Choosing the Right Spectrometer

Jim Rhyne
NIST Center for Neutron Research

Thanks to Peter Gehring, Jeff Lynn, and Dan Neumann for preparing many of the slides
Interaction of radiation with materials

From Roger Pynn
– Neutron Primer
Neutron Source: Moderation

Maxwellian Distribution

\[\Phi \sim \nu^3 e^{-m\nu^2/2k_B T} \]

Liquid Hydrogen

Heavy Water (D\textsubscript{2}O)

Hot Graphite

“Fast” neutrons: \(\nu = 20,000 \text{ km/sec} \)

Fuel

Moderation

The core is immersed in D\textsubscript{2}O, which acts as
• The primary coolant
• The moderator
• The reflector to inject
neutrons back in the
core, essential for the
reactor to go critical
Neutrons show where the atoms are…. **Cliff Shull**

...and what the atoms do.

Bertram Brockhouse
A single isolated nucleus will scatter neutrons with an intensity (isotropic)

- \(I = I_0 \sigma = I_0[4\pi b^2] \)
 - where \(I_0 \) = incident neutron intensity,
 - \(b \) = scattering amplitude for nucleus

What happens when we put nucleus (atom) in lattice?

- Scattering from \(N \) nuclei can add up because they are on a lattice (constructive interference)
- Adding is controlled by phase relationship between waves scattered from different lattice planes
- Intensity is no longer isotropic
 - Bragg law gives directional dependence
 - \(\lambda = 2d \sin \theta \)
 - Wave vector \(|k| = 2\pi/\lambda \)

- Intensity \(I(Q, \text{ or } \theta) \) is given by a scattering cross-section

Path difference for neutrons (waves) scattered from two adjacent atomic planes

\[= 2d \sin \theta = m \lambda \] for constructive interference to occur
How do we find the wavelength to make the Bragg law work?

- **Reactor**
 - Fission of U235 produces neutrons
 - Fission spectrum moderated (slowed down) by either D$_2$O or H$_2$O (less effective moderator) and neutrons are extracted through beam tubes for spectrometers – fixed wavelength used

- **Spallation source**
 - High E protons (e.g., 800 MeV) impinge on target (W, Hg or U)
 - Nucleus of target is “exploded” by proton impact and emits 15 – 25 neutrons per proton with average E = 55 MeV (+ γs, nucleons and neutrinos)
 - Neutrons moderated by liquid H, H$_2$O or methane
 - Spallation sources generally operate in pulse mode – 60 Hz at SNS

Time of flight is used to sort out wavelengths

Monochromator crystal is used to saw-out a discrete wavelength
Methods of Specifying and Measuring \vec{k}_i and \vec{k}_f

1. Bragg Diffraction

 BT7, MACS, HFBS

2. Time-of-Flight (TOF)

 DCS, HFBS

3. Larmor Precession

 NSE

Larmor precession angle of neutron mag moment acts as a clock – if $\Delta E \neq 0$ precession angles before and after sample are different.
It’s all about Conservation of Momentum
\(p = \hbar k \) and Energy \((E = \hbar \omega = \frac{p^2}{2m}) \)

\[
Q = k_i - k_f \quad \text{Wave vector transfer to excitation}
\]

\[
\Delta E = \frac{\hbar^2 k_i^2}{2m} - \frac{\hbar^2 k_f^2}{2m} \quad \text{Energy transfer to/from excitation}
\]

\[
\mathbf{Q}_C = \mathbf{\tau} + \mathbf{q}
\]

Reciprocal lattice vector
Wave vector of excitation

\[(000) \quad (000) \quad q \]
Energy, wave vector, and wavelength relations for various probes

\[E_{\text{neutron}}(\text{meV}) = 2.0719k^2 = 81.7968 / \lambda^2 \]

\[E_{\text{photon}}(\text{keV}) = 2.0k = 12.4 / \lambda \]

\[E_{\text{electron}}(\text{eV}) = 3.8k^2 = 150 / \lambda^2 \]

1 meV = 11.6 K \quad (k_B T)
1 meV = 8.06 cm\(^{-1}\) \quad (E /hc)
1 meV = 0.2418 THz \quad (E /h)
1 meV / \mu_B = 17.3 T \quad (E / \mu_B)
Golden Rule of Neutron Scattering

- We don’t take pictures of atoms!

- Job security for neutron scatterers – we live in reciprocal space
(3) The scattered neutron flux $\Phi(Q, h\omega)$ is proportional to the space (\vec{r}) and time (t) Fourier transform of the probability $G(\vec{r}, t)$ of finding one or two atoms separated by a particular distance at a particular time.

$$\Phi \propto \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} \propto \int \int e^{i(Q \cdot \vec{r} - \omega t)} G(\vec{r}, t) d^3 \vec{r} dt$$
The NCNR Menagerie of Instruments
Because neutron scattering is an intensity-limited technique. Thus detector coverage and resolution MUST be tailored to the science.

Uncertainties in the neutron wavelength and direction imply Q and $\hbar \omega$ are only defined with a finite selectable precision.

The total signal in a scattering experiment is proportional to the resolution volume → better resolution leads to lower count rates! Choose carefully …
How do I Choose the Right Spectrometer?

Two basic considerations:

1. What are the time scales ($\hbar \omega$) of interest?
2. What are the length scales (Q) of interest?

(Some spectrometers overlap → the choice may boil down to one of resolution)

Two additional considerations:

1. What energy resolution ($\Delta \hbar \omega$) is required?
2. What momentum resolution (ΔQ) is required?
Different Spectrometers Cover Different Regions of Phase Space

Do you see a pattern here?

