Open Mobile Edge Computing in 4G LTE

Max Hollingsworth, Jihoon Lee, Sangtae Ha, Eric Wustrow, Dirk Grunwald

University of Colorado Boulder
This presentation was produced by guest speaker(s) and presented at the National Institute of Standards and Technology’s 2019 Public Safety Broadband Stakeholder Meeting. The contents of this presentation do not necessarily reflect the views or policies of the National Institute of Standards and Technology or the U.S. Government.

Posted with permission
Outline

● Motivation
● Technical description
● Example scenario
Resilient Network Motivation

- LTE Network Design assumed a few, large network operators
- Enterprise and Gov’t now deploying their own LTE networks

Using those multiple networks is key to resilient networks
Resilient Network Challenges

Connecting Multiple Networks
• LTE networks managed by Evolved Packet Core (EPC)
• Monolithic system that controls access, priority, connection to Internet, etc.
• Elastic EPC project makes EPC more resilient

This Talk: Using Local Services
• We use networks to communicate and use services.
• Need those services even if the network is disrupted
• Mobile Edge Cloud
Just Enough LTE Network To Understand The problem
Services can be close....
Packet Gateways Can Be Far Away
What is the impact?

- Packet Gateways (PGW) can be 1000s of miles away.
- Faster communication may be necessary.
- Especially for localized information.
- What if Chicago is down?

Image Source: https://www.travelers.com/resources/auto/safe-driving/winter-driving-safety-tips
One Solution: Mobile Edge Cloud

- Part of this (MEC) is defined by 3GPP standards
- But, this assumes the service is run by the network operator
- We want to use our local services...on multiple networks
ESP -- Edge Service Provider
MNO -- Mobile Network Operator
Multi-Mobile Edge Cloud Challenges

Mobile Network Operator (MNO)
- MNO does not want to expose network structure
- But, we need to handle roaming UE’s
- And, connect to “best” edge service

Edge Service Provider (ESP)
- ESP needs to work with multiple MNO’s
- Has to identify UE and ESP pairings
- Has to identify the “best” ESP node
Multi-Mobile Edge Cloud - Prototype System

The MEC Switch – A software-defined switch using P4
We use and contribute to the NextEPC project
Within the switch are Match-Action tables that specify the matching and forwarding actions of the switch.
Sample Packet Intercepted by the MEC

Dest. MAC

Dest. IP

UDP Port

MEC Switch

Port 2

Sample Packet

Dest. MAC

58:8a:5a:14:6f:74

ab:ac:ad:ae:af:aa

123.1.1.1

Cell Phone IP

MEC Flow Table Rule

<table>
<thead>
<tr>
<th>MATCH</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>src=45.45.0.21, dst=8.8.8.53</td>
<td>eth_dst=ab:ac:ad:ae:af:aa</td>
</tr>
<tr>
<td>ip_dst=123.1.1.1</td>
<td>forward_port: 2</td>
</tr>
</tbody>
</table>
Who tells MEC switch what to do?

1. MNO
2. ESP
1 of 2 Necessary Protocols

ESP → MNO

SubID

Service1 Service2 Service3

ServerX ServerY ServerZ ServerQ

Example

Max

NYTIMES GeoMap Streaming

12.1.1.1 32.1.1.1 27.2.1.1 12.1.1.2
1 of 2 Necessary Protocols

Relation Example

UEs

Subscriptions

Servers

10.1.1.1, Max

nytimes

cnn

fox

12.1.1.1

12.1.1.2

12.1.1.3

12.1.1.4

12.1.1.5
2 of 2 Necessary Protocols

<table>
<thead>
<tr>
<th>UE’s IP</th>
<th>Service Name</th>
<th>List of dest IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td><45.45.0.21</td>
<td>nytimes</td>
<td>[8.8.8.1, 8.8.8.2, 8.8.8.7]</td>
</tr>
<tr>
<td><45.45.0.21</td>
<td>cnn</td>
<td>[8.8.8.1, 123.12.3.9]</td>
</tr>
<tr>
<td><45.45.0.21</td>
<td>fox</td>
<td>[8.8.8.1, 5.5.8.2, 1.1.1.2]</td>
</tr>
<tr>
<td><45.45.1.2</td>
<td>fox</td>
<td>[8.8.8.1, 5.5.8.2, 1.1.1.2]</td>
</tr>
</tbody>
</table>
Public Safety Scenario
Public Safety Scenario
Scenario 1
UE travels from Cell1 to Cell2

Scenario 2
UE travels from MEC 1 to MEC 2
Scenario 1
UE travels from Cell1 to Cell2

MEC
- Knows UE’s
 - IP
 - Assoc. Cell1
- Maps <UE IP, Cell>
- Matches traffic for reroute:
 - 1st - UE’s IP
 - 2nd - Dest IP and port

EPC
- EPC to MEC (REST API)
 - Notify new Assoc. Cell2

MEC
- Update mapping
- Route Downlink to Cell2
Scenario 2

UE travels from MEC 1 to MEC 2

- MEC 1
 - Knows UE’s
 - IP
 - Assoc. CellID
 - Maps <UE IP, Cell>
 - Matches traffic for reroute:
 - 1st - IP
 - 2nd - Dest IP and port

- EPC
 - EPC to MEC 2 (REST API)
 - IP
 - Assoc CellID

- MEC 2
 - Continues service
Project status

• Current system is “bump in the wire”
• Measures latency to different ESP servers
• Only redirects data for designated UE
• Edge Service Provider does not need to know about GTP

• Come see demo!
Thank You!
Come back for the
Next
Session
2:40 PM