technique ................................................... TN-206
   A. Two Noisy Oscillators .......................................................... TN-208
   B. Automated Phase-Noise Measurements Using the Two-Oscillator Technique .................................. TN-209
   C. Calibration and Measurements Using the Two-Oscillator System .................................................. TN-210
   A. The Delay Line as an FM Discriminator ................................ TN-219
   B. Calibration and Measurements Using the Delay Line as an FM Discriminator ................................ TN-225
   C. Dual Delay-Line Discriminator ............................................. TN-232
   D. Millimeter-Wave Phase-Noise Measurements ............................................. TN-234
V. Conclusion .................................................................................. TN-238

D.3 Performance of an Automated High Accuracy Phase Measurement System
S. Stein, D. Gla ze, J. Levine, J. Gray, D. H illiard, D. Howe, and L. Erb
36th Annual Symposium on Frequency Control, 1982 Proceedings .................................................. TN-241

1. Review of the Dual Mixer Time Difference Technique .................................................. TN-241
2. Extended Dual Mixer Time Difference Measurement Technique ............................................. TN-242
3. Hardware Implementation ................................................................................ TN-242
4. Conclusions ................................................................................ TN-243

D.4 Biases and Variances of Several FFT Spectral Estimators as a Function of Noise Type and Number of Samples
F.L. Walls, D.B. Percival and W.R. Irelan
43rd Annual Symposium on Frequency Control, 1989 Proceedings .................................................. TN-248

I. Introduction ................................................................................ TN-248
II. Spectrum Analyzer Basics ................................................................ TN-248
III. Expected Value and Bias of Spectral Estimates .................................................. TN-249
IV. Variances of Spectral Estimates ................................................................ TN-251
V. Conclusions ................................................................................ TN-252
The following index is designed for quick location of substantial discussion of a particular topic. The page numbers are those where the topic is first cited in the reference.

Aliasing ........................................ TN-40
Amplitude Modulation Noise ............ TN-194, TN-205, TN-235
Bias Functions ......................... TN-162, TN-164, TN-299
Clock-Time Prediction .................. TN-126, TN-140
Common Measurement Problems ........ TN-156
Components Other than Oscillators (Methods) ................................ TN-37, TN-131, TN-176
Confidence of the Estimate ............. TN-26, TN-80, TN-140, TN 156, TN 166, TN 180, TN 262
Correlation Method ..................... TN-123, TN-176, TN-216
Dead Time ................................ TN-140, TN-164, TN-180, TN-296
Degrees of Freedom ..................... TN-28, TN-83
Digitization of Data .................... TN-39
Direct Measurements
   o Measurements at the Fundamental Frequency ................................ TN-15, TN-87
   o Measurements after Multiplication/Division ................................ TN-101, TN-135
Efficient Use of Data ................. TN-28, TN-83
Filter Method ......................... TN-182
Frequency Synthesis .................... TN-97
Heterodyne or Beat-Frequency Methods . TN-17, TN-90, TN-154, TN-177
   o Multiple-Conversion Methods ................ TN-97
   o Time-Difference (Time-Interval-Counter) ................. TN-20, TN-87, TN-177
      - Dual-Mixer, Time-Difference Method ................ TN-17, TN-99, TN-177, TN-241
Homodyne Measurements
Least Squares (Regression) ............. TN-31, TN-77, TN-265
Overlapping Samples ................... TN-26, TN-60, TN-140
Pickett-Fence Effect ................... TN-46
Quantization Uncertainty .............. TN-40, TN-89
Reference Phase Modulation Technique . TN-133
Separating Oscillator and Reference Variances . TN-86
Systematic Fluctuations (non-Random-Noise) TN-22, TN-121, TN-150
Window Function (Leakage) ............ TN-44