On-Machine Dimensional Measurement Technology for Prognostics and Health Monitoring for Precision Manufacturing Systems and Processes

NIST, Gaithersburg, MD
Presentation by ChaBum Lee, Ph.D.
Assistant Professor of Mechanical Engineering
Tennessee Technological University, Cookeville, TN
OMM: On-Machine Measurement
LAM: Laser-Assisted Machining
BRDF: Bidirectional Reflectance Distribution Function

OMM: Manufacturing Process Monitoring

- **Spindle metrology**
- **Machined surface OMM; BRDF meas.**
- **Cutting temp measurement**
- **Cutting tool wear monitoring**
- **LAM & its process monitoring**
- **Fast tool servo**

Grating interferometry, motion error, positioning control
Outlines

Part A. Introduction: On-Machine Measurement (OMM)

Part B. Current Research

a. Machined Surface Measurement #1
b. Machined Surface Measurement #2
b. Cutting Tool Wear Monitoring
c. Spindle Metrology
d. Conclusion
Part A. Introduction: OMM
Ultraprecision Technology: Machining

Automotive display

Aspheric lens

F-θ lens

Fresnel lens

Reflected to www.jtekt.co.jp
Cosine Error in Freeform Optics Metrology

Measurement results obtained by instruments: (a) nomarski microscope (Olympus), (b) laser scanning microscope (LSM, Keyence), (c) white light interferometry microscope (WLIM, Zygo), (d) scanning electron microscope (SEM, Hitachi) and (e) form talysurf (Taylor Hobson).
Current Measurement: Postprocessing

<table>
<thead>
<tr>
<th>Measure</th>
<th>Contact</th>
<th>Non-contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage</td>
<td>-High accuracy</td>
<td>-High speed, immune to measuring force</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>-Easy to make the surface damage</td>
<td>-Difficulty to align the optical axis</td>
</tr>
<tr>
<td>Instrument</td>
<td>-LVDT, Stylus</td>
<td>-Interferometer, Confocal</td>
</tr>
</tbody>
</table>
Current Measurement: OMM

Spindle

Z-axis

X-axis

LVDT

Form error

Compensation Machining

Current Measurement: OMM
What to Measure by OMM Tools?

- Form error
- Cutting tool wear
- Cutting temperature
- Positioning or motion
- Spindle runout
- Machine vibration
- Cutting tool axis stiffness
- ...

OMM expensive?
Part B. Current Research

a. Machined Surface Measurement #1
Problem: Cosine Error in Measurement

Machining \leftrightarrow Measurement

NC-controlled trajectory

CMM Probe

Freeform surface

Lensed fiber

NC controlled path
Experiment

Autofocusing

Fizeau interferometry
Results

Autofocusing Method

Fizeau interferometry
Part B. Current Research

b. Machined Surface Measurement #2
Cosine Error Elimination by Using Spindle
Rotational and Spindle Error Separation

Artifact
Capacitive Sensor
Air Spindle

Radial Standard Deviation $\sigma_R = 0.217 \mu m$
Peak to Valley $PV_R = 0.786 \mu m$

Angular Standard Deviation $\sigma_S = 0.081 \mu m$
Peak to Valley $PV_S = 0.298 \mu m$
Concave/Convex Mirror Measurement

ΔR

R100 mm

87 mm

Z

Z=0

R=95 mm

87 mm
Bearing Inner/Outer Surface Profiles

Koyo 51211 Thrust Bearing

-70° R45 mm +70°

-70° R27.5 mm +70°
OMM System Integration for Freeform Surface Metrology
Part B. Current Research

c. Cutting Tool Wear Monitoring
Motivation

Roundness within 50 nm

How do we measure damage size?

[*] Frederick Winslow Taylor, On the Art of Cutting Metals, American Society of Mechanical Engineers, 1907.
Principle: Edge Diffraction

Interferogram

Displacement [μm]
Time [s]

I
F

Gaussian

Roughness \(\sigma \)

Transmitted field

Diffracted field

Detector

\(h \)

OKE

\(x_0 \)

\(y_0 \)

\(x_d \)

\(y_d \)

\(z_0 \)

\(z_d \)

16/27
Method: Cross-Correlation

\[f(y) \otimes g(y) = \int f(\tau)g(y - \tau)d\tau \]

Hypothesis 1

Hypothesis 2
Cutting Tool Wear Calibration

(a) Normalized Output vs Time (s)

(b) Similarity R vs Number of machining

Sensitivity
5.62/wear(μm)

Sensitivity
1.14E-3/# of machining
Can we separate wheel wear from spindle runout?

Spindle motion + Roundness + Roughness

~0.3µm
Fringes: Cross-correlation

\[[\text{lag}, r] = \text{CORR}(f, g) \]

Hypothesis 1: Attrition wear relates with lag.
Hypothesis 2: Abrasive wear relates with \(r \).

When do we need truing or dressing?
Wear Characteristics v.s. Edge Conditions

![Graph showing wear characteristics vs. edge conditions](image)

Scanning Length [μm]

APD Output [V]

- Ref.
- Attrition
 - +Abrasive
 - +Chipping

110 μm

(a) Ref., (b) Attrition + Abrasive, (c) Attrition + Abrasive + Chipping
Part B. Current Research

d. Spindle Metrology
Spindle Metrology

Reversal method: (a) measurement at $\theta=0^\circ$, (b) measurement at $\theta=180^\circ$, and (c) errors, $R(\theta)$ in red and $S_x(\theta)$ in purple.
Research Objective

Capacitive sensor for curved surface measurement?

(a) Conducting wires
Insulator
Guard electrode
Ground
Current path
Target
Measuring spot size

(b) Sensing electrode
Radius of Curvature [mm]
Sensitivity [mV/μm]
CS_Measured CS
Principle: Curved Edge Diffraction

Reflected wave

Transmitted wave

Plane wave

Spindle shaft

Interferogram

Detector

Diffracted wave

Ultraprecision-machined

Generally-machined

Normalized Output

Time (s)

Normalized Output

Time (s)
Sensor Characteristics

- Refracted wave
- Transmitted wave
- Interferogram
- Detector
- Plane wave
- Spindle shaft

Graphs showing displacement and scanning distance.
Experiment: Spindle Dynamic Char.

- Sensitivity: Z = 0.199, Y = 0.189
- Standard error: Z = 7.97E-4 (0.40%), Y = 6.72E-4 (0.35%)

Graphs showing CES output vs. CS displacement at 3000rpm and 9000rpm.

Diagram: Optical setup with components such as Prisms, BS, PDs, He-Ne laser, and electronic components like Amplifiers, Adders, Subtractors, and Dividers.
Dynamic System Identification

Stationary

(a) Displacement r_1 [µm]

(b) Displacement r_{10} [µm]

3000 rpm

(a) detail

(b) detail

Displacement r_1 [µm]

Displacement r_{10} [µm]

56Hz

680Hz

(a) Stiffness [N/µm]

(b) Damping ratio

Spindle Speed [rpm]

Spindle Speed [Hz]

(shaft+bearing) M_s

$F(t)$

K_L

C_L

K_A

C_A

r