Issues in Implementing a Model Based Enterprise

Dr. Gregory Harris, P.E.
Associate Professor, Industrial & Systems Engineering Department
Auburn University
Director, Southern Alliance for Advanced Vehicle Manufacturing Center
MBE Summit
NIST HQ, Gaithersburg, MD
April 2-5, 2018
Manufacturing Data History

Antebellum Era of Manufacturing

- Most engineering and manufacturing activities relied on 2 Dimensional (2D) drawings in hardcopy or digital form.

- Today, it is possible to perform most engineering functions using data models.
MBE Level 4: Model Based Definition With Data Management

Update TDP and Data Architecture

Connected Digital Thread

Enterprise Digital Data Network

Dr. Gregory A. Harris, P.E.
Throughout the Lifecycle

The Model Based Definition: created at the beginning of the lifecycle then reused and repurposed throughout the enterprise, thus creating the Model Based Enterprise (MBE)

MBE: an integrated and collaborative environment, founded on 3D product definition (i.e. MBDf) shared across the enterprise, enabling rapid, seamless, and affordable deployment of products from concept to disposal.
The Current State of MBE Capabilities

• A focus on geometric related information with little to no associativity.

• Multiple CAD/CAM environments in the supply chain.

• Lack of Interoperability among different systems.

• Most operations are in different degrees of ‘silo’ effect.

• Supply chain collaboration is typically manual.

• There is a lack of in-depth model exchange validation capability.

• Lack of a common lexicon for discussing issues.
Stakeholders Interviewed

<table>
<thead>
<tr>
<th>Chief of Manufacturing Engineering and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMM Programing</td>
</tr>
<tr>
<td>Div. Chief</td>
</tr>
<tr>
<td>Logistics - Packaging</td>
</tr>
<tr>
<td>ARDEC Process Engineering</td>
</tr>
<tr>
<td>NC Prog</td>
</tr>
<tr>
<td>Division Chief Tool Design</td>
</tr>
<tr>
<td>NC Programing Division Chief</td>
</tr>
<tr>
<td>NC Programing</td>
</tr>
<tr>
<td>Process Planning</td>
</tr>
<tr>
<td>Tool Design</td>
</tr>
<tr>
<td>Division Chief Engineering</td>
</tr>
<tr>
<td>IT</td>
</tr>
<tr>
<td>JMTC Deputy Chief</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>AED/Structures & Materials</td>
</tr>
<tr>
<td>AMDEC Industrial Operations (Tech Loop)</td>
</tr>
<tr>
<td>Logistics</td>
</tr>
<tr>
<td>Sustainment</td>
</tr>
<tr>
<td>AED/Modernization</td>
</tr>
<tr>
<td>AED/CH-47F Production</td>
</tr>
<tr>
<td>Provisioning (Lead)</td>
</tr>
<tr>
<td>Modernization</td>
</tr>
<tr>
<td>AED/Structures & Materials (Lead)</td>
</tr>
<tr>
<td>Contractor, AED/Structures & Materials</td>
</tr>
<tr>
<td>Sustainment (Dep. Chief)</td>
</tr>
<tr>
<td>Contractor, AED/Structures & Materials</td>
</tr>
<tr>
<td>Contractor, Configuration Management</td>
</tr>
<tr>
<td>AED/Structures & Materials</td>
</tr>
<tr>
<td>Provisioning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stakeholders Interviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief of Manufacturing Engineering and Technology</td>
</tr>
<tr>
<td>Foreman Manufacturing</td>
</tr>
<tr>
<td>Technical Lead</td>
</tr>
<tr>
<td>Mech Eng</td>
</tr>
<tr>
<td>Supervisor</td>
</tr>
<tr>
<td>Mech Eng-Lead</td>
</tr>
<tr>
<td>Production Planner</td>
</tr>
<tr>
<td>APO</td>
</tr>
<tr>
<td>Branch Chief</td>
</tr>
<tr>
<td>Process Eng</td>
</tr>
<tr>
<td>Additive</td>
</tr>
<tr>
<td>Eng Tech</td>
</tr>
<tr>
<td>Mech Eng</td>
</tr>
<tr>
<td>Process Engr</td>
</tr>
</tbody>
</table>
• Dormant stakeholders
• Discretionary stakeholders
• Demanding stakeholders
• Dominant stakeholders
• Dependent stakeholders
• Dangerous stakeholders
• Definitive Stakeholder
• Non-Stakeholders
Issues Categories and Sources

• Interoperability
• Data Reuse, Communication, and Archiving
• Advanced Manufacturing Vulnerabilities
• Analysis
• Infrastructure

Sources
• Review a library of past articles, presentations, white papers, and reports (40+)
• Interviews
• DMDII Data Call
• Net-Centric Model Based Enterprise
• Overcoming Key AME Inefficiencies Through Improved MBE Tools and Processes
• Systems Engineering Research Center
• Workshop Report on MBx: Towards Defining the Components of the Model-Based Enterprise
Future State of MBE Capability (What is needed)

• More than just replacing drawing type information exchange to include design intent and context.

