Deep Learning based Feature Extractors for Shoe Print Matching

By
Sarala Padi
Outline

• Introduction
 • Shoe print matching
 • Deep Learning models
• Problem statement
 • Deep learning for shoe print matching?
 • Lack of data for training?
 • Transfer learning
• Approach used for shoe print matching
• Database used
 • Dataset from West Virginia University (WVU)
 • FBI Boots data
• Experimental Evaluations
• Conclusions
• References
INTRODUCTION (1):

Shoe print matching in Forensic Science crime scene analysis usually involve two categories of shoe prints

- **Crime Scene Impressions**: Footwear impression taken from a crime scene
- **Reference Impression**: Footwear impression taken from a shoe of interest

Current Approaches:
- **Investigative**: Automatically finding the make and model for the given crime scene impression from the library of impressions
- **Evidential**: Evaluate the level of correspondence between crime scene and reference impressions by comparing size, outsole design, wear patterns, and randomly acquired characteristics (RACs)

Concerns:
- Manually done and need professional experts
- Subjective measure and it can be easily biased
Objective Measures: Automatically finding the correct match for the given crime scene impression by directly getting the features from the impressions

Features: Finding and extracting the right kind of features to compute the similarity between pair of images is an important and crucial step

Current Approaches: Most of the approaches quantify the degree of correspondence

- by computing a similarity score on the original impressions
- or suitable transforms such as Fourier, Gabor, Mellin, etc.

Recent Work: Kong et.al have shown that

- Resnet model features can lead to good performing similarity measures
- Multi Channel Normalized Cross Correlation (MCNCC) metric is used for finding the similarity between the pair of impressions
Deep Learning:
• Deep neural network models are shown to be successful in extracting features that are more informative for comparison purposes
• State of the art include many frameworks and pretrained models that are easily adapted to domain specific applications

Requirements:
• Building such models require large amount of data for training
• Computationally expensive to build such models

Challenges in applying DL models to shoe print matching:
- Unavailability of Datasets for modeling
- Available datasets are small, low in quality, partial and varied in size, resolution, scale, modality, etc.

Proposed Method:
- **Pretrained models** with transfer learning is used for shoe print matching
- **Resnet-50 model** is used to extract features with Multi Channel Phase Only Correlation (MCPOC) similarity metric to find the degree of similarity between the crime scene and reference impression
- **Resnet model features** are trained with Least Absolute Shrinkage and Selection Operator (LASSO) regressor to get weighted average scores for finding the similarity between the pair of impressions
Crime scene impressions:
Partial, different in size, scale and modality
Transfer Learning (1):

Transfer learning and domain adaptation refer to the situation where what has been learned in one setting is exploited to improve generalization in another setting.

Traditional ML:
- Task / domain A
- Task / domain B
- Training and evaluation on the same task or domain.

Transfer learning:
- Source task / domain
- Target task / domain
- Storing knowledge gained solving one problem and applying it to a different but related problem.

Pretrained model
Transfer Learning (2):

Pretrained model:
- A model is created to solve a problem
- When we try to solve a similar problem
 - Use the trained model as a starting point
- **ImageNet:**
 - Contains 1.2 million images
 - with 1000 categories
 - Animals, birds, trees, sports, vegetables, people, etc.
 - Pretrained models built on ImageNet dataset that are available for use
 - **Lenet-5, VGG16**
 - **AlexNet, Resnet50**
 - **Inception, GoogleNet**
Transfer Learning: With Fixed Feature Maps

- Pretrained model with Fixed feature vectors
- Training is not required
- Initial layers can be used as feature extractors
Transfer Learning: one or two Extra added layers

- Pretrained model with one or two extra layers
- Training only the added layers and freeze the other layers
- Require small amount of data for training
- Model can be used for solving similar problem
Transfer Learning: Extra added layers

- Pretrained model with extra added layers
- Training the full network
- Require a large amount of data for training
- Model can be used for task of interest
Resnet-50 Model:

- **Model Architecture:** Convolutional neural network model
- **Number of blocks:** 24 blocks with two convolutions in each block
- **Residual:** Input is feed forwarded to each block (24 blocks)
- **Number of layers:** 50 Layers
- **Layer considered to extract features:** Initial layer
- **Initial layers:** extract edge like features and these features can be generalizable to new datasets
Similarity Metrics:

Normalised Cross Correlation

\[
MCNCC = \frac{1}{N} \sum_{c=1}^{N} \frac{\sum (I_{1c} - \mu_{I_{1c}}) \cdot (I_{2c} - \mu_{I_{2c}})}{\sqrt{\sum (I_{1c} - \mu_{I_{1c}})^2} \cdot \sqrt{\sum (I_{2c} - \mu_{I_{2c}})^2}}
\]

Phase Only Correlation

\[
MCPOC = \frac{1}{N} \sum_{c=1}^{N} \text{Max}_{\text{peak}} \left\{ \mathcal{F}^{-1} \left[\frac{G_{1c}(u, v) \cdot G_{2c}^*(u, v)}{G_{1c}(u, v) \cdot G_{2c}^*(u, v)} \right] \right\}
\]

Where \(G_{1c}, G_{2c}\) are FT of \(I_{1c}, I_{2c}\); \(G_{2c}^*\) is complex conjugate of \(G_{2c}\).

