NIST 2017
International Forensic Science Error Management Symposium

ESTABLISHING TRACEABILITY

Roman P. Karas
FBI Laboratory
Chemistry Unit
Quantico, Virginia
Names of commercial manufacturers are provided for identification purposes only, and inclusion does not imply endorsement of the manufacturer, or its products or services by the FBI. The views expressed are those of the author’s and do not necessarily reflect the official policy or position of the FBI or the U.S. Government.
(ANAB*: 2017, 2018…)

UNCLASSIFIED
Objectives

1. Introduce Measurement Traceability
2. Discuss Requirements (as Related to Toxicology)
3. Offer Real World In-Laboratory Examples
1. Introduce Measurement Traceability

Why is measurement traceability important?

- Metrology: the scientific study of measurement. Plays a central role in *forensic* measurements

- Increased scrutiny not only from media and courts, but from other scientific bodies

- Producing high quality, reproducible scientific results should be central to *any* discipline
1. Introduce Measurement Traceability

Why is measurement traceability important?

CUBIT:

- An ancient unit used during the ancient Egyptian to Roman empires
- Based on the forearm length from the middle finger tip to the elbow bottom.
- Lengths 38-51.8 cm (15.0 to 20.4 in)

±25%!
1. Introduce Measurement Traceability

Why is measurement traceability important?
1. Introduce Measurement Traceability

Why is measurement traceability important?

One smoot: 5’ 7” (1.7 m), the height of Oliver R. Smoot, then an MIT undergrad who during his fraternity pledge in 1958 was used by his fraternity brothers to measure the length of the Harvard Bridge between Boston and Cambridge, Massachusetts.

Bridge Length: 364.4 smoots ± one ear.

Presenter = 1.029 smoot
1. Introduce Measurement Traceability

Why is measurement traceability important?

- MIT Bachelor of Science + Georgetown Juris Doctor
- 2000 House Science Committee's Subcommittee on Technology “The Role of Technical Standards in Today's Society and in the Future”
- 2001-2002 Chairman of the American National Standards Institute (ANSI)
- 2003-2004 President of the International Organization for Standardization (ISO)

Oliver R. Smoot

Even more at: https://en.wikipedia.org/wiki/Smoot
1. Introduce Measurement Traceability

Why is measurement traceability important?

What do the customers need?

- Tests and calibrations performed by forensic laboratories to be reliable, accurate and comparable.
- To know that if the test or calibration was performed on a different day at the same laboratory, or at another accredited laboratory, the test or calibration result would be similar and comparable.

- The need for uniformity and consistency in measurements is not unique to forensic science but is also required in research, industry and commerce.

- Measurement traceability inherently brings with it confidence and reliability.
1. Introduce Measurement Traceability

Accreditation

Measurements

ANAB

NIST

BIPM

ILAC

AAALAB

AAALAB International
1. Introduce Measurement Traceability

Provides accreditations to crime laboratories based on ISO/IEC 17025 and enhanced by:

- ASCLD/LAB-International Supplemental Requirements (2011, 2016)
- ASCLD/LAB-International Breath Alcohol Calibration Supplemental Requirements (2007)
- ANAB Accreditation Requirements for Forensic Science Calibration Laboratories (2017)
- Board Interpretations/Guidance Documents

With ASCLD-LAB now under ANAB, your guidance documents may vary depending upon your accreditation cycle
1. Introduce Measurement Traceability

ISO 17025 is just another standard:

- ISO 3591: Sensory analysis -- Apparatus -- Wine-tasting glass
- ISO 9407: Shoe sizes -- Mondopoint system of sizing and marking
- ISO/FDIS 13289: Recreational diving services -- Requirements for the conduct of snorkeling excursions
- ISO/CD 10788: Space systems -- Lunar dust simulant
1. Introduce Measurement Traceability

What is ISO/IEC 17025?

- An ISO standard that enumerates the *general requirements* for the *competence* of testing and calibration laboratories.

- It is the main ISO standard *used* by testing and calibration laboratories.

- In most major countries, ISO/IEC 17025 is the standard for which most labs must *hold accreditation in* order to be *deemed* technically competent.
1. Introduce Measurement Traceability

What is ISO/IEC 17025, continued?

