3D Data Exchange Project
PMA-261, Anark, ITI, Razorleaf Govt Solutions

April 3, 2018 | NIST MBE Summit 2018
Agenda

• Project Participants
• CH-53K Program Introduction
• 3D Data Exchange Project Introduction
• Solution
• Key Points
• Next Steps
• Acknowledgements
Project Participants

• NAVAIR PMA-261
 – Customer and end user
• Anark Corporation
 – 3D PDF and DLA package publisher
• ITI – International TechneGroup Inc
 – CAD enhancement, STEP generation, and validation/verification
• Razorleaf Government Solutions
 – Process and ENOVIA integration
• Naval Shipbuilding and Advanced Manufacturing Center of Excellence
 – Project Management for ONR
• CH-53K is the DoD’s most powerful helicopter ever
 – Designed as a new-build helicopter
 – Will expand the fleet’s ability to move more material, more rapidly throughout the area of responsibility
 – Designed using proven and mature technologies
 – Designed to lift nearly 14 tons at a mission radius of 110 nautical miles in high/hot environments
 – Designed to lift triple the baseline CH-53E lift capability
 – Designed for equivalent logistics shipboard footprint
 – Designed for lower operating costs per aircraft
 – Designed for less direct maintenance man hours per flight hour
CH-53K will be able to get more fighters into the air.
3D Data Exchange Project Introduction

- **3D Model to 3D PDF conversion capability provides production-quality model-based documents and Technical Data Packages (TDP) for down-stream users**
 - Single configuration controlled data set, thereby accelerating response times, reducing cost, increasing aircraft availability and safety of flight
 - Verifying/validating thousands of complex 3D models in a short time period
- **Benefits of a secure 3D Data Exchange system (3DDE) are numerous**
 - Reduce the Amount of Reverse Engineering Requirements
 - Reduce Labor for Translation and Healing of CAD Data
 - Reduce the Amount of Rework Due to Incorrect Technical Data
 - Reduce Requirements for TDP DLA 339s Caused by Programs Using Full Model Based Definition In Lieu of 2D Drawing
 - NAVSUP/DLA ability to provision using 3D PDFs in lieu of native CAD Models in up to 15 different software sets
3D Data Exchange Project Introduction

- **3DDE Project Start**: October 2017
- **Architecture Defined**: January 2018
- **3D PDF Template Ready**: March 2018
- **Testing Complete**: May 2018
- **Final Report**: August 2018
- **Software Installation Began**: September 2017
- **Configuration & Integration Complete**: February 2018
- **Production Rollout**: August 2018
Solution: Tech Data Profile

• Technical data package overview
 – CATIA V5 MBD + associated lists in TIF & PDF
 – Ambiguous Engineering BOMs in Excel
 – Heterogeneous standards/norms
 – Many data domains (sheet metal, composite, tubing, etc.)
 – Many observable “patterns”
 – Data set not “PLM-ready”
Solution: Tech Data Structure

Drawing Prints:
PL = Parts List
AL = Application List
FS = Field Sheet (2D Dwg)
DS = Data Sheet (Text Dwg)

* Some of the related documents shown may not be present or required
Solution: 3DDE Micro Processes

• The 3DDE system is broken down into a group of 5 sequential micro-processes
 – CATIA Preprocessing & Verification
 – STEP Generation and Validation
 – 3D PDF Generation
 – 3D PDF Validation
 – DLA Package Assembly & Publishing

• This allows individual micro-processes developed, managed, and maintained independently of one another

• Process Interface and Data Schema control are critical
Solution: 3DDE Micro Processes

Preprocess = Extract Statements & Optimize Model for Publishing

3DEXPERIENCE

Make Preprocess & Verify CAD Request

Update Native CAD & Store Statements & Report

Defined Interface

Anark Core

DEXcenter

Generate Verification Report

Preprocess CAD File

CADIQ / CADScript
Solution: Preprocessing & Verification

- Native CATIA preprocessing for optimized publishing
 - Rights Statements extraction
 - Visibility management

- Verification of native CATIA models
 - Geometry, PMI, Attributes, Structure, Views
Solution: STEP Generation / Validation

- Generation of STEP AP242 file from native CATIA (AP203 Currently)
- Validation of STEP models relative to native CATIA models
 - Geometry
 - PMI
 - Assembly Structure
 - Model Views
Solution: 3DDE Micro Processes

- Make 3DPDF Request
- Add 3DPDF Item
- Define Interface
- Generate 3DPDF
- Anark Core
- 3DEXPERIENCE
- DEXcenter
- CADIQ / CADScript
Solution: 3DDE Micro Processes

3DEXPERIENCE

Make 3DPDF Validation Request
Store Validation Report

Defined Interface

Anark Core

DEXcenter

CADIQ / CADScript

Validate 3DPDF
Solution: Anark 3D PDF / Validation

• Validation of 3D PDF documents relative to native CATIA models
 – Geometry
 – PMI
 – Assembly Structure
 – Model Views
Solution: 3DDE Micro Processes

DLA Package = Attaching validated STEP File / adding Approval

- 3DEXPERIENCE
 - Make DLA Package Request
 - Add DLA Package Item

- Defined Interface

- DEXcenter

- Anark Core
 - Publish DLA Package

- CADIQ / CADScript

3 April 2018 | 3DDE Project
Anark Core automated mapping of CATIA V5 MBD content along with BOM, Part/Application Lists, Field and Text Sheets – Sheet 1 of N

