Designing Resilient Cyber-Physical Systems

Aron Laszka
University of Houston

joint work with Waseem Abbas¹, Yevgeniy Vorobeychik², and Xenofon Koutsoukos²

¹Information Technology University, Lahore, Pakistan
²Vanderbilt University
My Background

Postdoctoral Scholar
2015 - 2016

Visiting Scholar
2013

Assistant Professor
2017 – present

Postdoctoral Research Scholar
2014 – 2015

Research Assistant Professor
2016 – 2017
My Collaborators

Waseem Abbas
Information Technology University
Lahore, Pakistan

Yevgeniy Vorobeychik
Vanderbilt University
Nashville, TN

Xenofon Koutsoukos
Distributed cyber-physical systems, such as smart critical infrastructure, are becoming crucial to everyday life.
Cyber-Risks

- Cyber-physical systems are threatened by malicious cyber-attacks, which may have significant physical impact
 - e.g., 2015 and 2016 attacks against Ukrainian power grid
- Defending complex and large-scale CPS, such as smart critical infrastructure, is particularly challenging
 - may contain a number of undiscovered software vulnerabilities due to their sizable codebases
 - large attack surfaces
 - variety of threats
- Example:
 “Dragonfly 2.0” campaign
 - active since 2015
 - targeting energy sector in Europe and North America
Structural Robustness

• Perfect security is virtually impossible in practice

✔ cyber-risks need to be addressed by designing cyber-physical systems to be robust

• Robustness, resilience, survivability, ...:
 ability of a system to retain its functionality (to some extent) in case of successful cyber-attack

How to improve structural robustness?
Outline

• Structural robustness for distributed CPS
 • redundancy, diversity, and hardening in graphs

• General model and framework for CPS
 • case studies: cyber-physical attacks against smart water-distribution and cyber-attacks against transportation

• Conclusion and future work
Improving Structural Robustness

- Canonical approaches:
 - **Redundancy**: deploying additional, redundant components in a system, so even if some components are compromised or impaired, the system may retain correct functionality
 - **Diversity**: implementing the components of a system using a diverse set of component types, so that vulnerabilities that are present in only a single type have limited impact
 - **Hardening**: reinforcing individual components or component types (e.g., tamper-resistant hardware and firewalls)
How to combine redundancy, diversity, and hardening?
Example: Improving Network Availability

- **Pairwise connectivity**: fraction of node pairs that are connected with each other through a path
 - we use it to measure network availability

- **Simple attack model**: adversary removes N nodes to minimize the pairwise connectivity of the residual network

- Example:
 - worst-case N = 2 attack removes nodes \{1, 7\}
 - pairwise connectivity after attack = \textbf{0.286}
Hardening and Diversity

• **Hardening:** protect a subset of nodes from attacks

 node 7 is hardened

 - worst-case $N = 2$ attack removes nodes $\{3, 10\}$
 - pairwise connectivity after attack = 0.429 (> 0.286)

• **Diversity:** each node has a type, and the adversary can attack nodes of only one type

 two types, red and blue

 - worst-case $N = 2$ attack removes nodes $\{2, 7\}$
 - pairwise connectivity after attack = 0.571 (> 0.286)
Combining Hardening and Diversity

- two types, red and blue
- node 7 is hardened

- worst-case N = 2 attack removes nodes {1, 5}
- pairwise connectivity after attack = 0.75 (> 0.571)

What about integrity?
Networked Systems

• In many networked control systems, a **global objective** needs to be achieved through **local interactions**

• The individual components have **limited sensing, computational, and communication capabilities**
Global Objective through Local Interactions

\[x_1(k) \]

\[x_1(k + 1) = f(x_1, x_2, x_3) \]

\[x_2(k) \quad x_3(k) \]

\[x_4(k) \]

\[x_5(k) \quad x_6(k) \]

\(x_i(k) \): state of node \(i \) at time step \(k \)
Global Objective through Local Interactions

\[x_i(k+1) = f(x_1, x_2, x_3) \]
\[x_2(k+1) = f(x_1, x_2, x_4) \]
\[x_3(k+1) = f(x_1, x_3, x_4) \]
\[\vdots \]

