JARVIS: High Throughput Classical and Quantum Calculation Database for Materials

Kamal Choudhary¹, Arunima Singh¹, Faical Yannick P Congo¹, Tao Liang³, Chadler Becker¹, Richard Hennig², Francesca Tavazza¹

¹ Materials Science and Engineering division, National Institute of Standards and Technology, MD, USA
² Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
³ Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16801, USA

JARVIS-FF: Classical

\[F = ma = -\nabla V(r) \]

- Approximations for V (force-fields): EAM, EIM, MEAM, AIREBO, REAXFF, COMB, COMB3, TERSOFF, SW etc.
- Goal of JARVIS-FF:
 - Evaluation of classical force-fields and provide easy user-interface,
 - Comparison with DFT and experimental data
 - Providing all the input files
- Current status:
 - 3583 calculations (>19000 sub-calculations) with LAMMPS
 - Version 1: Energetics, convex hull, elastic constants calculation
 - Version 2: Addition of visualization of structure, vacancy formation energies, surface energies, phonon density of states and phonon band structure, visualization of phonons (under development phase)
 - Now integrated in LAMMPS official website

JARVIS-DFT: Quantum

\[H \psi = E \psi \]

- Approximations for Vxc (Exchange-correlation): LDA, PBE, vdW-DF, Hybrid etc.
- Goal of JARVIS-DFT:
 - Identification of 2D bulk and multi-layer, Solar and Thermoelectric materials out of thousands of materials from databases
 - Characterizing their properties
 - Other DFT databases uses constant k-point, energy cut-off and PBE functionals, not suitable for 2D materials, we use vDw-DF
 - Providing all the input files
 - Effect of XC on properties
- Current status: (under development phase)
 - 873 calculations (>25000 sub-calculations) with VASP

Easy Web-interface

- [JARVIS for Force-fields](http://www.ctcms.nist.gov/~knc6/JAVSforcefields.html)
- [JARVIS for DFT](http://www.ctcms.nist.gov/~knc6/JAVSFortran.html)

Implementation of Machine Learning Tools

- Relative error in \(C_{ij} \)
- PCA analysis

Ongoing work

- JARVIS-ONE: Tools to accumulate and compare various DFT, FF and experimental data in one web-interface
- JARVIS-FF: Thermal conductivity, genetic algorithm evaluation, stacking fault, grain-boundary energies calculations
- JARVIS-DFT: 2L, 3L, 4L structures for 2D materials, comparison of solar cell material and thermoelectric properties performance, HSE band-structures calculations
- Implementation of voice-recognition based query tools and better machine learning tools

Acknowledgment

Thanks to:
- Simon R. Phillip, University of Florida,
- Susan B. Sinnott, Pennsylvania State University,
- Karelyn E. Campbell and Zachary T. Traut, NIST,
- Kristin Persson and Joseph Montoya, LBNL for helpful discussions