Building the Chemical Foundation for Intelligent Breath Analysis

K. Jeerage, M. Harries, C. Suiter, E. Holland, J. Widegren, T. Lovestead
Fluid Characterization Group
Applied Chemicals & Materials Division, NIST-Boulder

Funding: NIST Special Programs Office
Drug Sampling Options

Blood Sample

1.5 h – 4 h delay
Drug Sampling Options

Breath Sample

- H₂O
- N₂
- CO₂
- O₂
- Ar

Ethanol
0.4 mg / liter breath
at legal limit
Ethanol
Known correlation between conc. and impairment
Blood-breath ratio ≈ 2350 (mean)
Simple elimination profile; not stored in fat tissue
Thermophysical properties – known

Cannabis
Unknown correlation between conc. and impairment
Blood-breath ratio $\approx ?$
Unknown elimination profile; stored in fat tissue
Thermophysical properties – unknown and difficult to measure
Cannabis is Challenging

\[
\text{Cannabis constituents:} \quad C_{21}H_{30}O_2 \quad \Delta-9\text{-tetrahydrocannabinol (THC)}
\]

\[
\text{Metabolites:} \quad \text{cannabigerol & cannabinol}
\]

\[
\text{Terpenes:} \quad \text{ethanol}
\]
Cannabis is Challenging

C₂H₅OH

Ethanol Blood Concentration
0 – 3,000,000 ng/mL

C₂₁H₃₀O₂

THC Blood Concentration
0 – 200+ ng/mL
Properties for Reliable Quantitation

Vapor Pressure

\[P_{\text{SAT}} = \frac{m \cdot R \cdot T}{M \cdot V} \]

Partitioning

\[K_{F/B} = \frac{[A]_{\text{FAT}}}{[A]_{\text{BLOOD}}} \]
\[K_{B/A} = \frac{[A]_{\text{BLOOD}}}{[A]_{\text{AIR}}} \]
\[K_{S/A} = \frac{[A]_{\text{PDMS}}}{[A]_{\text{AIR}}} \]
P\textsubscript{SAT} – Standard Method

Concatenated Gas Saturation

Mononitrotoluene taggants

Low-volatility terpenes

Internal eicosane control

Influence of carrier gas

Anti-oxidants for unstable chemicals

CARRIER GAS

SATURATOR

ADSORBER

SATURATOR

ADSORBER

Time = 1 – 8 weeks

30 °C – 90 °C

ca. 20 °C
P$_{\text{SAT}}$ – Rapid Method

Porous Layer Open Tubular (PLOT) Cryoadsorption

![Diagram of PLOT cryoadsorption system]

- Carrier Gas
- Saturator: 30 °C – 300 °C
- Adsorber: -10 °C

Time = 1 – 2 hours

Graph: ln[PSAT(Pa) • 103] vs. 1000 / T(K)

- Eicosane ($\text{C}_{20}\text{H}_{42}$)
 - 282.5 g/mol
 - 30 °C

- Reference correlation (Lemmon and Goodwin 2000)
- Concatenated gas saturation method
- PLOT-cryo method

Tetradecane validation

Cannabinoids
P_{SAT} – Rapid Method

Porous Layer Open Tubular (PLOT) Cryoadsorption

Time = 1 – 2 hours

THC (C_{21}H_{30}O_{2})

314 g/mol

THC: 0.000115 Pa @ 40 °C
P_{SAT} – Rapid Method

Porous Layer Open Tubular (PLOT) Cryoadsorption

CARRIER GAS

SATURATOR

30 °C – 300 °C

-10 °C

ADSORBER

THC ($C_{21}H_{30}O_{2}$)

314 g/mol

Ethanol: 18,000 Pa @ 40 °C

THC: 0.000115 Pa @ 40 °C

SOURCE: NIST REFPROP Database

Time = 1 – 2 hours
Can we capture and concentrate sufficient material at physiological temperatures?

How does ethanol impact blood/air partitioning?
$K_{\text{Fat/Blood}}$ – Non-Invasive NMR Method

Fat Surrogate = Octanol

Blood Surrogate = Water

Eugenol in D$_2$O

Octanol + D$_2$O

Eugenol in Octanol + D$_2$O

Octanol Signals

Eugenol Signals

1H Chemical Shift

FORENSICS @ NIST

#NISTForensics
$K_{PDMS/AIR} – Model Feasibility

Is it feasible to predict sorbent-air partitioning with an empirical model?

$$K = \frac{[A]_{PDMS}}{[A]_{AIR}}$$

n [moles] = $K \times V_s \times C_o$

Partition Coefficient

PDMS Structure

Synthetic Designer Drugs

SPME Fiber

Capillary Microextraction of Volatiles (CMV)
$K_{PDMS/AIR}$ – Chemicals for Model

Functional Groups (18)

<table>
<thead>
<tr>
<th>Non-Ring Groups</th>
<th>Ring Groups</th>
<th>Oxygen Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>$>\text{C}<$</td>
<td>$>\text{C}<$</td>
<td>$-\text{OH}$ (alcohol)</td>
</tr>
<tr>
<td>$>\text{CH}-$</td>
<td>$>\text{CH}-$</td>
<td>$-\text{OH}$ (phenol)</td>
</tr>
<tr>
<td>-CH_2-</td>
<td>-CH_2-</td>
<td>$-\text{O}-$</td>
</tr>
<tr>
<td>-CH_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$=\text{C}<$</td>
<td>$=\text{C}<$</td>
<td>$>\text{C}=\text{O}$</td>
</tr>
<tr>
<td>$=\text{CH}-$</td>
<td>$=\text{CH}-$</td>
<td>$-\text{CHO}$</td>
</tr>
<tr>
<td>$=\text{CH}_2$</td>
<td></td>
<td>$-\text{COO}-$</td>
</tr>
</tbody>
</table>

Training Set Requirements

1) Log K at three temperatures: 60 °C - 180 °C
2) Follows van’t Hoff Equation with $R^2 > 0.95$
Compare experimental values (x axis) with predicted values (y axis) for chemicals used to build model (N = 275).

\[R^2 = 0.984 \]
K\textsubscript{PDMS/AIR} – Model Predictions

Predict values for chemicals not used to build model.

Example: C\textsubscript{8} chemicals at 100 °C

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Experimental Data</th>
<th>Model Prediction</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethylidene-cyclohexane</td>
<td>2.128</td>
<td>2.112 + 0.002</td>
<td>0.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.989 + 0.001</td>
<td>0.4%</td>
</tr>
<tr>
<td>ethenyl-cyclohexane</td>
<td></td>
<td>1.996</td>
<td></td>
</tr>
</tbody>
</table>

Summary

Quantitative breath analysis of cannabinoids will be challenging due to their low volatility and their low concentration in blood.

Thermophysical property measurements for large, hydrophobic, low-volatility chemicals push the limits of existing experimental approaches.

Current Partnerships: Prof. Jerry King (University of Arkansas), Prof. Roger Giese (Northeastern University), Prof. April Hill (Metro State University), Prof. Lupita Montoya (University of Colorado)

Outreach: ASTM Committee D37 on Cannabis, Front Range Forensic Chemists Association, Colorado Bureau of Investigation, Cannabis Industry
Please contact any of us to discuss working together or to discuss postdoctoral opportunities.

jeerage@boulder.nist.gov