Digital Problem Resolution (DPR)

Using 3D Scans to Support a Revised Growth IR Resolution Process

ManTech Project Number S2762
Process Change - Under Cognizance of Industry

Philip Jennings II, P.E.
Newport News Shipbuilding

Jay Arnett
Newport News Shipbuilding
Overview

• Digital Problem Resolution (DPR) Overview
• History of Technology at NNS
• Overview of Technology and Applications
• DPR Project Details
Project Purpose:

“Develop a process for capturing and retaining growth work items using digital information capture technologies”

Project Goals

1. Phase I: Establish a Knowledge Base to store identified resolutions for each growth work item (Complete 12/2018)

2. Phase II: Define a new problem resolution process and evaluate both the process and Knowledge Base in active contracts. (On Track for 8/2019)
• In the midst of a digital transformation

• Our business is being disrupted

• There are a multitude of opportunities

• In recent years – Laser Scanning
 – MANTECH: Reality Capture (April 2015)
 – NSRP: 3 Views to 3D (September 2017)
 – NSRP: Capturing In-Service Ship Configuration (2019-2020)
LASER Scanning is the controlled steering of LASER beams followed by a distance measurement at every pointing direction. This method is used to rapidly and accurately capture shapes of objects, buildings, and landscapes. A variety of sensors exist with accuracies of .002”–0.125”.

A **Point Cloud** is a digital display of all the point information captured by the laser scanner including each point’s location (x, y, and z relative to a given origin) and other relevant information (ex. color, temperature, etc.).

A **3D model** can be developed by linking points together via lines and then creating surfaces where 3 or more lines intersect. Surfaces can also be constructed by using the points as a guide to define new 3D solid shapes.
About the Technology - Hardware

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Accuracy</th>
<th>Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoSLAM ZEB-REVO RT</td>
<td>1 – 3 cm</td>
<td>3D mobile mapping</td>
</tr>
<tr>
<td>FARO Scan Arm</td>
<td>≤ 1 mm</td>
<td>Dimensional analysis, inspection, reverse engineering</td>
</tr>
<tr>
<td>Basis Surphaser 100HSX</td>
<td>≤ 1 mm</td>
<td>Reverse engineering, dimensional control, BIM, historical preservation, architecture, forensics</td>
</tr>
<tr>
<td>FARO Freestyle X</td>
<td>≤ 1 mm</td>
<td>Complex measurements, reverse engineering, facility management, forensics, accident reconstruction</td>
</tr>
<tr>
<td>FARO Focus3D X 330</td>
<td>1 mm</td>
<td>Ship repair, as-built documentation, facility management, surveying, forensics, quality control, historical/archeological 3D documentation, BIM</td>
</tr>
<tr>
<td>Leica P-20</td>
<td>3 mm</td>
<td>Industrial as-built documentation, BIM, construction, forensics</td>
</tr>
<tr>
<td>DotProduct DPI-8X</td>
<td>≤ 1.7 mm</td>
<td>As-built MEP, BIM, renovation design, progress tracking, forensics, heritage documentation, shipboard conditions</td>
</tr>
</tbody>
</table>
About the Technology - Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica Cyclone</td>
<td>Process, model, and manage 3D point clouds</td>
</tr>
<tr>
<td>FARO Scene</td>
<td>Processing and managing FARO scan data</td>
</tr>
<tr>
<td>Autodesk ReCap</td>
<td>Create point clouds or meshes ready for CAD and BIM authoring tools</td>
</tr>
<tr>
<td>Geomagic Design X</td>
<td>Reverse engineering, combine history-based CAD with 3D scan data processing</td>
</tr>
<tr>
<td>Geomagic Wrap</td>
<td>Transform 3D scan data and imported files into 3D models for use downstream</td>
</tr>
<tr>
<td>Basis Software SurphExpress</td>
<td>Surphaser scanner control, data analysis, and exportation</td>
</tr>
<tr>
<td>Elysium InfiniPoints</td>
<td>Point cloud data processing, modeling, and analysis for engineering applications</td>
</tr>
<tr>
<td>Thinkbox Software Sequoia</td>
<td>Stand alone point cloud processing and meshing</td>
</tr>
<tr>
<td>Capturing Reality RealityCapture</td>
<td>Automatically extract 3D models from a set of ordinary images and/or laser scans</td>
</tr>
<tr>
<td>Bentley Systems ContextCapture</td>
<td>Hybrid process reality meshes using point clouds supplemented with high-res photography</td>
</tr>
</tbody>
</table>
Current Use Cases

- As-built condition assessment and ship check
- Clash detection and analysis
- Virtual product measurement
- Execution of damage investigation
- Critical alignment
- Reverse Engineering

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

- Improved quality review
- Collection of data in normally inaccessible areas
- Asset documentation
- Job briefings and animations
- Digital problem resolution (DPR)
DPR Project Overview

Project Purpose:

“Develop a process for capturing and retaining growth work items using digital information capture technologies”

Project Goals

1. Phase I: Establish a Knowledge Base to store identified resolutions for each growth work item (Complete 12/2018)

2. Phase II: Define a new problem resolution process and evaluate both the process and Knowledge Base in active contracts. (On Track for 8/2019)
DPR Project Theory

Initiate Growth Work

Knowledge Base
DPR Project Theory

Resolve
Growth Work

Knowledge Base

New Passageway
DPR Project Theory

Plan
Growth Work

Knowledge Base

<table>
<thead>
<tr>
<th>Part #</th>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>57832</td>
<td>Door Assembly</td>
<td>1</td>
</tr>
<tr>
<td>T8735</td>
<td>Paint</td>
<td>3 gal</td>
</tr>
</tbody>
</table>

Instructions
1. Remove pipe
2. Cap ends
3. Remove sheeting between stiffeners
4. Install door
5. Coat all surfaces to match surrounding

New Passageway
DPR Project Theory

Execute
Growth Work

Knowledge Base