• Robust interoperability among disciplines and organizations.

• Responsive and adaptive to the changing market place and technology.

• Improved product life cycle time and costs.

• A building block for accelerating the maturation of the full MBD schema and communications across silos.
Future State

- Quickly move from customer wants and desires to actionable system requirements
- An unconstrained information flow, networked, and interoperable system
- Agile and robust manufacturing strategies with integrated capabilities
- Smart design tools with designer, engineer, analyst, manufacturer, and maintainer collaboration
- Manufacturing modeling and simulation tools allow faster time to market
- Minimize multiple designs, prototypes, and test iterations typically required for product or process qualification
- Utilize high-performance computing to develop physics-based models of performance by design with manufacturing in mind
- Does not matter whether products are unique “one of a kind”, mass production or a combination such as mass customization
- The workforce is capable and confident in the use of “Apps” on the shop floor to minimize delays and improve flow
- The development and integration of smart sensors, controls, metrology, analysis, decision and communication software tools for self-aware manufacturing provides data to enhance continuous improvement and sustainability
- Plug and play functionality allows equipment to utilize manufacturing knowledge and enables better decision-making while planning and processing components
- Worker and environmentally friendly
Gap Analysis

• Gaps between the current and future state of an organization will have to be examined through the application of an assessment tool such as the MBE Capability Assessment Tool.
• Organizational and implementation gaps and issues that will have to be overcome.
• A functioning enterprise Product Data Management system.
• Documented business processes to guide MBE tool selection and configuration.
• Policy regarding the contracting and use of 3D MBD.
• Consistent leadership emphasis to affect cultural change, and digital product data management.
• Most solutions to data and information problems are carried out as point solutions.
• An era of fewer skilled personnel coming into the workforce.
• Support to organizations is needed is in the development of solutions to unique problems.
• A need to interface with the advanced manufacturing institutes such as the Digital Manufacturing and Design Innovation Institute (DMDII) and other advanced manufacturing entities to stay abreast of the technology and learn about those technologies that could make an impact on the organization.
• Word Clouds: graphical representations of word frequency that give greater prominence to words that appear more frequently in a source text.

• The larger the word or shape in the visual the more common the word.

• Assist evaluators with exploratory textual analysis by identifying words that frequently appear in answers.

• What we did:
 ▪ Extract the open question with corresponding answers from each survey and join them into one csv file.
 ▪ Conduct text preprocessing to remove irrelevant words or make revisions on words (tokenization, remove symbols and stopwords, and stemming).
 ▪ Perform the word Cloud
What is your biggest MBD Implementation Challenge?

With MBD/MBE/TDP included

Dr. Gregory A. Harris, P.E.
What is your biggest MBD Challenge?

With MBD/MBE/TDP included

Dr. Gregory A. Harris, P.E.
What area of TDP methodology is most challenging for you?

With MBD/MBE/TDP included

Dr. Gregory A. Harris, P.E.
What is your organization’s biggest challenge as you move toward a MBE?

With MBD/MBE/TDP included

Dr. Gregory A. Harris, P.E.
What is your biggest challenge to adopting MBE?

With MBD/MBE/TDP included

Dr. Gregory A. Harris, P.E.
MBE Challenges by Group

Industry
- valid
- data
- get
- process
- 3d
- cad
- manag
- model
- chang
- mbd

Government
- vendor
- enterpris
- get
- use
- adopt
- base
- lack
- manufactur
- data
- model

Consultant
- multipl
- new
- platform
- mbe
- cad
- product
- across
- valid
- data

Education
- semant
- integr
- process
- 3d
- correct
- system
- differ
- data
- teach
MBE Challenges by Topic

Overall

MBE

TDP

Interobility
Questions?

Thank You!
Gregory A. Harris, Ph.D., P.E.

greg.harris@auburn.edu