NIST Smart Manufacturing Programs: Driving Innovation and Reducing Risks of Adoption of New Technologies

Albert Wavering
National Institute of Standards and Technology
U.S. Department of Commerce
“It is therefore the unanimous opinion of your committee that no more essential aid could be given to manufacturing [...] than by the establishment of the [National Bureau of Standards].”
House Committee report, May 1900

NIST Mission: To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

A partner to US manufacturers for more than a century, NIST helps the nation’s manufacturers to invent, innovate, and create through:

- **Measurement science** – manufacturers and technology providers use NIST test methods, measurement tools, performance measures, and scientific data every day

- **Advanced materials** – NIST is building a materials infrastructure to accelerate the timeline from design to deployment of new materials

- **Standards development** – NIST provides the scientific and technical basis for voluntary consensus codes and standards

- **Partnerships** – collaborations with the private sector and academic organizations help advance and disseminate research and support US manufacturers
NIST Helps **Drive Innovation** and **Reduce Risks of Adoption** of Emerging/Disruptive Manufacturing Technologies

...by contributing to **standards** that provide a **common language** and **test methods** that technology suppliers and users can use to assess and communicate **technical capabilities and performance**.
Driving Innovation and Reducing Risks of Technology Adoption Through Measurements and Standards
Example: 3D Sensor Systems

Competitions to Verify & Validate Performance Test Methods

Input to Standards

Innovation through
• Standardized methods of measuring performance to reduce risk of adopting wrong solution.
• Metrics to guide design improvement, with inclusion of manufacturing-relevant objects by NIST.

Draft Metrics & Test Methods

Emerging Technologies

Industry Input
Smart Manufacturing:
The synthesis of advanced manufacturing capabilities and digital technologies to produce highly customizable products faster, cheaper, better, and greener

NIST Smart Manufacturing Program Areas:

- Additive Manufacturing
- Robotic Systems
- Manufacturing System Design and Analysis
- Manufacturing Operations Planning and Control
Measurement Science for Additive Manufacturing

Metal Additive Manufacturing: Building metal parts by adding layer upon layer; like 3D printers, but with metals

- What are important measurements for metal Additive Manufacturing materials, and how do you make them?
- How can you get the best performance out of metal Additive Manufacturing processes?
- What measurements are needed to support qualification of metal Additive Manufacturing materials, processes, and parts for critical applications?
- What information is needed to integrate metal Additive Manufacturing into end-to-end manufacturing production?
Standards Contributions

- ASTM Standard Guide for Characterizing **Properties of Metal Powders** used for AM Processes
 - Dimensional – mechanical – thermal – powder bed density – recyclability
 - Mechanical – microstructure – porosity – density – post processing
- Leading ASTM/ISO Joint Working Group for the development of standards for **AM test artifacts**
- Conducting **round robin studies** for AM
- Leading new ASME efforts on **Product Definition for AM**
- Leading new work item in ASTM on **Principles of Design Rules**
- Prototype **Materials Database** for AM accessible by public
- Lead development of **AM standards strategy** within ASTM F42 Executive Committee

Traceable powder bed density (PBD) measurements

Powder property characterization

NIST AM Test Artifact
PHM for AM?

- Initial NIST AM focus is on process understanding, improvement, repeatability, and predictability, rather than PHM aspects
- Early yet to have a good handle on common failure modes for AM
- AM machines are complex, with a number of critical subsystems that each have potential failure modes
 - Powder handling/management and spreading/delivery
 - Gas flows/build environment control
 - Laser/energy control and scanning
- Equipment manufacturers build in sensors, maintenance features, protocols
Robotic Systems for Smart Manufacturing

• How can you measure the performance of robotic capabilities such as **perception, grasping, manipulation, and mobility**?

• How can you measure the effectiveness and safety of new **collaborative** robotic technologies?

• How can you measure and advance the **agility** of robotic systems (ease of teaching new tasks, recovering from errors)?

• What standards are needed to more easily **integrate robot systems** with other factory and control equipment?

