Breakout Group B

Notes/Feedback
Key Ideas:

• A consensus effort is required

• **Help** establish a safety methodology that the standards bodies can translate into standards and other stakeholders can use to advantage:
 • **We can help move things along in the short term. It is not reasonable to expect us to develop the gold standard in methodologies up front - it will be a long iterative process. We need to enable this process**
 • What is the lowest common denominator that we all agree on and begin from this
 • Need to define roles and responsibilities for the process we will embark upon
 • **How far do we have to drive things over the next 6 months to a year**
 • We can use what exists today and drive towards an agile framework for testing
 • Establish metrics - we can do this in the short term
 • A mix of metrics e.g.: collisions, rules of road violations, etc
 • Bring human driver and law enforcement, first responders, school bus drivers etc. into the discussion
 • Get candidate methodology(s) out to the public and media for feedback - get public into the loop ASAP
Key Ideas (cont.)

• Next steps for what? Widely adoptable safety methodology
 • Assemble team of knowledgeable experts to start drafting framework
 • Need to begin capturing in documents
 • Need to evaluate what we have and roll into frameworks
 • Identify core scenarios that equate to basic driving skills and methods of testing capabilities in those scenarios
 • Use risk analysis to identify representative set of edge cases outside of core scenarios to ensure capabilities beyond core in most important edge cases
 • Develop objective test methods for core and edge scenarios
 • How do we select amongst the infinite number of edge cases which ones are really important that we need to focus on
1. What are appropriate definitions of ‘safety’ in a measurement context, including whether it may be a system measure, a component measure (hardware, software, etc.), a behavior/performance measure, or some combination of these?

Safety Definition:

- Don’t kill, damage or hurt anything or anyone including property damage
- No fatalities
- Is safety equivalent to current defs/standards or does it have to be better?
- What benchmark should we use? Fatality, injury rates, protect life.
- Need to evaluate system safety as well as performance requirements - need to eval unintended consequences
- How far out are we looking to define safety - today’s requirements are different than what will be implemented in the future
 - Assume 20 years out:
 - Need to use probability as the basis for safety definition - need to use probabilistic math to assess system safety - need to assign risk to all ADS activities and use math to assess system level risk
 - Will humans accept machine error - will ADS equipped vehicles have to act flawlessly
1. What are appropriate definitions of ‘safety’ in a measurement context, including whether it may be a system measure, a component measure (hardware, software, etc.), a behavior/performance measure, or some combination of these?

Metrics/Measures
- Have to define metrics and use them to calculate if ADS performance is within acceptable levels of safety
 - System level safety metrics/measurements are required
 - Foreseeable and unforeseeable, preventable and unpreventable – need metrics and methods in each category
 - Qualitative versus quantitative metrics: needs to address needs of policy makers and testing community
 - Number of handoffs back to human for L3
 - Metrics apply to all SAE levels - we will consider L4
 - Thermal, G levels, Psychological effects - need to address all of these We need to drive towards consensus around metrics
 - Comfort is a business issue more than a safety issue. Need to focus on actual physical harm
 - Is a near collision a safety issue – is it a metric that should be measured?
 - Need to address probability of safety measures – how to measure this probability is a key challenge
 - Behavioral measures may be more important than component safety measures - need to establish system level safety evaluation capability
 - Behavior of ADS vehicles needs to be assessed with respect to other ADS vehicles and human driven vehicles
 - Need to be careful with metric definition as may enhance tech development but could impede ADS deployment
 - Measures need to take risk reward into account - perspective and outcome based evaluation
 - Need to develop measures in advance of deployment that will give user community confidence. We will have to adapt safety measures as technology is deployed
 - We need to define a minimum bar - maybe 10 fold improvement in current safety
 - Need to define mathematically so machines can implement/understand
 - Evaluation by third party is important need
 - If your insurance company is willing to insure a vehicle - this will be a critical quantitative measure - and liability will define what levels of safety are required
 - Actuarial assessment needs years and years of data - how do we get this data given pace of technology implementation
 - Frequency and severity of damage will define insurance acceptability
 - Transparency of the system is critical - needs to be able to tell us what and why it is making decisions
 - Need to understand how ADS systems interact with other ADS systems and human drivers – and why
 - Need to enable VtV communication collaboration
 - Pedestrian avoidance - can we define a three strikes and your out measure - can we accept that pedestrians can be at fault or do we need to be 100 percent protective of pedestrians
1. What are appropriate definitions of ‘safety’ in a measurement context, including whether it may be a system measure, a component measure (hardware, software, etc.), a behavior/performance measure, or some combination of these?