- Laboratories use ISO/IEC 17025 to implement a quality system aimed at improving their ability to consistently produce valid results.

- The standard is also the basis for accreditation from an accreditation body.

- Since the standard is about competence, accreditation is simply formal recognition of a demonstration of that competence.
1. Introduce Measurement Traceability

What is ISO/IEC 17025, continued?

- A prerequisite for a laboratory to become accredited is to have a documented quality management system.

- The usual contents of the quality manual follow the outline of the ISO/IEC 17025 standard.
1. Introduce Measurement Traceability

Provides accreditations to crime laboratories based on ISO/IEC 17025 and enhanced by:

- ASCLD/LAB-International Supplemental Requirements (2011, 2016)
- ASCLD/LAB-International Breath Alcohol Calibration Supplemental Requirements (2007)
- ANAB Accreditation Requirements for Forensic Science Calibration Laboratories (2017)
- Board Interpretations/Guidance Documents
1. Introduce Measurement Traceability

What are ANAB Accreditation Requirements for Forensic Science Testing Laboratories?

- Additional interpretations or enhancements specific to crime laboratories
- These additional requirements can add to, but not take away from ISO/IEC 17025
1. Introduce Measurement Traceability

Provides accreditations to crime laboratories based on **ISO/IEC 17025** and enhanced by:

- ASCLD/LAB-International Supplemental Requirements (2011, 2016)
- **ANAB Accreditation Requirements for Forensic Science Testing Laboratories** (2017)
- ASCLD/LAB-International Breath Alcohol Calibration Supplemental Requirements (2007)
- **ANAB Accreditation Requirements for Forensic Science Calibration Laboratories** (2017)
- Board Interpretations/Guidance Documents
1. Introduce Measurement Traceability

What are Board Interpretations and Guidance Docs?

- Additional interpretations of the existing documentation, often providing examples or answering questions.

- Intended to address commonly encountered gray areas, but can’t cover everything.

*again, with ASLCD-LAB now under ANAB, your guidance docs may vary
1. Introduce Measurement Traceability

- Pipette only on Mondays

ISO/IEC 17025

Fictional Example!
Objectives

1. Introduce Measurement Traceability
2. Discuss Requirements (as Related to Toxicology)
3. Offer Real World In-Laboratory Applications
2. Discuss Requirements (as Related to Toxicology)

"The picture's pretty bleak, gentlemen. ... The world's climates are changing, the mammals are taking over, and we all have a brain about the size of a walnut."
2. Discuss Requirements (as Related to Toxicology)

Definitions:

- **Metrology**: the science of measurement and its application
- **Measurand**: the unknown quantity that will be measured
- **Measurement**: process of experimentally obtaining one or more quantity values that can reasonably be attributed to a quantity
 - Usually physical, chemical or biological
 - Implies comparison of quantities or counting of entities
2. Discuss Requirements (as Related to Toxicology)

- **Measurand:**
 The # of jelly beans

- **Measurement:**
 Guess?
 Actually Count
2. Discuss Requirements (as Related to Toxicology)

- **Measurand:** Concentration of Blood alcohol
- **Measurement:**
 - Guess?
 - Actually Measure
2. Discuss Requirements (as Related to Toxicology)

Definitions:

- **Metrological traceability**: property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty.
When is measurement traceability required by ASCLD-LAB/ANAB?

- For all measurements where measurement uncertainty is estimated
- Where the measurement result has a significant impact on the final test result
2. Discuss Requirements (as Related to Toxicology)

When is measurement uncertainty required by ANAB? (continued)

When quantitative values are reported for:

1. the quantity (weight or volume) of controlled substance evidence or the quantity of a controlled substance when reported as a weight or volume fraction (purity) of the whole

2. the concentration (weight or volume fraction) of a drug in a toxicology sample, including values reported for blood alcohol

Additionally, for a measurement other than those listed above when required to meet the needs of a customer
2. Discuss Requirements (as Related to Toxicology)

When is measurement traceability required by ASCLD/LAB?

Where the measurement result has a significant impact on the final test result (§)

- It is up to each testing laboratory to identify the measurements that are being made in the laboratory.

- The laboratory must define significant impact.
2. Discuss Requirements (as Related to Toxicology)

Identify tests within scope of accreditation

For each test, is a measurement made?

