Assessment of Text Analytics Technology for Maintenance of Manufacturing Equipment

Radu Pavel, Ph.D.
Vice President, Chief Technology Officer

2019
TechSolve, Inc. - Overview

- Machining process solutions, IIoT solutions, and Business advisory
- State and Federal Manufacturing Extension Partnership (MEP) Center
- Engineers, MBAs, PhDs, former business owners
- Fully instrumented Machining Laboratory
Smart Manufacturing at TechSolve

We leverage emerging technologies, best practices, and digital tools to enhance the way our clients work.
TechSolve’s Technology Development Center

- Mitsui Seiki Blue Arc® Machine
- Mazak Integrex i200S Mill Turn
- Makino V55 - 3 Axis VMC
- DMG DMU-50 - 3+2 Axis VMC w/Siemens 840D CNC
- DMG DMU-70 eVo Linear - 5 Axis VMC w/ Siemens 840D
- Hardinge Cobra 65 - 2 Axis turning center w/Fanuc 21T
- Milltronics HMC35 - 4 Axis HMC
- Chevalier Smart B1224II Grinding
- Sheffield Cordax D-8 CMM
PHM Test-Beds at TechSolve

- All TechSolve’s machine-tools are connected to IIoT
- Spindle and Feed axis test-beds are used for degradation tests
Assessment of Text Analytics Technology
Project Scope

• Conduct an assessment of the capabilities of text analytics technology developed by NIST, using maintenance data from manufacturing organizations.

• Contact small and medium size organizations to determine their practices relative to logging maintenance work orders
<table>
<thead>
<tr>
<th>No</th>
<th>NAICS Code</th>
<th>Employees</th>
<th>Annual Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>332119 - Metal Crown, Closure, and Other Metal Stamping (except Automotive)</td>
<td>50</td>
<td>$19M</td>
</tr>
<tr>
<td>2</td>
<td>336350 - Motor Vehicle Transmission and Power Train Parts Mfg</td>
<td>200</td>
<td>$37M</td>
</tr>
<tr>
<td>3</td>
<td>333514 - Special Die and Tool, Die Set, Jig, and Fixture Mfg</td>
<td>50</td>
<td>$10M</td>
</tr>
<tr>
<td>4</td>
<td>442299 - All Other Home Furnishings Stores</td>
<td>10</td>
<td>$1.5M</td>
</tr>
<tr>
<td>5</td>
<td>334413 - Semiconductor and Related Device Mfg</td>
<td>150</td>
<td>$48M</td>
</tr>
</tbody>
</table>
Points of Discussion

• What could improve your day-to-day maintenance tasks?
• How would you want to improve your maintenance long term?
• Why do you capture maintenance work order (MWO) data?
• Do you use this MWO data in your current maintenance analysis?
• What data do you use to determine your maintenance strategy?
MWO Collection Patterns

- Description of what was done
- Time to repair
- Date
- Who did repairs
- Why did repair need to take place

- Priority
- Code
- Assets
- Location Name
- Description
- Type
- Status
- Date Created
- Date Completed
- Completed By Users
- Requested by
- Time Est Hours
- Time Spent Hours
- Completion Notes
- … (17 headers)

- WorkOrderId
- WorkOrderNo
- Name
- ParentWorkOrderId
- ParentWorkOrderNo
- WOStatusId
- WOStatusNo
- WOStatusName
- PriorityId
- PriorityNo
- PriorityName
- WorkCategoryId
- WorkCategoryNo
- WorkCategoryName
- Etc. (over 400 headers)
Observations

• The companies compliant with ISO 9001 and AS9100 are more likely to have maintenance work order data

• The companies that have maintenance records typically use a maintenance management system and the work orders are logged into a database

• All companies expressed the desire to get better analytics and ways of visualizing data that would allow them to better understand the maintenance activities and extract actionable information
Thank you!

Radu Pavel, Ph.D.
Vice President, Chief Technology Officer
TechSolve, Inc.
6705 Steger Drive, Cincinnati, OH 45237, U.S.A.
(513) 948 2062, pavel@techsolve.org