Other thoughts:

- There needs to be congruency between public expectations and real word performance
 - One is an objective measure and the other depends on the individual
 - Public perception is a key concern - need to define safety with this in mind
 - Have to be careful given human issues with assessing risk
 - Perception is important as humans will not accept tech if perception is negative

- At certain point will get herd immunity from the number of vehicles deployed and from the duration of deployment
 - Percent of ADS in a ODD impacts the safety performance in the ODD - need to take this into account

- Need to account for how ADS was driving at time of accident - need to be able to collect this data
 - Sharing data and keeping it over time may be problematic - as tech will change and data will not be compatible
 - Insurance companies will have to figure out how to massage data
2. Is there a need for widely-adoptable measurement methods for ADS-equipped vehicle safety? Are there risks in not pursuing such methods? If so, what are some examples?

Strong consensus for the development of widely supported measurement methods

- There is a need for the stakeholders to take what already has been specified and expand on it. Need to address long term efficiency

- Concern - there is no silver bullet - measures will be applicable in some domains but not in others or for specific operations
 - Delivery systems vs passenger carriers as an example - they have very different requirements

- Can we use the existing standards/measures for vehicles as the baseline for ADS enabled vehicles?

- Big question is how to develop the methodology - who takes responsibility for developing them - how can this be done

- We need to develop common set of higher level scenarios and ODDS and then can develop specific measures from these - keep the common methodology general and then allow community to differentiate on them basic scenarios my form an entry level path to an ODD

- Example - can you negotiate a cloverleaf - this is an example of a test - that will define what ODDs a particular ads VEHICLE CAN OPERATE IN

- Pursuit a measurement approach - need to make sure that measurement methods defined cannot be gamed

- Is there value in having a basic set of tests - at least this establishes a baseline even if they can be gamed

- Introducing a variability methodology will prevent gaming
2. Is there a need for widely-adoptable measurement methods for ADS-equipped vehicle safety? Are there risks in not pursuing such methods? If so, what are some examples?

- We can think about gaming potential and make sure we develop methods to minimize potential.
- Companies that self evaluate their approaches - this is a good thing - companies will be compelled to effectively address safety.
- Standard methodology can help inform the public.
 - Stars on cars for automation - can define methods in ways that are understandable to the public.
- Let states dictate safety testing requirements - define a program and evaluate performance of car against it.
- Feds would define a menu of safety requirements/tests and each state would chose the applicable tests from this menu.
 - This allows ads to be certified for entire country and yet be certified for individual states.
- Each state can define the ODDs that you have to comply with in their state and your ADS vehicle needs to prove compliance.
- Question how do you prevent ADS from entering a state’s roads for which it is not certified.
- Each state needs a working group for AV safety requirements.
- We could look at the emissions as a model for how to establish requirements - vary from state to state.
- Can we use geofencing to address vehicles entering ODDs that are outside their certified capabilities.
3. What are possible safety measurement methods (simulation, test track, on-road, etc.)? What are possible safety metrics (miles driven, pass/fail vs. formal model, etc.)?

Measurement Methods:

- Develop approach that deploys simulation, off road and on road testing appropriately - optimal combination of all three approaches
- Sim vs on track - model based assessment - need to be able to evaluate the validity of the modeling
- Derive synergies from the learning from local, state, national stakeholders, regulators, overseers, etc from feedback from first responders
- Metrics should guide tech development but may inhibit deployment
 - Flagging is an issue - different approaches in different localities
3. What are possible safety measurement methods (simulation, test track, on-road, etc.)? What are possible safety metrics (miles driven, pass/fail vs. formal model, etc.)?