Global objective is a function of

\[X = (x_1, x_1, \ldots, x_7) \]

\(x_i(k) \): state of node \(i \) at time step \(k \)
Consensus Problem

• Canonical problem formulation: **Consensus Problem**

All nodes need to eventually converge to a common state:

\[
\lim_{k \to \infty} x_i(k) = x, \forall i
\]

\[
x_i(k + 1) = \sum_{j \in N_i(k)} w_{ij}(k) x_j(k)
\]

Linear Consensus Protocol (LCP)

• consensus is achieved if all nodes implement LCP, and the underlying graph is connected
Resilient Consensus Problem

• Malicious nodes: their goal is to prevent the network from reaching consensus (e.g., compromised by an adversary)

• Example
Resilient Consensus Problem (contd.)

• Models
 • **F-total malicious model**: if $S \subseteq V$ is the set of malicious nodes, then $|S| \leq F$
 • **F-local malicious model**: if $S \subseteq V$ is the set of malicious nodes, then $|N(i) \cap S| \leq F$, for every $i \in V \setminus S$

Goal:
characterize networks in which nodes can reach consensus under the F-total or F-local malicious models

• Previous work: r-robustness and (r,s)-robustness
r-Robustness

• **r-reachable subset:**
 a subset of nodes S is r-reachable if there exists at least one node in S that has at least r neighbors outside of S

```
subset $S = \{1, 2, 5\}$ is 2-reaching
```

• **r-robust graph:**
 a graph is r-robust if for any pair of non-empty and disjoint subsets of nodes, at least one of them is r-reachable

```
2-robust graph
```
(r,s)-Robustness

- Let S be a set of nodes, then \mathcal{X}_S^r is the subset of nodes in S that each have at least r neighbors outside of S.

$$\mathcal{X}_S^r = \{v \in S : |N(v) \cap (V \setminus S)| \geq r\}$$

$\mathcal{X}_S^2 = \{2\}$

$\mathcal{X}_S^1 = \{1, 2, 5\} = S$
(r,s)-Robustness (contd.)

• *(r,s)*-robust graph:
 A graph is *(r,s)*-robust if for every pair of non-empty, disjoint subsets *S₁* and *S₂* of *V*, at least one of the following holds:
 1. \(|\chi^r_{S_1}| = |S_1|\)
 2. \(|\chi^r_{S_2}| = |S_2|\)
 3. \(|\chi^r_{S_1}| + |\chi^r_{S_2}| \geq s\)

• *r*-robust = *(r, 1)*-robust

number of green nodes ≥ s
Examples of \((r,s)\)-Robust Graphs

\((2,1)\)-robust
(hence, 2-robust)
Examples of (r,s)-Robust Graphs

Not $(2,2)$-robust

$(2,2)$-robust

$(3,3)$-robust
(r,s)-Robustness and Resilient Consensus

Theorem (LeBlanc et al. 2013):
Let $G(V, E)$ be a time-invariant network in which each normal node implements the Weighted-Mean-Subsequence-Reduced (WMSR) algorithm. Then,

1. under the **F-total malicious model**, consensus is achieved asymptotically if and only if G is $(F + 1, F + 1)$-robust

2. under the **F-local malicious model**, to achieve asymptotic consensus, it is necessary that G is $(F + 1)$-robust, and is sufficient that G is $(2F + 1)$-robust.

- **WMSR idea:**
 omit F lowest and F highest values from state update
Hardening: Trusted Nodes

• Unfortunately, r-robustness is a very strong property
 • some graphs have very large connectivity but low robustness

• In practice, increasing connectivity through deploying a large number of new nodes and links may be impossible or prohibitively expensive

• Hardening: instead of increasing connectivity, we make a small set of nodes trusted
 • trusted nodes are protected from adversaries
 • for example, tamper-resistant hardware, complex firewalls, physical protection

Goal:
characterize networks in which nodes can reach consensus with the help of trusted nodes
r-Robustness with Trusted Nodes

- **r-reachable subset with trusted nodes T:**
 a subset of nodes S is r-reachable with trusted nodes T if there exists at least one node in S that has at least r neighbors outside of S or one trusted neighbor outside of S.

subset $S = \{1, 2, 5\}$ is not 3-reachable, but it is 3-reachable with trusted nodes $T = \{4, 8\}$.