- YES: MU required by ASCLD/LAB?
 - YES: MT required
 - NO: MT required
- NO: MT not required

MU req. by customer or measurement sig. impact?

- NO: MT not required
- YES: MT required

MT: measurement traceability

MU: measurement uncertainty
Identify tests within scope of accreditation

For each test, is a measurement made?

MU required by ASCLD/LAB?

MU req. by customer or measurement sig. impact?

MT not required

MT required

MT required

MT not required
2. Discuss Requirements (as Related to Toxicology)

HOW DO WE ESTABLISH TRACEABILITY?
2. Discuss Requirements (as Related to Toxicology)

- Unbroken Chain of Comparisons
- Documented Measurement Uncertainty
- Documented Measurement Procedure
- Technical Competence
- Realization of SI Units
- Documented Calibration Intervals
- Measurement Assurance
2. Discuss Requirements (as Related to Toxicology)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbroken Chain of Comparisons</td>
<td>• Be able to trace back to a stated reference</td>
</tr>
<tr>
<td></td>
<td>• Usually a national or international standard</td>
</tr>
<tr>
<td>Documented Measurement Uncertainty</td>
<td>• Calculated according to defined procedure</td>
</tr>
<tr>
<td></td>
<td>• Must encompass the procedure’s overall MU</td>
</tr>
<tr>
<td>Documented Measurement Procedure</td>
<td>• Generally accepted procedure must be used</td>
</tr>
<tr>
<td></td>
<td>• Steps and results of that procedure documented</td>
</tr>
<tr>
<td>Technical Competence</td>
<td>• Must maintain evidence of technical competence</td>
</tr>
<tr>
<td></td>
<td>• Training records, PT’s, accreditations</td>
</tr>
<tr>
<td>Realization of SI Units</td>
<td>• Final results should end using SI units</td>
</tr>
<tr>
<td>Documented Calibration Intervals</td>
<td>• Calibrations repeated at established/appropriate intervals to preserve metrological traceability</td>
</tr>
<tr>
<td>Measurement Assurance</td>
<td>• Ensure the validity of the measurement process</td>
</tr>
<tr>
<td></td>
<td>• Ensure calibration and reference materials</td>
</tr>
</tbody>
</table>
2. Discuss Requirements (as Related to Toxicology)

Unbroken Chain of Comparisons

- **BIPM (SI)** (Bureau international des poids et mesures)
- National Metrology Institute (NMI) - NIST
- Accredited Calibration Service Supplier
- Accredited Calibration Service Supplier
- Forensic Laboratory Equipment
- Forensic Laboratory Measurement

MT required
2. Discuss Requirements (as Related to Toxicology)

- **Unbroken Chain of Comparisons**
 - **BIPM (SI)** - International prototype of the kilogram
 - **National Metrology Institute (NMI)** - NIST - Mass Reference Standards calibrated by the BIPM
 - **Primary Calibration Laboratory** - Mass Reference Standards calibrated by NIST
 - **Accredited Calibration Service Supplier** - Mass Reference Standards calibrated by the Primary Calibration Laboratory above
 - **Forensic Laboratory Balance** calibrated by the calibration service supplier above using the calibrated Mass Reference Standards.
 - **Forensic Laboratory Measurement**
2. Discuss Requirements (as Related to Toxicology)

Documented Measurement Uncertainty

- Calculated according to defined procedure
 - Emphasis on *defined*
 - Just write it down!

- Must encompass the procedure’s overall MU
 - Start to finish!

Documentation is key
2. Discuss Requirements (as Related to Toxicology)

- Generally accepted procedure must be used
- Steps and results of that procedure documented

Documentation is key
2. Discuss Requirements (as Related to Toxicology)

- Technical Competence

- Realization of SI Units

- Must maintain evidence of technical competence
- Training records, competency tests, PT’s, accreditations
- Use appropriate units

Documentation is key
2. Discuss Requirements (as Related to Toxicology)

- Calibrations repeated at established/appropriate intervals to preserve metrological traceability
- What exactly is a **calibration**?
2. Discuss Requirements (as Related to Toxicology)

