The Confidence Interval for the Likelihood Ratio with Application to Biometrics

Larry Tang

George Mason University & National Institute of Standards and Technology

Joint work with Elham Tabassi (NIST) and Xiaochen Zhu (GMU)
Outline

- Evidence interpretation
- Error rates, receiver operating characteristic curve, and likelihood ratio
- Confidence interval of likelihood ratio on NIST datasets
- Conclusion and future work
Evidence Interpretation

- The forensic source identification – inferential analysis to identify the origin of a collection of forensic evidence
- Summarization of the observed evidence relative to the prosecution and defense propositions
- Forensic scientists: interested in source level propositions, sometimes activity level propositions
- Court system: offense level propositions concerning the guilt or innocence of the defendant
Sources

Three subsets of objects:

- e_s: Set of objects associated with a specified source (person, window, ...)
- e_u: A set of trace objects from an unknown source
- e_a: Collection of sets of objects from alternative sources
Propositions and Sources

- H_p: Same source
- M_1: Sample from one specific source
 - Specific source: e_s (n_s traces)
- H_d: Different sources
- M_2: Sample from $n_a + 1$ sources
 - Alternative sources: e_a (n_a sources)
 - Unknown source: e_u (n_u traces)
Approaches for Summarizing the Evidence

- Bayesian methods (Lindley, 1977) – trace evidence
- Two-stage approach (Parker, 1966) – trace evidence
- Score-based methods (Royall, 1997) – pattern and trace evidence
Two-stage Approach

Stage One: Exclusion Stage

- Exclusion
 - $T(e_u, e_s) < \tau$
 - $T(e_u, e_s) \geq \tau$

Stage Two: Atypicality Stage

- Different sources
- Non-exclusion
- Stage Two: Atypicality Stage
Likelihood Ratio

- Error rates
 - Exclusion: random non-match probability (RNMP), or chance of incorrect non-match
 - Non-exclusion (or inclusion): random match probability (RMP), or chance of incorrect match
- Likelihood ratio (LR) based on binary decision of $T(e_s, e_u) >$ a threshold, τ:
 \[
 LR = \frac{Pr(T(e_s, e_u) > \tau|H_p)}{Pr(T(e_s, e_u) > \tau|H_d)} = \frac{1 - RNMP(\tau)}{RMP(\tau)}
 \]
- Similar to diagnostic LR: accuracy of a diagnostic test which has positive and negative results
- Well-studied positive LR in diagnostic medicine: sensitivity/(1-specificity)
Forensic Error Rates

- Similarity scores for the i^{th} within-source comparison:
 \[T_{s,i}, i = 1, \ldots, m \text{ follows } F_{\theta_s} \]
- Similarity scores for the j^{th} between-source comparison:
 \[T_{d,j}, j = 1, \ldots, n \text{, follows } F_{\theta_d} \]
- Random non-match probability:
 \[\text{RNMP}(\tau) = P(T_{s,i} \leq \tau) = F_{\theta_s}(\tau) \]
- Random match probability:
 \[\text{RMP}(\tau) = P(T_{a,j} > \tau) = 1 - F_{\theta_d}(\tau) \]
ROC Curves for Forensic Error Rates

- ROC curve plots (1-RNMP) versus the RMP as the threshold point τ for determining a “match” varies from $-\infty$ to $+\infty$.
- Let t be $RMP(\tau)$, and $R(t)$ is $1 - RNMP(1 - t)$
- ROC curve $R(t)$:
 $$R(t) = 1 - F_{\theta_s}(F_{\theta_d}^{-1}(1 - t))$$
- The derivative of the ROC curve closely related to likelihood ratio: the instantaneous change in the 1-RNMP in a unit change of RMP
Relationship between ROC and LR

An illustration of the relationship between ROC and LR:

Figure: Left panel: dash curve – different-source scores, solid curve – same-source scores; right panel: solid black curve – ROC curve
Smooth ROC curve – Parametric Method

▶ Assume after Box-Cox power transformation, $F_{\theta_s} \sim N(\mu_s, \sigma_s^2)$ and $F_{\theta_d} \sim N(\mu_d, \sigma_d^2)$

▶ RNMP and RMP:

$$RNMP(\tau) = \Phi\left(\frac{\mu_s - \tau}{\sigma_s}\right), \quad 1 - RMP(\tau) = \Phi\left(\frac{\mu_d - \tau}{\sigma_d}\right)$$

▶ The resulting binormal ROC curve:

$$R(t) = \Phi\left(\frac{\mu_s - \mu_d}{\sigma_s} + \frac{\sigma_s}{\sigma_p} \Phi^{-1}(t)\right)$$

▶ Explicit expression for LR estimate and its confidence interval
NIST SD4 Data

- NIST Special Database 4 (SD4)
- SD4 database contains 512-by-512-pixels gray scale fingerprint images
- Two representations for each finger – rolled impressions of the finger
- Bozorth matcher was run on all pairs of fingerprints from SD4 database
Histograms of NIST SD4 Data

Histogram of LogLR for Genuine Matches

Histogram of LogLR for Imposter Matches
Confidence Intervals of Log(LR) for SD4

Log Likelihood Ratio and Confidence Interval when Sample Size Ratio Varies

Method
- PE
- KDE
- LRE

Figure: PE – parametric, KDE – kernel density estimation; LRE – logistic regression estimation (Zhu, Tang, Tabassi, 2017 IJCB)
Likelihood Ratios for Facial Recognition

- Frontal face images taken with a digital single-lense reflex camera
- The data set has three categories, which are “good”, “bad”, and “ugly”, based on the quality of the images
- The comparison scores measures characteristic difference
Confidence Intervals of Log(LR) for Facial Recognition

![Graph showing confidence intervals of Log(LR) for facial recognition. The graph plots Log Likelihood Ratio against Log Sample Size Ratio. Different methods are represented by different markers: PE, LRE, and KDE. The graph illustrates the variability and confidence intervals for each method across different sample size ratios.]
Conclusion and Future Work

- Sampling variability of likelihood ratio for fingerprint and facial recognition data
- Paradigm for the reasoning about the source of traces based on error rates
- Characterize the uncertainty about estimated forensic error rates
Acknowledgement

- NIST forensic program
- National Institute of Justice (Collaborators: Danica Ommen, Chris Saunders, Elham Tabassi, and Don Gantz)
Acknowledgement

- NIST forensic program
- National Institute of Justice (Collaborators: Danica Ommen, Chris Saunders, Elham Tabassi, and Don Gantz)

Thank you!