- **r-robust graph:**
 graph is r-robust with trusted nodes if for any two non-empty and disjoint subsets of nodes, at least one of them is r-reachable with trusted nodes.

3-robust graph with trusted nodes
(r, s)-Robustness with Trusted Nodes

- Let S be a subset of nodes, then \mathcal{Z}_S^r is a subset of S such that each node in \mathcal{Z}_S^r has at least r neighbors outside of S or one trusted neighbor outside of S

\[S = \{1, 2, 5\}, \quad T = \{8\} \]

- for $S = \{1, 2, 5\}$, we have $\mathcal{Z}_S^2 = \{1, 2\}$ since node 2 has two neighbors outside of S, and node 1 has a trusted neighbor outside of S
(r,s)-Robustness with Trusted Nodes (contd.)

• **(r,s)-robust graph with trusted nodes:**
 A graph is (r,s)-robust with trusted nodes T if for every pair of non-empty, disjoint subsets S_1 and S_2 of V, at least one of the following holds:

 1. $|Z^r_{S_1}| = |S_1|$
 2. $|Z^r_{S_2}| = |S_2|$
 3. $|Z^r_{S_1}| + |Z^r_{S_2}| \geq s$
 4. $(Z^r_{S_1} \cup Z^r_{S_2}) \cap T \neq \emptyset$
Example (r,s)-Robust Graphs with Trusted Nodes

- Peterson graph is not 2-robust
- For instance, consider $S_1 = \{1, 2, 3, 4, 5\}; S_2 = \{6, 7, 8, 9, 10\}$
- Neither of these subsets contains a node that has two neighbors outside of the subset

- However,

 graph is \textbf{2-robust} with any single node as trusted node
 graph is \textbf{3-robust} with trusted nodes \{1, 4, 9\}
Example (r,s)-Robust Graphs with Trusted Nodes

- Graph is 2-robust, but not (2,2)-robust
- For instance, consider $S_1 = \{1, 2, 3, 5\}$; $S_2 = \{3, 4, 6, 7, 8\}$

- However,

 graph is **(2,2)-robust** with a single trusted node $T = \{8\}$

 graph is **3-robust** with trusted nodes $T = \{4, 8\}$
Robustness with Trusted Nodes and Resilient Consensus

• Results that relate \((r,s)\)-robustness to the resilience of consensus can be generalized using the notion of \((r,s)\)-robustness with trusted nodes

Theorem:
Let \(G(V, E)\) be a time-invariant network with trusted nodes \(T\) in which each normal node implements the RCA-T algorithm. Then,

1. under the *F-total malicious model*, consensus is achieved asymptotically if and only if \(G\) is \((F + 1, F + 1)\)-robust with \(T\).
2. under the *F-local malicious model*, to achieve asymptotic consensus, it is necessary that \(G\) is \((F + 1)\)-robust with \(T\), and is sufficient that \(G\) is \((2F + 1)\)-robust with \(T\).

• Resilient Consensus Algorithm with Trusted nodes (RCA-T): always accept values for state update from trusted nodes
Illustration for F-Total Model

- G is $(2,2)$-robust with $T = \{8\}$
- There is one malicious node.

WMSR – algorithm: consensus cannot be achieved

RCA-T – algorithm: consensus is achieved with trusted node
Illustration for F-Local Model

- G is 3-robust with \(T = \{1, 4, 9\} \)
- There are two malicious nodes which are \{8, 10\}

WMSR – algorithm: consensus cannot be achieved

RCA-T – algorithm: consensus is achieved with trusted nodes
Building Robust Graphs
Adding Nodes to Robust Graphs

Theorem:

Let G be \((r,s)\)-robust with trusted nodes, then adding a new node \(v_{\text{new}}\) to G preserves the robustness property of the graph if

1. \(v_{\text{new}}\) is adjacent to at least \((r+s-1)\) non-trusted nodes, or
2. \(v_{\text{new}}\) is adjacent to at least one trusted node.

