The Costs and Benefits of Advanced Maintenance in Manufacturing

Douglas Thomas, Economist
National Institute of Standards and Technology

At the Paint Shop in Chrysler Group’s Sterling Heights (Mich.) Assembly Plant, a 2015 Chrysler 200 moves through the Underbody Sealing and Underbody Coating station.
Overview

Estimating national costs/benefits associated with adopting advanced maintenance

• Current literature/data
 • Maintenance costs
 • Benefits of predictive maintenance
 • Barriers to adoption
 • Current maintenance practice

• Data needs
• Feasibility of collecting data

https://doi.org/10.6028/NIST.AMS.100-18
Maintenance Cost: Data

- Economic Census
 - Maintenance outsourcing
 - Includes machinery and buildings
- Bureau of Economic Analysis
 - Maintenance outsourcing
 - Machinery only
- Bureau of Labor Statistics
 - Labor only
 - Excludes overhead/materials
- Estimates of cost require making some assumptions
Maintenance Cost: Literature

- Varying terminology
 - Reactive, Preventive, Predictive

- Cost studies
 - Varying countries (e.g., Sweden, Belgium)
 - Varying economic metrics
 - Case studies with
 - Varying types of machinery
 - Manufacturing and non-manufacturing

Characteristics of Maintenance Costs from a Selection of Articles, Various Countries/Industries

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Goods Sold</td>
<td>15.0%</td>
<td>70.0%</td>
</tr>
<tr>
<td>Sales</td>
<td>0.5%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Cost of Ownership</td>
<td>37.5%</td>
<td></td>
</tr>
<tr>
<td>Replacement Value of Plant</td>
<td>1.8%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Cost of Manufacturing</td>
<td>23.9%</td>
<td></td>
</tr>
<tr>
<td>Percent of Planned Production Time that is Downtime</td>
<td>13.3%</td>
<td></td>
</tr>
</tbody>
</table>
Benefits of Adoption

• Similar challenges
 • Varying countries
 • Varying metrics
 • Varying industries
 • Varying terminology

• Case studies
 • Limits to extrapolating

• Wide range of impacts

Range of Impacts Identified in Various Publications for Implementing Advanced Maintenance Techniques

- Reduction in Maintenance Cost \((g,h) \)
 -98% -15%
- Reduction in Defects and/or Rework \((g,h,i) \)
 -90% -18%
- Reduction in Breakdowns \((h,i,j) \)
 -90% -65%
- Increase in Labor Productivity \((g,h) \)
- Inventory Reduction \((h) \)
- Increase in Output/Production \((g,h,i) \)
- Reduction in Accidents \((h) \)
- Reduction in Customer rejections \((h) \)
- Reduction in Downtime \((j) \)

Wide range of impacts identified in various publications.
Maintenance Cost Characterization, by Type

<table>
<thead>
<tr>
<th>Maintenance Type</th>
<th>Reactive</th>
<th>Preventive</th>
<th>Predictive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Demand</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Scheduled, Timed, or Cycle Based</td>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Condition Based</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Labor Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Throughput Impact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>Medium</td>
<td>Very Low</td>
</tr>
<tr>
<td>Urgency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>ROI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Initial Investment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not cost effective</td>
<td></td>
<td>Satisfactory cost-effectiveness</td>
<td>Significant cost savings</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>Labor intensive</td>
<td>Costly due to potential over maintenance or ineffective & inefficient maintenance</td>
<td>Cost-effective due to extended life and less failure-induced costs</td>
</tr>
</tbody>
</table>
Current Maintenance Practice

• Studies have varying factors (e.g., country)
• Firm competition
 • Cost comp. – higher reactive
 • Quality comp. – higher predictive
• Swedish study – 50% of maintenance time is planned tasks
 • 13% planning
 • 37% unplanned

Alsyouf, 2009
Objectives and Prevalent Barriers to the Adoption of Advanced Maintenance Techniques

- Quality
- Productivity
- Availability and Reliability
- Safety and Environment
- Organizational Readiness
- Human Resource
- Technology Support
- Cost

Potential Objectives
Potential Barriers

Sources: Jin et al., 2016
Assessing the costs and benefits

• To assess costs/benefits at National level
 • Identify data needs
 • Develop a data collection strategy
 • Develop a scaling strategy
 • Assess the minimum sample size
Data Needs Map

Predictive
- Maintenance and Repair

Reactive
- Materials
 - IO Estimates (limitations)

Preventive
- Labor
 - BLS data
 - IO Model

Indirect
- Impact on quality
- Cascading effects (i.e., additional damage)
- Down time
 - ASM (flow time)

Lost sales
- Lost sales
- Rework/ Defects
- Capital (machinery and buildings)
 - ASM (total)
 - Econ Census (total)
- Labor
 - BLS Data (total)
 - IO Model (total)

Increased time to market
- Increased uncertainty
- Increased Inventory
- Capital (machinery and buildings)
Data Collection via Survey

• Collect data through survey
 • Direct maintenance costs
 • Downtime
 • Defects/rework
 • Separate costs into predictive, preventive, and reactive
 • Separate planned maintenance from repair
 • Lost sales → quality

• Scale using payroll data by industry by establishment size
Data Collection via Survey

- Disproportional amount of small firms
- Scale by establishment size
 - Census data
- Anonymous survey
- Short survey
 - Target: 1 Page
Feasibility of Data Collection

- Discussions with manufacturers suggest
 - It is reasonable to expect manufacturers to be willing and able to share data

- However,
 - Apprehensiveness from a few in sharing some of the variables
 - A number of variables are not tracked → approximations
Required Sample Size for Survey

It’s complicated

\[
\text{Sample Size} = \left(\frac{z\sigma}{e}\right)^2
\]

where
\[
\sigma = \text{Standard deviation}
\]
\[
e = \text{Margin of error}
\]
\[
z = z\text{-score}
\]

Estimate standard deviation using census data on maintenance cost
Sample Size to Estimate Maint. Cost

- Graph sample size
- Standard deviation from Census
- Different confidence intervals
- 10% margin of error w/95% confidence interval: 77
- 20% margin of error w/90% confidence interval: 14
Summary

• Current maintenance cost data has limitations
 • Outsourcing only
 • Includes buildings + machinery

• Literature has
 • Varying metrics
 • Varying countries
 • Wide range of values

• Feasibility of data collection
 • Firms are willing/able
 • Approximations
 • Minimum sample size: 14-77 needed
How You Can Help

• Your participation would be appreciated

• What’s in it for you?
 • Receive a copy of the report
 • See how you compare with others
 • Develop the business case for advanced maintenance

How to participate in Survey
Contact Douglas Thomas
douglas.thomas@nist.gov

Thank You
Sources

• gNakajima, S. Introduction to Total Productive Maintenance (TPM). (Portland, OR: Productivity Press, 1988).

Other Sources

