Assessment of Digital Twin manufacturing frameworks

Dr. Martin Hardwick
Convener WG15 Digital Manufacturing
President STEP Tools, Inc.
Troy, NY USA
In 2017 our team issued a call for Digital Twin manufacturing framework examples.

- 10 examples were received from 4 countries

We classified the examples and used them as input for a new ISO 23247 standard.

The author then extended the classifications and used them to measure the performance of a small scale digital twin framework.

The team results are shown on slides 3 and 4, and the rest describe the authors results.
Framework classifications

<table>
<thead>
<tr>
<th>Level of Detail</th>
<th>Physical Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>material/component level (production item)</td>
<td>Personnel</td>
</tr>
<tr>
<td>process level (production line)</td>
<td>Equipment</td>
</tr>
<tr>
<td>site level (many processes)</td>
<td>Material</td>
</tr>
<tr>
<td>enterprise level (supply chain)</td>
<td>Process Definition</td>
</tr>
<tr>
<td>regulatory level (industry sector)</td>
<td>Product Definition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication styles</th>
<th>Application Paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>closed loop adjustment</td>
<td>real time control</td>
</tr>
<tr>
<td>collision prevention</td>
<td>off line analytics</td>
</tr>
<tr>
<td>visualization</td>
<td>preventative maintenance</td>
</tr>
<tr>
<td>off line analysis</td>
<td>health check</td>
</tr>
</tbody>
</table>
Framework benefits

- **Owner/Operators**
 - Want to know real-time comprehensive status of their manufacturing/production
 - Want to drive optimization and production efficiency to maximize profit

- **Production/Machinist/Operators**
 - Want a more intuitive user interface
 - Want to prevent mistakes

- **Engineers**
 - Want more comprehensive view to understand the true value of their efforts
 - Want to eliminate non-value add tasks such as data re-entry

- **Maintenance**
 - Want insight to why equipment is failing
 - Want windows of opportunity to do preventative maintenance

- **Subcontractors**
 - Want access to information so they can bid more easily and accurately
 - Want ability to share manufacturing processes

- **Equipment suppliers and builders**
 - Want to make it easier to implement and integrate their products
 - Want to efficiently monitor equipment performance for improved performance

- **IT developer / integrator**
 - Want to be certain organizational security and access control protocols are being followed
 - Want system to robust, flexible, fault tolerant, accurate, scalable and wherever possible non-prescriptive

- **Regulatory agencies**
 - Want to prove that a process has been followed
 - Want a standardized interface into product information

- **Software vendors**
 - Want a consistent, reliable, affordable interface to external data, tools and systems
 - Want to make it easier to deploy their solutions

- **Standards Development Organizations (SDO's)**
 - Want to promote their standards
 - Want to enhance their value by becoming part of an eco-system
Two Digital Twin qualities

• Observable
 • A digital twin is a model of something that is observable in the real world.
 • Describes one or more aspects of the real world phenomenon.
 • Makes it easier to understand, use, control, or operate.

• Measurable
 • The digital twin is “meaningful” to measure.
 • Will learn something about the physical twin.
 • Will not get the same result for every twin.
Digital Twin machining experiment

- Small scale framework (one agent)
- Shown on two five axis machine tools at IMTS 2018
- Twin performance measured after the show from log files
Small Scale Framework

Physical Twin

Digital Twin
Experimental results

- Twitches are differences to the lowest significant digit of a value
 - Many twitches are roll overs

- Changes are new values in the tool location
 - Many changes are on the same path

- Points are locations where the direction of machining changes
 - These must be captured to make an accurate digital twin

<table>
<thead>
<tr>
<th></th>
<th>Twitches</th>
<th>Changes</th>
<th>Points</th>
<th>Change %</th>
<th>Point %</th>
<th>Avg</th>
<th>Short</th>
<th>Long</th>
<th>Epsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage12Hyundai</td>
<td>711451</td>
<td>639789</td>
<td>5303</td>
<td>90%</td>
<td>0.75%</td>
<td>0.178</td>
<td>0.0009</td>
<td>49.38</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>Stage12Hyundai</td>
<td>711438</td>
<td>567313</td>
<td>3699</td>
<td>80%</td>
<td>0.52%</td>
<td>0.226</td>
<td>0.0009</td>
<td>49.35</td>
<td>2.00E-03</td>
</tr>
<tr>
<td>Stage12Hyundai</td>
<td>711439</td>
<td>542266</td>
<td>2628</td>
<td>76%</td>
<td>0.37%</td>
<td>0.320</td>
<td>0.0009</td>
<td>49.66</td>
<td>5.00E-03</td>
</tr>
</tbody>
</table>
Small Scale Framework

- **Digital Twin Challenges**
 - We can measure models in real time
 - Identify issues, optimize processes
 - Coordinate multiple operations

- **Digital Twin Benefits**
 - Stronger, lighter structures
 - Reduced tooling costs
 - Adaptive manufacturing
Proposal for medium scale

Twin Server
• Single large memory space
• Many cores (128)
• One core per agent

Applications
• Collision prevention
• Dynamic scheduling
• Accuracy management
Large Scale Framework

ISO 23247
Part 1 Overview
Part 2 Architecture
Part 3 Digital Representation
Part 4 Information Exchange

Complete automotive or aerospace plant
Conclusion

• A digital twin is a measurable model of a physical element that can be observed in the real world.

• A digital twin agent processes messages streamed from sensors and uses them to synchronize the current state of digital twins with that of their corresponding physical elements.

• A small scale framework manages one agent. A medium scale framework manages multiple agents in a shared memory space. A large scale framework manages multiple levels of agents distributed between many memory spaces.