Example:

- \(v_{\text{new}}\) is connected to 3 non-trusted nodes
- New graph is still \((2,2)\)-robust

- \(v_{\text{new}}\) is connected to a single trusted node
- New graph is still \((2,2)\)-robust
Replacing Trusted Node with Clique

Theorem:
Let G be an r-robust graph with trusted nodes T. Let $t \in T$, and H be a graph obtained by replacing t with a clique of size r, denoted by K_r, such that each neighbor of t in G is adjacent to each node in K_r, then H is also r-robust.

Example:

- **G** is a 2-robust graph with a red trusted node
- Neighbors of trusted node are highlighted

- **H** is still 2-robust
- A trusted node is replaced by K_2
Theorem:
Let G be an r-robust graph with trusted nodes T, G' be another r-robust graph, and η be a non-reachable subset of nodes in G'.
Let $t \in T$, and H be a graph obtained from G by replacing t with G' such that each neighbor of t in G is adjacent to each node in the subset η of G', then H is also r-robust.

Example:

- G' is **3-robust**
- Nodes in subset η are highlighted

- G is **3-robust** with red trusted node
- Neighbors of trusted node are highlighted

- H is also is **3-robust**
- New edges added are shown in red
General Framework for Cyber-Physical Systems
Example Cyber-Physical System

- Supervisory computer
- HMI
- PLC
- RTU
- Physical process
- Sensor
- Actuator
Graph-Theoretic Model

- Graph $G = (C, E)$
 - components C
 - connections E
Components

• Properties of a component $c \in C$
 • type t_c
 - computational
 - sensor
 - actuator
 - interface
 • set of input connections E_c
 • example:
 • deployed implementation r_c
 • chosen from a set of available implementations I
 • example set:
 $$I = \{\text{●}, \text{●}, \text{●}, \text{●}, \text{●} \}$$
How to improve the resilience of a CPS?
Diversity

• use a variety of implementations
• each implementation \(i \in I \) has a usage cost \(D_i \)
Redundancy

• deploy additional instances of some components (based on different implementations)
• each implementation $i \in I$ has a deployment cost R_i
Hardening

• Harden some implementations (e.g., source code reviews, firewalls, penetration testing)

• Each implementation has a set of available hardening levels L_i
 • each level $l \in L_i$ has a cost H_l and an estimate of being secure S_l
 • example levels:
 { (DEFAULT: $1000000, 0.9),
 (SECURE: $500000, 0.95),
 (VERY SECURE: $1000000, 0.99) }

• Example selection:
 - \bullet → SECURE
 - \circ → DEFAULT
 - \ast → VERY SECURE
Resilience Maximization Problem

• Given redundancy, diversity, and hardening expenditures R, D, H, the optimal deployment is

$$\min_{r, l} \text{Risk}(r, l)$$
subject to $\sum_{c \in C} \sum_{i \in r_c} R_i \leq R, \sum_{i \in U} r_c D_i \leq D, \sum_{i \in I} H_l_i \leq H$

• Computationally challenging (NP-hard), but we have efficient heuristics that work well in practice

• General problem: given budget B, the optimal deployment is

$$\min_{r, l} \text{Risk}(r, l)$$
subject to $\sum_{c \in C} \sum_{i \in r_c} R_i + \sum_{i \in U} r_c D_i + \sum_{i \in I} H_l_i \leq B$
How to quantify security risks?

\[
\text{Risk} = \sum \text{Pr}[\text{outcome}] \cdot \text{Impact}(\text{outcome})
\]

which components are compromised

what is the probability that they are compromised

what is the impact of their compromise on the system
Probability of Compromise

- Each implementation i is vulnerable with probability $1 - S_{li}$ (independently of other implementations)
- Instances of vulnerable implementations are compromised
- A component is compromised if

