Modeling and Analysis of Cyber-Physical Manufacturing Systems for Anomaly Detection

Miguel Saez
Ph.D. Candidate
University of Michigan

Prof. Dawn Tilbury
Prof. Kira Barton
University of Michigan

Dr. Francisco Maturana
Rockwell Automation
Challenges of anomaly detection

• **Process variability and dynamics:** Combination of transient and steady state operation [1]

• **Part interaction:** Changing loads due to different machine-part interactions

• **Data collection:** Cost and access constraints

Cyber-Physical Manufacturing Systems

SUPPORT INTEGRATED ANALYSIS OF COMPLEX PROCESSES

Intro
CPS
Approach
Case1
Case2
Case3
Conclusion

DeviceNet
Ethernet/IP
Internet of Things (IoT)

Physical

Network

Software

Sensors data
Dynamic models
Part information

Control logic
Commands
Algorithms

Objective

Improve anomaly detection and diagnosis in manufacturing processes

Solution:[3]

- Model Cyber-Physical Systems considering both, Cyber and Physical domains
- Context-specific analysis of manufacturing operation merging multiple models

Identify Operational Context

Global Operational State (GOS):
- **Functional**: Reduced controller model
- **Dynamic**: States describing machine dynamics
- **Interactive**: Describe the operations in the part
- **Information**: Explicit process descriptors

\[
G = [Y(1) \ldots Y(m)]^T
\]

\[
e^I = [Y_{ref}(1) \ldots Y_{ref}(n)]^T
\]

\[
\min(DTW(e^I, G))
\]
Define Context-Specific Model

- **Multi-model Specification:** \[M = (GOS, U, X, Y, F, H) \]

 - \(GOS \): Global Operational State
 - \(U \): Continuous inputs
 - \(X \): State variables
 - \(Y \): Output variables
 - \(F \): Mapping of state variable functions
 - \(H \): Mapping of output variable functions

- **Adaptive Threshold Limits:**
 \[\Delta r_{GOS} = \mu \pm \psi_R Z \sigma \]

Case Study: Conveyor

- Available controller data

<table>
<thead>
<tr>
<th>Type</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical</td>
<td>Vehicle model</td>
</tr>
<tr>
<td>Functional state</td>
<td>Ready, Processing, Down</td>
</tr>
<tr>
<td>State-space</td>
<td>Velocity, Torque</td>
</tr>
<tr>
<td>Energy</td>
<td>Current, Voltage, Frequency</td>
</tr>
</tbody>
</table>
Case Study: Conveyor

Anomaly detection: Adaptive threshold limits

(Snapshot measurements)

<table>
<thead>
<tr>
<th>State</th>
<th>GOS₁</th>
<th>GOS₂</th>
<th>GOS₃</th>
<th>GOS₄</th>
<th>GOS₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>Accel</td>
<td>Accel</td>
<td>Const</td>
<td>Const</td>
<td>Const</td>
</tr>
<tr>
<td>Interactive</td>
<td>Part.Out Front/Rear</td>
<td>Part.Out Front</td>
<td>Part.Out Front</td>
<td>Part.In Rear</td>
<td>Part.In Front</td>
</tr>
</tbody>
</table>

- Limits
- Segments
- Current Sig. W/Backlash
Case Study: Conveyor

Anomaly diagnosis: Supervised learning (SVM) to separate Backlash from Good

Entire Signal - Classification Accuracy: 60.1%

GOS$_1$ - Classification Accuracy: 91.7%

Entire signal: 60%

Only GOS$_1$: 92%

32% IMPROVEMENT IN ROOT CAUSE DIAGNOSIS
Case Study: Conveyor

Productivity analysis: Monitoring time of sub-tasks

Mean increase in time in GOS_4 when wheels are worn

DETECT 0.6 SEC INCREASE IN SUB-TASKS TIME
Case Study: CNC Machine

- Merge sensor data and context information

Process step + Artificial vision + Controller model + Energy signature

G21
G90
G00 X143.135 Y107.226 S3500 M03
Z60.237
G03 X-.627 Y.627 Z0 I-.627 J0 K0
G00 X155 Y108.54
Case Study: CNC Machine

- Multi-Model Framework:

\[\dot{I} = Jq + M_{F1} \dot{q} + M_{F0} \frac{\sin(\dot{q})}{\psi} \]

Single Mass dynamic model

\[\phi_1(B) \dot{I} = \phi_{I1}(B)q + \phi_{I2}(B)\ddot{q} + \epsilon \]

Autoregressive model
Case Study: CNC Machine

- **Multi-Model Framework:**

<table>
<thead>
<tr>
<th>State</th>
<th>GOS 1</th>
<th>GOS 2</th>
<th>GOS 3</th>
<th>GOS 4</th>
<th>GOS 5</th>
<th>GOS 6</th>
<th>GOS 7</th>
<th>GOS 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>2 in/sec</td>
<td>5 in/sec</td>
<td>50 in/sec</td>
<td>2 in/sec</td>
<td>2 in/sec</td>
<td>2 in/sec</td>
<td>50 in/sec</td>
<td>5 in/sec</td>
</tr>
<tr>
<td>Interactive</td>
<td>No Int.</td>
<td>Side Int.</td>
<td>No Int.</td>
<td>Side Int.</td>
<td>No Int.</td>
<td>End Int.</td>
<td>No Int.</td>
<td>Side Int.</td>
</tr>
</tbody>
</table>

DEFINE CONTEXT-SENSITIVE ADAPTIVE THRESHOLD LIMITS
Case Study: CNC Machine

Collect Raw data

Partition by part feature

Partition by Interaction

Extract Signal features

Context-Specific Classification Model

Intro CPS Approach Case1 Case2 Case3 Conclusion
Case Study: CNC Machine

Use supervised learning (SVM) to separate worn tool from wrong material.

Entire signal: 75%

Partition by part feature: 81.2%

Partition by part feature and GOS: 93.6%
Case Study: CNC Machine

Develop context-specific diagnosis rules:
• Extract context information
• Identify fault patterns
• Define classification rules

Diagnose tool breakage under different operational context

CONTEXT KNOWLEDGE CAN SIMPLIFY DIAGNOSIS
Case Study: Electro-Pneumatic Systems

Common automation applications:

Examples:
- Welding fixtures
- Gantry systems
- Assembly stations

Approach:
- Monitor data from:
 - Position sensors
 - Pressure and flowmeters
- Study discrete states
Case Study: Electro-Pneumatic Systems

Merge sensor data and controller model to detect leaks in multiple location and sizes.
Cyber-Physical Manufacturing Systems

- Worn components
- Backlash
- Worn/Broken tool
- Damaged fixture
- Wrong part
- Leaks
- Joint problems
- Wrong trajectory
Conclusion

• Merging sensor data with context information help to understand the machine operational context

• Feature extraction of a non-stationary signal can be improved by adding information of the cyber domain

• Modeling requires merging expert knowledge and machine data into process analysis algorithms

Thanks