NCC Score: 384

POC max peak is 0.55 at position (12,112)
Approach used for shoe print matching:

- **Database of reference shoe prints**
- **Query Impressions**
- **Transfer Learning**
 - Input
 - Convolution
 - Batch Norm
 - ReLU
 - Convolution
 - Batch Norm
 - Addition
 - ReLU
 - Output
- **Features**
- **Query**
- **ResNet-50 Pretrained Model**
- **Ref Image**
- **Transfer Learning**
 - NCC Score Distributions for matched and unmatched pairs
 - MCNCC formula
 - MCPOC formula
 - POC Score Distributions for matched and unmatched pairs

Similarity Measures

Where G_1, G_2 are FT of I_1, I_2; G_2^* is complex conjugate of G_2.

Forensics at NIST

#NISTForensics
Experimental Setup:

- **Datasets**: Experiments were evaluated on two sets of datasets
 - Shoe prints from WVU dataset
 - Shoe prints from FBI Boots data

- **DL framework**: Keras DL framework is used for experiments

- **Model Used**: Resnet – 50 (pretrained on ImageNet data) model is used to extract features

- **Layer**: Res2a–branch–2c layer is considered for feature extraction (initial layer)

- **Similarity Metrics**: MCPOC and MCNCC scores are computed for matched, unmatched, close-nonmatched pairs

- **Feature Maps**: 256 channel features were extracted from Resnet model

- **Scores computed**: Average and weighted average channel scores are used for separating the matched, unmatched and close nonmatched pairs

- **Model Evaluation**: Receiver Operating Characteristics (ROC) is used to evaluate the model performance
Dataset: Shoe impressions from West Virginia University (WVU)

- Nicole et.al created the Crime scene impressions using blood and dust together with three different substrates; Ceramic, Vinyl, Acetate
- This dataset is used to separate matched and unmatched pairs
- High Quality Reference impressions: 100
- Crime Scene Dust impressions: 66
- Crime Scene Blood: 53
- Crime scene blood impressions were enhanced using leuco-crystal violet (LCV)
 - Crime scene Blood + LCV: 53
Images of WVU dataset and Resnet model features. A) High quality reference B) Query Impressions C) Crime Scene Dust D) Crime scene Blood
Experimental Results (1) : WVU dataset

Average NCC scores
- CSBlood AUC = 0.60
- CSBlood+LCV AUC = 0.63
- CSDust AUC = 0.89

Average POC scores
- CSBlood AUC = 0.94
- CSBlood+LCV AUC = 0.97
- CSDust AUC = 0.99
Experimental Results (2): WVU dataset with LASSO regressor

Weighted average of NCC scores

Weighted average of POC scores
Dataset: FBI Boots dataset

- This dataset is used to separate matched vs close nonmatched pairs
- There are 72 pairs of impressions with same make and model
- Size and wear conditions vary
- There are 36 left shoe and 36 right shoe impressions
- These impressions are used to study the how well Resnet model features can discriminate between matched and close nonmatched pairs

![Left impression](image1) ![Right impression](image2) ![Left impression](image3) ![Right impression](image4)
Experimental Results (3) : FBI Boots dataset
Conclusions:

- **Matched vs Unmatched pairs:** DL based feature descriptors show good promise in separating matched and unmatched pairs.

- **Matched vs Close nonmatched:** The separation of matched pairs from close-nonmatched pairs is not as good as separation of matched pairs from general non-matched pairs. This is to be expected and indicates that unique features (RACs) are important for discrimination in such cases.

- **Similarity metric:** Multi-channel phase-only correlation performs better than multi-channel normalized cross correlation.

- **Future Work:**
 - As pretrained models are successful for shoe print matching, it is worth to explore DL models to address current challenges, namely, alignment, scale and modality differences.
 - It is also worth exploring the additional training of these models specifically for separating matched and close non-matched pairs.
References:

Deep Learning:

Shoe Print Matching:
ACKNOWLEDGEMENTS:

I would like to thank Marty Herman, Hari Iyer, Steve Lund, and Clement Driard for helpful discussions and support.
Thank You