<table>
<thead>
<tr>
<th>Component Type</th>
<th>sensor</th>
<th>computational</th>
<th>actuator</th>
<th>interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>stealthy attack</td>
<td>all instances are compromised</td>
<td>all instances are compromised or</td>
<td>all input components are compromised</td>
<td></td>
</tr>
<tr>
<td>non-stealthy attack</td>
<td>majority of instances are compromised</td>
<td>either majority of instances are compromised or</td>
<td>majority of input components are compromised</td>
<td></td>
</tr>
</tbody>
</table>
Impact of Compromise

• Impact depends on the set of compromised components

\[\text{Impact} = \text{MaximumDamage}(\text{compromised components}) \]

• Exact formulation depends on the system

• We present two example systems
 1. Smart water-distribution monitoring for contaminants
 2. Transportation networks
Water-Distribution Networks

- Example topology (real residential network from Kentucky)

What would happen if this reservoir was contaminated?
Contamination in Water-Distribution Networks

• Simulation using EPANET
Contamination in Water-Distribution Networks

- Simulation using EPANET
Contamination in Water-Distribution Networks

- Simulation using EPANET
Contamination in Water-Distribution Networks

• Simulation using EPANET
Contamination in Water-Distribution Networks

- Simulation using EPANET
Contamination in Water-Distribution Networks

• Simulation using EPANET

Contamination spreads fast...
Monitoring Water Quality

• We can deploy sensors that continuously monitor water quality
 • when contaminant concentration reaches a threshold, operators are alerted

• Impact: amount of contaminants consumed by the residents before detection

• Cyber-physical attack
 • compromises and disables vulnerable sensors
 • contaminates the reservoir that maximizes impact

• Defender invests into redundancy, diversity, and hardening for sensors
Security Risks

Risk

Budget

Only redundancy
Only diversity
Only hardening
Combined

10/26/17
Expected Detection Time

Expected detection time

- Only redundancy
- Only diversity
- Only hardening
- Combined

Budget

10/26/17
Optimal Allocation of Investments

Expenditure

10/26/17

10
30
50
70
90
110

100
80
60
40
20
0

Budget

Redundancy
Diversity
Hardening
Optimal Allocation of Investments

<table>
<thead>
<tr>
<th>Budget</th>
<th>Redundancy</th>
<th>Diversity</th>
<th>Hardening</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>40.2</td>
<td>19.8</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>40.2</td>
<td>29.8</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>60</td>
<td>16</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
<td>60.3</td>
<td>25.7</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td>110</td>
<td>10.4</td>
<td>90.4</td>
<td>19.2</td>
</tr>
<tr>
<td>120</td>
<td>10.2</td>
<td>80.4</td>
<td>29.4</td>
</tr>
</tbody>
</table>
Optimal Deployment ($B = 90$)

- All implementations are hardened to the same level
Transportation Network

- Attacker may tamper with traffic control systems in order to cause disastrous traffic congestions
 - example: 2006 incident in Los Angeles

- Component
 - embedded computer deployed at an intersection
 - controls the traffic lights
 - compromised components may be used by an attacker to disrupt traffic going through the intersection
Transportation Network Risk Model

• We do **not consider redundancy** in this case since deploying redundant traffic light controllers requires additional assumptions.

• Impact:
 increase in travel time due to adversarial tampering with traffic control.

• Quantifying impact:
 traffic model
 • we use a well-known model, Daganzo’s cell transmission model
 • compromised intersections are “blocked” (no through traffic)
 • travel time computed efficiently by solving the traffic model using a linear program.
Security Risks

Risk

Budget

Only diversity

Only hardening

Combination
Optimal Allocation of Investment

Expenditure

Budget

Diversity

Hardening

10/26/17
Conclusion and Future Work

- There is no “silver bullet” approach for improving the robustness of cyber-physical systems.
- The basic components of information security are confidentiality, integrity, and availability.
- What are the basic components of CPS resilience?
- How do we organize, analyze, integrate, and evaluate the broad range of techniques that are available?
Thank you for your attention!

Questions?

Aron Laszka (alaszka@uh.edu)
Waseem Abbas (w.abbas@itu.edu.pk)
Yevgeniy Vorobeychik (yevgeniy.vorobeychik@vanderbilt.edu)
Xenofon Koutsoukos (xenofon.koutsoukos@vanderbilt.edu)