PART LIST

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESIGN CASE</th>
<th>PART OR IDENTIFICATION NUMBER</th>
<th>NOMENCLATURE</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11324</td>
<td>Exhaust_intake_1</td>
<td>EXHAUST INTAKE PIPES</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>11549</td>
<td>Gear_assembly</td>
<td>GEAR ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>12749</td>
<td>Piston_assembly</td>
<td>PISTON ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>12099</td>
<td>Propeller_assembly</td>
<td>PROPELLER ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>12587</td>
<td>Rocker_arm_assembly</td>
<td>ROCKER ARM ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>13453</td>
<td>Backplate Assy</td>
<td>BACKPLATE ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>15274</td>
<td>Crank-case Assy</td>
<td>CRANK CASE ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>13994</td>
<td>Crank-shaft Assy</td>
<td>CRANK SHAFT ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>7</td>
<td>45267</td>
<td>Cylinder</td>
<td>CYLINDER</td>
<td>Steel Grade</td>
</tr>
<tr>
<td>1</td>
<td>24619</td>
<td>Front-housing Assy</td>
<td>FRONT HOUSING ASSEMBLY</td>
<td>Steel Grade</td>
</tr>
</tbody>
</table>

PARTS LIST

SPECIFICATION

BOM

CATIA

Distribution Statement: Distribution unlimited as this is not a real product with real data.

Notes & Statements (Lists appear in Sheets 3 and higher as needed)
Solution: MBD 3D PDF Information Layout

Anark Core automated mapping of CATIA V5 MBD with selectable BOM List driving a dynamic 3D PDF MBD View – Sheet 2 of N

Title Block

Selectable BOM

CATIA V5 MBD Views

3D MBD View of CATIA V5 Backplate Assy Selected
The 3DDE Solution

3DEXPERIENCE

- Make 3DPDF Request
- Add 3DPDF Item
- DLA Package Request
- Add DLA Package Item
- Enhance & Verify Producibility
- Update Native CAD & Store Report
- STEP Request
- Add STEP & Store Report
- 3DPDF Validation Request
- Validation Registration

Defined Interface

Anark Core

- Make 3DPDF
- Make DLA Package

CADIQ / CADScript

- Enhance CAD File
- Generate Producibility Report
- Make STEP
- Validate STEP
- Validate 3DPDF
Key Points

• PMA-261
 – Solution available for non-CAD users to consume MBD content

• Anark
 – Automated generation of validated standards-based 3D-PDF-based MIL-STD-31000 documents and Technical Data Packages (TDPs), with lifecycle-appropriate document markings, is a repeatable process from any PLM system
Key Points

• ITI
 – Manipulate data for optimum publishing
 – Provide validated derivative data for trusted content publishing

• Razorleaf Government Solutions
 – Develop an architecture for a broad information delivery solution applicable to any PLM or CAD system
 – In a model-based world, 3D PDFs are great “fit-for-purpose” communication tools, but the volume of supporting data has to be managed
Next Steps

• Groom Pilot Project for Production Deployment PAX Data Center on NMCI
 – Perform work to prepare for production
 – Deploy into production in Q2 and Q3 of 2018
 – Explore modularizing solution for application to other PLMs and CADs
Acknowledgements

• NAVAIR Commander's Award
 – This project has been selected as the winner for Business Innovation

• Project Support Acknowledgements
 • PMA-261
 – Colonel Hank Vanderborght Program Manager
 – Greg Drohat Deputy Program Manager
 • AIR 00
 – Todd Balazs NAVAIR Digital Integration Officer
 • NAVAIR 6.0
 – Tom Rudowsky Deputy Assistant Commander for Logistics and Industrial Operations
 • NAVAIR 6.8
 – Roy Harris Director Aviation Readiness and Resource Analysis
 • Office of Naval Research
 – John Carney NAVY ManTech Director
Acknowledgements

3D Digital Data Exchange Team

- **PMA-261**
 - Howard Owens / Brent Gordon / Joe Tolarski / Greg McAndrew / Bill Conner / Michael Yu / Mike Kaczmarek / Major Julian Rosemond

- **NAVAIR 6.8**
 - Mary Harris / Tracey Jones

- **NAVAIR 7.2**
 - Jeff Wood

- **FRCE Cherry Point**
 - Dan Ventry / Trey Godwin / Ann Deans

- **Lakehurst**
 - John Schmelzle

- **ATI / NSAM Center**
 - Dick Tiano / Scott Truitt / Tim Macon / Dale Orren

- **Office of Naval Research**
 - Paul Huang

- **NAVSUP**
 - Katie Gagliardi / Tim Lypka / Kevin Joyce

- **DLA**
 - Ron Smith
In Memoriam

• Ed Kaminski
 – Razorleaf Government Solutions
 – 1952 - 2017
• Thanks
 – Howard Owens
 • 301-757-8223, howard.owens@navy.mil
 – Jim Merry
 • 240-674-5547, jim.merry@anark.com
 – Asa Trainer
 • 508-904-7880, asa.trainer@iti-global.com
 – Jonathan Scott
 • 443-356-6846, jonathan.scott@razorleaf.com

• Questions?