POINT CLOUD MANAGEMENT: AN OVERVIEW OF CURRENT PRACTICES AND TECHNOLOGY

JESSE ZAHNER
NATE SOULJE
OVERVIEW

What is a point cloud?

Types of scanners

Hardware implications

Working with a point cloud

Outputs from a point cloud

Takeaways
WHAT IS A ‘POINT CLOUD’?

Point clouds are the millions of points created by a scanner, all clustered together to form an environment or definition of a three-dimensional space.

Point clouds are formed through many different methods.
PHOTOGRAMMETRY

• Software used to assemble images
• Used for generating 3D models and/or point clouds
• More sophisticated versions can yield results that are as accurate as LIDAR
• Requires illumination
• Significant cost savings over LIDAR in most cases
STRUCTURED LIGHT SCANNERS

• Project patterns of light
• Using cameras and software, interpret the alteration of the pattern
• Generate models and/or point clouds
• 2 scanner primary types
 • Static
 • Handheld
SONAR SCANNERS

• Generate point clouds from software interpretation of sounds waves
• Different configurations can generate greater accuracy, cover larger areas, or get live 3D images
• Sound wave interpretation allows the gathering of point cloud data that would otherwise be unreachable by other scanner types
LIDAR SCANNERS

• Emission of laser pulses and recording what happens to those pulses

• Two types
 • Time of flight (pulse based)
 • Phase based (continuous beam)

• Mobile scanning
 • Airborne; typically time of flight waveform processing
 • Ground based
POINT CLOUD TYPES
Structured vs. Unstructured and why it matters

• Unstructured Point Clouds
 • A collection of points gathered using previously mentioned methods
 • No intelligence between the points, it's the same as having a photograph, what you see is what you have.
 • Unable to leverage point cloud processing software

• Structured Point Clouds
 • Include relational information from point to point along with the positional information that is always collected
 • Can contain multiple properties including XYZ, RGB, intensity, and normal values along with relational information
 • Point cloud processing software can be leveraged

• Why does it matter?
 • Depending on intended use of point cloud, software can denoise the project, generate CAD from the environment, import external geometry, run tests and projections, etc.
 • This enables a user to perform a variety of project-enhancing operations
HARDWARE RECOMMENDATIONS

• More RAM is a plus

• A dedicated graphics card helps guarantee a smooth experience

• Disk type and space matters
 • SSDs are better than HDDs (faster read/write speeds)
 • Point cloud projects can get very large very quickly, so the more space the better

• A scanner of some kind is necessary to gather point cloud data, whether it’s through photogrammetry, LIDAR, Sonar or others, a scanner will be necessary to capture the environment
FIVE PROCESSES FOR UTILIZING A POINT CLOUD

1. Registration
2. De-Noising
3. Modeling
4. Analysis/Simulation
5. Output
REGISTERING A POINT CLOUD

• This is the first step in the process of utilizing a point cloud
• The points captured are oriented correctly, different scans are overlaid or lined up, and a coordinate system is established if not already present
DE-NOISING A POINT CLOUD

- When scanning an environment, sometimes the same area is captured multiple times, generating noise. De-Noising a point cloud makes the environment smoother and lighter.
- Kinetic noise is often a problem as well. When someone or something passes through a scan, it can generate random clouds of points that cause unnecessary noise.
MODELING WITHIN A POINT CLOUD

- Point Isolation
- Mesh Creation
- Utilization of the Mesh
- Export to CAD or BIM Software
ANALYSIS/SIMULATION UTILIZING A POINT CLOUD

• As built vs as designed validation
• Collision detection
• Interference checking
• Layout planning
OUTPUTS FROM A POINT CLOUD

- 3D models and mesh models
- 2D drawings
- BIM environments
- Fly through videos
- Server based web viewing and collaboration
TAKEAWAYS

• Point clouds provide digital environments that allow for multiple use cases that enable more efficient workflows
 • As built vs as designed comparison
 • Layout planning
 • Digital measurements
 • And more

• Point clouds should not feel intimidating
 • Typically a 5 step process from import of the captured data to export of the desired output
 • Hardware makes a big difference
CONCLUSION

• There are multiple methods of capturing point clouds
 • LIDAR
 • Sonar
 • Photogrammetry
 • Etc.

• There are two primary forms of point clouds
 • Structured
 • Unstructured

• Point clouds fulfill many industry use cases making workflows easier and time to delivery shorter
CONTACT INFORMATION

Jesse Zahner
248-436-1309
Jesse.Zahner@elysiuminc.com

Nate Soulje
248-436-1302
Nate.Soulje@elysiuminc.com

Thank You!
QUESTIONS?