Larger “objects” tend to exhibit slower motions.
Inelastic Spectrometers

Thermal triple-axis instruments (BT-7) (BT-4)
Cold neutron triple-axis instrument (MACS) (SPINS)
Disk chopper time-of-flight spectrometer (DCS) (FANS)
High flux backscattering spectrometer (HFBS)
Spin-echo spectrometer (NSE)

$S(Q, E)$
$S(Q, t)$

Approx. Resol.

1 meV
~250 μeV
1 μeV
$\delta t \to ~10$ neV

All these different spectrometers are designed differently to optimize intensity and resolution for different measurement requirements.
1. What are the energies ($\hbar \omega$), i.e. time scales ($\Delta t \sim 1/\omega$), of interest?

 $\hbar \omega \approx 1\text{-}100 \text{ meV}$ - use a thermal triple-axis spectrometer like BT7.

 $\hbar \omega \approx 20\text{-}30 \mu\text{eV}$ - use HFBS or NSE.

 In between - use MACS or DCS or a cold-neutron triple-axis spectrometer like SPINS.

2. Make sure that the length scales L of the relevant motions lie within the range of the spectrometer. For example, consider the HFBS

 $Q_{\text{min}} = 0.25 \text{ Å}^{-1} \rightarrow L_{\text{max}} \sim 25 \text{ Å}$

 $Q_{\text{max}} \approx 1.75 \text{ Å}^{-1} \rightarrow L_{\text{min}} \sim 3.5 \text{ Å}$

 $Q = \frac{2\pi}{L}$

REMEMBER - Q_{min} and Q_{max} are inversely proportional to the incident neutron wavelength
More Rules of Thumb

Is your sample polycrystalline or amorphous?

Does ONLY the magnitude (not the direction) of \(Q \) matter?

Is the expected \(Q \)-dependence of the scattering weak?

This often means that you want to look at a large region of \(Q, \hbar \omega \) space, or that you can sum the data over a large region of \(Q, \hbar \omega \) space.

YES? Consider instruments with large analyzer areas.

NO? Consider using BT7, SPINS, or NSE.
Things to Consider When Choosing DCS

Quantities varied
- wavelength λ
- chopper slot widths W

Remember – Intensity \downarrow
Resolution \uparrow
Example: DCS versus BT7

DCS
Broad surveys in **Q-ω**

BT7
Limited regions in **Q-ω**

Rules of Thumb: (think carefully before violating)

DCS, MACS – systems requiring resolution < 400 µeV

BT7 – single crystals – resolution > 100 µeV

depends on collimation and monochromator/anaizer
Things to Consider When Choosing BT7

Triple axis spectrometers are typically used when either -
(1) the *direction* of \mathbf{Q} is important or
(2) the interesting region of \mathbf{Q}-ω space is of *limited extent*.

Remember – *Intensity* ↓
Resolution ↑

One data point at a time …
Things to Consider When Choosing HFBS

Do the features of interest lie within this $h\omega$-range?

$0.25 \text{ Å}^{-1} < Q < 1.75 \text{ Å}^{-1}$

Can you live with such coarse Q-resolution?

$\delta Q < 0.1 - 0.2 \text{ Å}^{-1}$

Do the length scales of interest lie within this Q-range?

Do you really require such good energy resolution $\delta E \sim 1 \text{ μeV}$?
General Sample “Design”

Know as much about your sample as possible!!
(Beamtime costs ~ $5000/day!!)

Other considerations:
What’s the structure (in a general sense)?
Are there any phase transitions (or a glass transition)?
What isotopes are present?
Supplementary data from other measurements …

Magnetization vs T
Muon spin relaxation
X-ray data
Specific heat vs T
Raman spectroscopy
General Sample “Design”

Try to avoid isotopes that are strongly absorbing.

\(^6\text{Li} \quad ^{10}\text{B} \quad ^{113}\text{Cd} \quad ^{157}\text{Gd}\)

For a complete listing go to

http://www.ncnr.nist.gov/resources/n-lengths
Single crystals yield the most information.

Increase the intensity by increasing the amount of sample.

If you have a powder, use a cylindrical container (rather than flat plate).

Annular may be the best sample geometry if your sample is absorbing.

Transmission of the beam should be \(~70\text{-}90\%\).

\[\frac{I}{I_0} = \exp(-n\sigma_AT) \]

Almost all experiments of collective excitations involve coherent scattering

→ If sample contains H it should be deuterated (D).
Does the sample contain H?
Remember: **Neutrons LOVE H!!**

Create a sample where -
the “interesting” portions are **hydrogenated** and
the “uninteresting” portions are **deuterated**.
Typical Distributions of Science by Instrument

- Magnetism: 39%
- Materials Science: 22%
- Small Molecules: 12%
- Polymers: 4%
- Complex Fluids: 2%
- Biology: 21%

- Magnetism: 23%
- Materials Science: 7%
- Small Molecules: 8%
- Polymers: 6%
- Complex Fluids: 16%
- Biology: 40%

DCS
NSE
Some Summer School Success Stories

2001

Jae-Ho Chung
University Prof.

2003

Vicky Garcia-Sakai
ISIS Staff Scientist

1999

William Ratcliff
NCNR Staff Physicist

1997

Rob Dimeo
NCNR Director
Acknowledgements

Organizers – Joe Dura and Yamali Hernandez

Administrative staff
Experiment teams

Enjoy the Science With Neutrons!