• How can we help make robotic technologies **more easily adoptable by small and medium-sized manufacturers**?
Standards Contributions

- Performance evaluation of 3D Imaging Systems, including two test methods for 6D pose measurement systems
- Revision of Automatic Guided Vehicle safety standard to enable non-contact obstacle sensing
- New ASTM Committee on performance standards for industrial vehicles
- New international technical specification for collaborative robots safety in industrial settings
- New Robotic Industries Association effort on mobile manipulator safety standards
- New IEEE standard for knowledge representation for robot systems
Smart Manufacturing Systems Design and Analysis

- What standards are needed to support new models of distributed or service-oriented manufacturing?
- What standards are needed to streamline information flow for food manufacturing?
- How can different kinds of modeling software be integrated effectively to support Smart Manufacturing systems?
- What are the best ways to measure the overall performance of manufacturing operations?
- What standards are needed to support data analytics for Smart Manufacturing systems?
Standards Contributions

• ASTM E60.13 *Guide for Sustainability Characterization of Manufacturing Processes*
 • Will provide a common basis for **sustainability assessment of manufacturing processes**.

• Semantic Refinement methodology published as OAGI Working Group specification
 • Enables platform-specific **manufacturing applications to interoperate** based on a common standard (e.g., Mobile vs Enterprise applications)

• Smart manufacturing in the cloud workshops
 • *OAGi-NIST workshop on Open Cloud Architectures for Smart Manufacturing*: identified and prioritized technology and standards’ gaps for **cloud-enabled manufacturing services**
 • *NIST Workshop on Cloud-Based Applications for Sustainable Manufacturing*: defined a standards’ strategy to use data from process measurements to **quantify manufacturing process sustainability**.
Smart Manufacturing Operations Planning and Control

• How can you use **sensors, data, and computation** to **assess machine health**, optimize maintenance, and **avoid downtime**?
• How can you use **wireless communications** in **industrial environments** for more flexible manufacturing?
• How do you **secure** the computers and networks that **control manufacturing operations**?
• How can you use the same **digital model** to **support the entire product lifecycle**, from design to production to service and sustainment?
• How can you integrate different **analysis tools** to **improve manufacturing operations**?
Standards Contributions

• STEP AP 242 (ISO 10303-242) standard on Managed Model Based 3D Engineering
 • Provides for interoperability of Product Lifecycle Management (PLM) information to enable the “digital thread” of model-based information for manufacturing, to reduce costs and improve responsiveness.

• NIST Special Publication 800-82 Guide to Industrial Control Systems Security
 • Provides guidance on how to secure industrial control systems while addressing their unique performance, reliability, and safety requirements

• Quality Information Framework (QIF) standard
 • Streamlines the flow of quality information across the complete product-quality lifecycle.

• Industrial Wireless Fundamentals
• Business Case for Wireless
• Wireless Lifecycle
• Wireless for Safety
• Industrial Wireless Security
• Best Practice Considerations
• Checklists
• Wireless Applicability Matrix

Acknowledgement: NIST industrial wireless technical working group (IWSTWG) members
Prognostics, Health Management, and Control Project

- Manufacturing Process and Equipment Monitoring
- Health and Control Management for Robot Systems
 - Robot Positioning Performance Degradation
 - Workcell-level PHM V&V
- Machine Tool Linear Axes Diagnostics and Prognostics

IMU for Linear Axis Monitoring
ASME Standards Meeting – Monitoring, Diagnostics, and Prognostics for Manufacturing Operations

Here, Friday! Discussion of:

• Standardized Terminology for PHM Guideline on Data and Collection Strategies
• Guideline to Determine What Health Data to Capture and Collection Strategies to Employ
• Guideline to Determine What Sensors and Where They Should Be Employed to Inform on Process/Equipment Health
• Guideline for Implementing Sensor Data Fusion/Multi-modal Data Fusion
• Guideline to Determine When and Where PHM Should Be Added/Integrated
• Expand MTConnect/Data Communications
Working With Others

Major stakeholder groups
- Manufacturing enterprises
- Software vendors & equipment providers
- Small and medium sized enterprises (SMEs)
- Industry consortia and standards developing organizations
- Government agencies
- Universities and research organizations

Modes of engagement
- Consortia, standards developing organizations
- Workshops, conferences, summits
- Site visits
- Cooperative Agreements
Question for this forum:

What measurement science and standards are needed to drive innovation and reduce risks of adoption of emerging/disruptive PHM technologies?
Thank you!

Questions?

Contact Information

Albert Wavering
Chief, Intelligent Systems Division

301 975 3418
albert.wavering@nist.gov

NIST Engineering Laboratory
100 Bureau Drive, Mail Stop 8260
Gaithersburg, MD 20899-8260

www.nist.gov/el