A NEED FOR DIGITAL ENTERPRISE WORKFORCE DEVELOPMENT
A new world...

- By 2018, 20% of all business content will be authored by machines.
- By 2018, more than 3 million workers globally will be supervised by a "roboboss".
- The growing range of 3D-printable materials will drive a compound annual growth rate of 64.1% by 2019.
- By 2020, more than 35 billion things will be connected to the Internet.

Source: Gartner Analysis
The next industrial revolution

Mechanization, mass production, automation, virtualization

Four Phases of Industrialization

Industry 1.0
End of 18th century
Use of water and steam power to run mechanical production facilities

Industry 2.0
Beginning of 20th century
Use of electrical power to enable work-sharing mass production

Industry 3.0
Early 1970s
Use of electronics and IT to automate production

Industry 4.0
Today
Use of cyber-physical systems to monitor, analyze, and automate business

Digitalization and connectivity

http://saphanatutorial.com/industry-4-0/
A complete MBD supports lifecycle communication.
But we have a national dilemma...

- A lack of a skilled workforce is the number-one barrier to growth in Indiana and nationally
- There is no silver bullet solution, but employer-driven work-based-learning programs have proven to be hugely impactful by:
 - Employer/Educator Partnerships
 - Working Together
 - Breaking Barriers
 - What Employers and Educators Should Know
 - Culture Shift
 - How to Impact Effective Change
A shift in the focus on jobs

• A person born today can expect to live to be 100-years old.
 – Their careers will be 60 to 70 years long forcing them to not only change jobs but to change careers.
 – This aligns with our college’s tag line: “How to prepare graduates for jobs that do not exist.”
• The second is a shift in skill requirements.
 – Demand for skills of the head (cognitive), have dominated those of the hands (technical) and to a lesser extent, those of the heart (social) over the past 300 years. In the future, those skills shifts are about to go into reverse.
And this 4th Industrial Revolution is different.

- During the first three Industrial Revolutions, the skills workers needed to keep ahead of the machines were largely cognitive.
- Machines were doing manual tasks and cognitive tasks were the exclusive domain of humans.
- The 4th Industrial Revolution challenges this equilibrium.
Impacts to the next-generation workforce

- The dawning of AI means that humans will no longer have the cognitive playing field to themselves.
- Machines will be able to process more quickly, more cheaply and with fewer errors than their human counterpart, at least in some activities.
- That could make the hollowing-out of human tasks, now cognitive as well as manual, far greater than ever before.
So what do humans have left?

- Cognitive tasks requiring **creativity and intuition** to solve tasks or problems whose solutions require great logical leaps of imagination.
- There will remain a demand for skills to **program, test and oversee machines**.
- **Personalized design and manufacturing**.
- **Social skills**; tasks that require emotional intelligence rather than cognitive alone.
- **Preparing graduates solely for cognitive skills will not be enough for the 4th Industrial Revolution.**
Regardless of the era, the educational revolution connected to manufacturing has always had a focus on the tools and techniques of the day, to enable the design and production of something.
Workforce Education for Industry 4.0

- Built upon the old literacies of reading, writing and mathematics.
- New literacies include:
 - **Data literacy**: read, analyze and apply information
 - **Technological literacy**: coding and engineering principles
 - **Human literacy**: humanities, communication and design
- Higher order mental skills – mindsets and ways of thinking about the world.
 - **Systems Thinking**: the ability to view an enterprise, machine or subject holistically, making connections between different functions in an integrative way.
 - **Entrepreneurship**: applies the creative mind to the economic and social sphere.
 - **Cultural Agility**: how to operate deftly in a varied global environment.
 - **Critical Thinking**: the habit of disciplined, rational analysis and judgement.
Preparing a workforce for the digital enterprise

- Adaptable skills
- Problem solving skills
- Data interpretation skills
- Promote work experience in school

- Enhanced marketing
- Manage talent like a supply chain
- Re-do HR
- Foster professional development

- Experiential development
- Skill standards and competencies
- MBD, MBE, and PLM

100% of people not covered above

Topical modules

20-30% Light Certificate
10-20% Heavy Certificate
2-3% Degree in relevant disc.

Days → Weeks → Months → Years

Literacy

Competency

Mastery
Types of Credentials

• **Licensure**
 Granted at the state level in the US by a governmental agency or its designated agent. Goal of licensure is to ensure that licensees have the minimal degree of competency necessary to ensure public health, safety and welfare.
 - Licensed Real Estate Agent
 - Licensed Practical Nurse
 - Professional Engineer
 - Registered Nurse

• **Certification**
 Voluntary process through which an organization grants recognition to an individual after verifying minimum criteria was met. Certification holders are granted use of a designation.
 - Often requires recertification every 3-5 years.
 - Can be revoked

• **Certificate Program**
 Voluntary program in which an organization grants recognition to an individual after verifying that they met minimum criteria including participating in a training or education program and demonstrating comprehension.
 - Certificates are a one time shot – no renewal required.
 - Cannot be revoked
Credential Options

MACRO
Credentials
Traditional formats and content

MICRO
Credentials
Specializations/Course Clusters

NANO
Credentials
Alternative credentials and formats

PICO
Credentials
Continuing Ed./Industry-endorsed skills

Time to Completion
Stacked credentials

• Vertical: multiple credentials leading to a professional designation
• Horizontal: a focus on functional areas that may or may not be stackable
• Value-add: certification with optional certificates to expand
How do you engage an existing workforce?
The next industrial revolution

- Mechanization, mass production, automation, virtualization

Four Phases of Industrialization

Industry 1.0
End of 18th century
Use of water and steam power to run mechanical production facilities

Industry 2.0
Beginning of 20th century
Use of electrical power to enable work-sharing mass production