Possible Safety Metrics:

- Statistical:
 - Outcome measure - harm to external things

- Behavioral: Have list of scenarios and have performance requirements assigned to each

- Testability & trust: Need to be cognizant that developers can fudge results associated with scenarios
 - Need live assessment of performance to scenarios by testing agencies
 - Need to assign probabilistic requirements to performance against scenarios

- What activities are correlated with accident causation - may need to use these as measures in many cases

- Process measures - did you complete a certain safety process or not

- Reliability and availability of a system

- Safe Distance / TTC & acceleration
 - should not be a metric but rather a programmable variable

- RSS - very mathematical - also need to define safety using human concepts - safe distance, etc - so can easily explain approach to safety to humans

- Amount of redundancy is important - look to aircraft industry

- Should be able to predict where a vehicle should be accurately for short time intervals - can use this to advantage
3. What are possible safety measurement methods (simulation, test track, on-road, etc.)? What are possible safety metrics (miles driven, pass/fail vs. formal model, etc.)?

Issues:

- Leading and lagging indicators - need to take into account when developing metrics/measures
- Metrics should not inhibit technology development
- How do ADS systems safely extract themselves from safety challenges - learn this from human approaches
- Need to make sure that psychological impact on passengers in acceptable - cannot cause heart attacks, etc.
 - Need to monitor stress levels on passengers
 - This will vary based on ODD
- Different metrics required for different stakeholders
- Need to be able to communicate needed updates to full community of ADSs - to implement corrections rapidly
- Update process need to be compatible with realtime processing in the ADS vehicles
- Metrics need to be ODD sensitive
- We need to work as a community and take the best existing ideas and integrate them and continue to refine and broaden them
- There are safety tests that are too expensive - need to have approaches to test these scenarios
- Need to implement (use existing proven approaches where applicable) diligent S/W validation procedures - regression, etc.
- We need to have an adaptive approach to safety that learns from what we learn as the deployment process proceeds
- Safety metrics have to be reevaluated and refined as deployment proceeds.
4. Are there emerging best-practices around pre-deployment safety measurement methods? Around post-deployment measurement methods? (including the methods and metrics described above).

- Simulation approaches and the off road and on road testing are a good start
 - Number of miles driven
 - Scenarios
 - ODD specific scenarios
 - # of Disengagements

- For post deployment
 - Crash reporting data
 - Comparative measure against human drivers

- Need to develop safety matrices out of the shared DATA being collected
 - VSSA process is a good start for this

- From aviation sector mops minimal operational performance standards - we need to develop these for ADS
 - How do the various players in our highway environments interact with each others

- Common approach is good - provides basis for establishing that have performed your due diligence

- Need to make sure that safety requirements address needs and concerns of the breadth of public groups - need to be inclusive of the target groups in the design process

- Manufacturers need to test against their competitors vehicles and the breadth of other vehicles

- Resilience - ability of ADS systems to recover when faced with anomalies
4. Are there emerging best-practices around pre-deployment safety measurement methods? Around post-deployment measurement methods? (including the methods and metrics described above).

- For human drivers in the future - need to test abilities against and ADS equivalent
 - This has been used to establish requirements for ADS - use humans as the standard
 - Needs to be an excellent human driver - we need to define what this is - will help us establish ADS requirements/benchmarks
 - RSS is a start
- What is the coupling between pre and post deployment measures - need to establish this
- Third party certification - how does this play
 - What would we certify against?
- Need to build dynamic test tracks –
- Go/nogo concept - simulation on board of vehicle can help establish the health of an ADS both pre and post
- Need to compare human perception against capabilities of sensors - can break down to different components of the driving task
- For crowd sourcing input - participants need to have skin in the game to give valid input
- Look at each of the elements of the ISPO standards and apply to ADS needs
- Even though 262 is a process defined standard there are inputs we can provide along the way to augment it
- MUTCD as a reference
- Post deployment - CA DMV
- Run time verification is important
5. Should measurement of human response to ADS-equipped vehicle safety be a part of the calculation and, if so, in what way?

We will evaluate at L4

- Humans outside the vehicle? What response do we need to account for from them?
 - so inattentive pedestrians need to be accounted for

- Needs to be consistency of intent communication - cars need to communicate effectively with all road users - predictable and consistent

- Difficult to establish measurement of how pedestrians, etc are responding to ADS vehicles

- Vehicles need to be predictable in their behavior - well above human driver

- Can you measure the consistency of the prediction of other road users

- Measure - throughput and efficiency of an ADS system - how efficiently are the systems achieving their transportation goals

- TTC as a measure is good.

