Bringing Legacy Small and Medium Enterprise Manufacturers into Digital Manufacturing and Towards a Distributive Manufacturing Network

Daniel Abernathy
Greg Harris, Ph.D., PE
Gregory T. Purdy, Ph.D.
Thomas Holtslander
• Design and Manufacturing Lab (DML)
• Required for Mechanical Engineering students
• 300-400 students per year
• Repeat same project
• Investigating methods to connect machines that were never intended to be connected.

• Help SMM understand benefits of a connected system.

• Provide a resource to the SMM to determine the options they have for connecting equipment.

• What data can be captured from legacy manual equipment not intended to be connected to the internet?

• How can the information from the sensors be best used?

• Evaluate configuration of sensors and collectors to determine the cost benefit relationships.

• Educational benefit of replicating the experience of a knowledgeable/seasoned expert machinist by capturing acoustic signals and connecting those to outcomes of parts.
Data Needs

- Predictive Maintenance
 - Vibration
 - Acoustics
 - Spindle Speed
 - Motor Current Draw
 - Position
 - Operator Tracking

- Teaching

- Quality
Data Needs

- Predictive Maintenance
 - Vibration
 - Acoustics
 - Spindle Speed
 - Motor Current Draw
- Teaching
 - Position
- Quality
 - Operator Tracking
Data Needs

- Predictive Maintenance
- Teaching
- Quality

- Vibration
- Acoustics
- Spindle Speed
- Motor Current Draw
- Position
- Operator Tracking
Sensor Selection

- **Vibration**
 - Accelerometer in head
 - Accelerometer on the vise
- **Acoustics**
 - Acoustic emission sensor near tool
- **Spindle Speed**
 - Hall effect sensor on spindle
 - Infrared sensor on spindle
- **Motor Current Draw**
 - Current transducer on motor power
- **Position**
 - Magnetic scales on table
 - Encoder on lead screws
- **Operator Tracking**
 - RFID tags and scanner on machine
Possible Sensor Array

Multiple price point sensor arrays

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration</td>
<td>Arduino</td>
<td>PCB Piezotronics</td>
<td>Kistler</td>
</tr>
<tr>
<td>Acoustics</td>
<td>Seeed Studio</td>
<td>Physical Acoustics</td>
<td>Physical Acoustics</td>
</tr>
<tr>
<td>Spindle Speed</td>
<td>Eagle Tree</td>
<td>Honeywell</td>
<td>Monarch</td>
</tr>
<tr>
<td>Motor Current</td>
<td>Gravity</td>
<td>Loulenesy</td>
<td>Johnson Control</td>
</tr>
<tr>
<td>Position</td>
<td>iGaging</td>
<td>DRO PROs</td>
<td>Mitutoyo</td>
</tr>
<tr>
<td>Data Acquisition</td>
<td>Raspberry Pi</td>
<td>DATAQ</td>
<td>Mazak</td>
</tr>
</tbody>
</table>
• Initial Focus
 ▪ Mills

• Two different models
 ▪ Shop Fox
 ▪ Grizzly
Lab Wide Implementation

SYSTEM CONTROL CENTER

SERVER

COLLECTION AND ROUTING SYSTEM

SENSORS

MILLS

LATHES
RFID Tracking

• Track operator usage of machines
 ▪ Log which operator is using the machine
 ▪ Log progress through project

• Track tools used in lab
 ▪ Track total service time of tool
 ▪ Track abnormal use

• Align outcomes with operator actions
 ▪ Before sensor installment feature quality
 ▪ After sensor installment feature quality
Plan Forward

• Data Analytics
 ▪ Large volume of non-IP manufacturing data

• Campus Dashboard
 ▪ Centrally located display with:
 o Machine status
 o Machine statistics

• Initial Node of Distributed Manufacturing
 ▪ Connected machines
 ▪ Trained operators
 ▪ Project monitoring process
 ▪ Machine statistics