Industry 3.0
Early 1970s
Use of electronics and IT to automate production

Industry 4.0
Today
Use of cyber-physical systems to monitor, analyze, and automate business

Digitalization and connectivity

http://saphanatutorial.com/industry-4-0/
Your existing enterprise is full of personas
Are all these . . . well . . . Other People

- Customer/Stakeholder
- Management
- Quality
- Procurement
- IT
- Analysis
- Manufacturing
- Configuration and Change Management
- Systems
MBE is Value Engineering

Save Time
Reduce Risk
Improve Product

Save Money $$$

MBE is Value Engineering
Information Flows Throughout the Lifecycle

- **Today**
 - Design Authority
 - Design Source
 - Shape
 - Dimensions
 - Tolerances
 - Views
 - Assembly Relationships
 - Specifications
 - Annotations & Attributes
 - Native Model

- **Tomorrow**
 - Mfg Authority
 - Mfg Source
 - Shape
 - Dimensions
 - Tolerances
 - Views
 - Mfg Process Models
 - Assembly Relationships
 - Specifications
 - mBOM
 - Work Instructions
 - Annotations & Attributes
 - Mfg Model

- **Tomorrow**
 - Quality Authority
 - Quality Source
 - Shape
 - Dimensions
 - Tolerances
 - Key Characteristics
 - Measurement Plans
 - CMM Programs
 - Measurement Results
 - Dimensions for Humans
 - Annotations & Attributes
 - Quality Model
Changing Perceptions of Product Definition
Flaws of a Drawing-Based Approach

- Half the study’s respondents (51%) state that suppliers or downstream consumers request additional clarifications of engineering documentation.

 The State of Model-Based Enterprise Report (2014, Lifecycle Insights)

- Average total hours spent creating, clarifying, or amending engineering documentation: 27.3 for strongly 2D drawing reliant.

 Quantifying the Value of Model-Based Definitions (2015, Lifecycle Insights)

- Engineers spend an average of 6.4 hours answering questions or clarifying drawings and 5.5 hours generating additional drawing documentation per week.

 The State of Model-Based Enterprise Report (2014, Lifecycle Insights)

Drawings require skills to interpret. Downstream consumers often return to engineers for clarifications, consuming their time.
Models with Geometric Tolerancing Take Less Time

It takes less time to create minimally annotated MBDs than it takes to create fully annotated drawings.

- Time to create engineering documentation (benchmarked example): 8.8 hours for fully annotated drawing vs. 6.7 hours for minimally annotated model.

 ROI of MBD Report
 (2017, Lifecycle Insights)

- Time spent on engineering documentation per week: 23.9 hours for drawing-reliant organizations vs. 20.7 hours for model-based organizations.

 ROI of MBD Report
 (2017, Lifecycle Insights)
Models with Geometric Tolerancing Take Less Time

It takes less time to create minimally annotated MBDs than it takes to create fully annotated drawings.

- Time to create engineering documentation (benchmarked example): 8.8 hours for fully annotated drawing vs. 6.7 hours for minimally annotated model.

 ROI of MBD Report (2017, Lifecycle Insights)

- Time spent on engineering documentation per week: 23.9 hours for drawing-reliant organizations vs. 20.7 hours for model-based organizations.

 ROI of MBD Report (2017, Lifecycle Insights)
How things are made
The inclusion of 3D models and animations in assembly and manufacturing instructions more clearly communicates intent, leading to a reduction in ECOs, non-conformances, and scrap.

- The average number of ECOs per development project for those using 3D models in instructions is 5.6 compared to 9.5 for those that are drawing-based.
 [ROI of MBD Report (2017, Lifecycle Insights)]

- The average number of non-conformances per development project is 3.3 for those using 3D models in instructions compared to 6.5 for those that rely on drawings.
 [ROI of MBD Report (2017, Lifecycle Insights)]

- The percent of respondents that reduce scrap is 49% for those that include 3D models in instructions compared to 10% of those that do not.
 [ROI of MBD Report (2017, Lifecycle Insights)]

Comparison of metrics for instructions based on drawings or 3D models

<table>
<thead>
<tr>
<th></th>
<th>Instructions based on drawings</th>
<th>Instructions based on 3D models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average # of ECOs</td>
<td>9.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Average # of non-conformances</td>
<td>6.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Percent of respondents that reduced scrap</td>
<td>10%</td>
<td>49%</td>
</tr>
</tbody>
</table>
Role-Based Training for Professionals

- Literacy
 - Customers
 - Management
 - Systems
 - IT
 - Procurement

- Competency
 - Design
 - Manufacturing
 - Quality
 - Configuration & Change Management

- Mastery
 - Engineering
 - Product Definition
 - Manufacturing Planners
 - Inspectors
QUESTIONS

Dr. Nathan Hartman
Purdue University
nhartman@purdue.edu

Duane Hess
Action Engineering
duane@action-engineering.com

Re-Use Your CAD University
https://www.action-engineering.com/courses

Undergraduate:
Virtual Product Integration Major
Enhance the design, manufacture, and marketing of products through 3D modeling, managing product data, simulations and visualization.

Product Lifecycle Management Minor
Gain applied knowledge in current and emerging topics in PLM associated with the design, documentation, manufacture and support of products and related services.

Professional:
PLM Certificate
Make better business decisions and manage products from concept to disposal. - Register here

MBD Certificate
Streamline the production development process and reduce errors in manufacturing. - Register here

TDP Certificate
Make effective technical documentation and Create and interrogate 3D/TPDs. - Register here

Graduate:
Product Lifecycle Management (CGT 514)
A survey of the graphical knowledge base with business and industry applications that support the product lifecycle management process