- Need to investigate/study how people interact with ADS - this will inform how we develop standards/measures

- How well does a pedestrian understand the intent of ADS vehicles

- How do you allow rules to be violated to allow an ADS to move forward and not create gridlock, inefficiency, etc.
 - What does this mean for enforcement?
5. Should measurement of human response to ADS-equipped vehicle safety be a part of the calculation and, if so, in what way?

- Need to separate perception of safety to what is actually safe
- How will pedestrians, etc adapt to the realities of ADS behavior. And accommodation to pedestrians by ADS.
 - A lot of the development of the behavior of a vehicle will establish non verbal communication norms
- From inside the vehicle: can the driver make executive decisions and take over as required. And visa versa
 - Varies depending on level of automation
- More likely that ADS vehicles will have conventional seating layouts and with traditional controls. Need to think through how these controls can be deployed unintentionally
- Need to understand how the behavior of the ego vehicle impacts the other players in the environment
- Need protocol that ADS vehicle can use to communicate what its intention is to the passengers - needs to be adaptable to the individual
- We need to be very careful about human intervention - may do things that are less safe
- Collision avoidance - Predictability - comfort and accessibility of the passengers - these are the key measures that oems need to address
6. What are possible next steps?

- Look at exiting data, what are the high level ODDs that need to be addressed and develop high level requirements from these
 - Scenarios involving crashes
 - Scenarios that capture the needs of various ODDs
 - Use these as the basis for establishing a methodology
- Think outside of the automotive domain - how can we bring in BKMs from other industries
- Need to develop an organization approach to developing the needed methodology
 - Engineering and risk frameworks
- Outreach to state and local orgs to get input
- Need to establish a risk register - need to establish what is the min operational performance
- Best practices should be shared with State DOTs
- Next steps for what? Widely adoptable safety methodology
 - Assemble team of knowledgeable experts to start drafting framework
 - Need to begin capturing in documents
 - Need to evaluate what we have and roll into frameworks
 - Identify core scenarios that equate to basic driving skills and methods of testing capabilities in those scenarios
 - Use risk analysis to identify representative set of edge cases outside of core scenarios to ensure capabilities beyond core in most important edge cases
 - Develop objective test methods for core and edge scenarios
 - How do we select amongst the infinite number of edge cases which ones are really important that we need to focus on
• For each safety issue, who is responsible for implementing/handling who has the burden of proof for establishing compliance and approach
 • Need a repository for the community
• We need to have basic goals that are acceptable to regulators and the public - and establish methodology/metrics based on these. May be a chicken and egg issue
• End goal is to establish a methodology that is understandable/explainable to the public
• Build trust in systems - need to communicate that we have full coverage - how do you exploit simulation and on and off road testing to achieve this
• What is the scope of the community wide work and who is going to execute it and who is going to lead it
• Need to build on what already exists and drive things to next level - take systems engineering approach
• Need to gather the key scenarios that are essential to establish reasonable safety
• Need to agree on a standard set of tests
• What is needed to execute the tests - what infrastructure and funding is required
• Certification authority needs to be identified who can certify that a particular ADS vehicle is safe to deploy
6. What are possible next steps?

- We need to establish a methodology for safety that standards can be derived from by the standard bodies

- We need to establish metrics that we can use to drive the definition of a methodology - how do other industries establish metrics - what can we adopt

- Compare standards to legal requirements - what is the legal high bar - what are the needed liability standards

- How do we get more objective about establishing a methodology in a broadly community supported way

- Engage public to ask them what would make them feel safe - a contest

- How far do we have to drive things over the next 6 months to a year
 - We can use what exists today and drive towards an agile framework for testing
 - Establish metrics - we can do this in the short term
 - A mix of metrics e.g.: collisions, rules of road violations, etc
 - Bring human driver and law enforcement, first responders, school bus drivers etc. into the discussion
 - Get candidate methodology(s) out to the public and media for feedback - get public into the loop ASAP

- What is the lowest common denominator that we all agree on and begin from this

- Need to define roles and responsibilities for the process we will embark upon