Documented Calibration Intervals

Calibration:
- Follows a specified procedure for the calibration
- Uses a measurement standard that itself has been calibrated in a metrologically valid way and has a reference or known value with an associated uncertainty
- Compares the “indications” of the measurement standard on the equipment to the reference value
- Based on the measurements made during the calibration procedure, the calibration laboratory determines if the performance of the equipment being calibrated meets the required specifications
2. Discuss Requirements (as Related to Toxicology)

Documented Calibration Intervals

Questions:

- GC/MS: Is “autotune” a calibration? What about a balance “CAL”?
- Can you perform your own calibrations?
2. Discuss Requirements (as Related to Toxicology)

Documented Calibration Intervals

Questions:

- GC/MS: Is “autotune” a calibration? Balance “CAL”?

 No. It is an “adjustment”, defined as “the process performed to improve the response of the item being calibrated to more closely align it with the known reference value.”

- Can you perform your own calibrations?

 Possibly. But would have to have additional accreditation in the field of calibration. Most use “external provider”.
2. Discuss Requirements (as Related to Toxicology)

Ensure validity of:

- Calibration
- Reference materials and standards
- The measurement process
2. Discuss Requirements (as Related to Toxicology)

Measurement Assurance

Ensure validity of Calibration:

- What instruments need to be calibrated?
- How often do they need calibration?
- Can the interval be changed?
- Do you need to check the calibration? How often?
2. Discuss Requirements (as Related to Toxicology)

Measurement Assurance

Ensure validity of Calibration:

- What instruments need to be calibrated?
 Determined by laboratory, backed by objective evidence.
- How often do they need calibration?
 Interval determined by lab/manufacturer, documented
- Can the interval be changed?
 Yes, backed by objective evidence
- Do you need to check the calibration? How often?
 Determined by laboratory, backed by objective evidence
2. Discuss Requirements (as Related to Toxicology)

Ensure validity of Reference Materials:

- What is a reference standard?
- What reference standards are common in forensic lab?
- Are Drug Standards Reference Standards?
2. Discuss Requirements (as Related to Toxicology)

Ensure validity of Reference **Standards** and **Materials**:

- **What is a reference standard?**
 Used routinely to calibrate or verify measuring instruments or measuring systems

- **What reference standards are common in forensic labs?**
 Mass reference standards (weights) and gage (gauge) blocks are the most common

- **Are “Drug Standards” Reference Standards?**
 No, a drug standard is a reference **material**.
2. Discuss Requirements (as Related to Toxicology)

Ensure validity of Reference Standards and Materials:

- What is a reference material? It is sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process.
- What is a Certified Reference Material? Accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures.
2. Discuss Requirements (as Related to Toxicology)

Measurement Assurance

Ensure validity of Measurement Process:

- Can I use the same CRM for calibration and control?
- Can a laboratory use old chemicals as a reference material?
2. Discuss Requirements (as Related to Toxicology)

Measurement Assurance

Ensure validity of Measurement Process:

- Can I use the same CRM for calibration and control? It is recommended that separate sources (i.e. Cerilliant & Lipomed for example) are used.

- Can a laboratory use old chemicals as a reference material? Yes, so long as fit for purpose (cyanide example).
2. Discuss Requirements (as Related to Toxicology)

<table>
<thead>
<tr>
<th>Category</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbroken Chain of Comparisons</td>
<td>• Be able to trace back to a stated reference</td>
</tr>
<tr>
<td></td>
<td>• Usually a national or international standard</td>
</tr>
<tr>
<td>Documented Measurement Uncertainty</td>
<td>• Calculated according to defined procedure</td>
</tr>
<tr>
<td></td>
<td>• Must encompass the procedure’s overall MU</td>
</tr>
<tr>
<td>Documented Measurement Procedure</td>
<td>• Generally accepted procedure must be used</td>
</tr>
<tr>
<td></td>
<td>• Steps and results of that procedure documented</td>
</tr>
<tr>
<td>Technical Competence</td>
<td>• Must maintain evidence of technical competence</td>
</tr>
<tr>
<td></td>
<td>• Training records, PT’s, accreditations</td>
</tr>
<tr>
<td>Realization of SI Units</td>
<td>• Final results should end using SI units</td>
</tr>
<tr>
<td>Documented Calibration Intervals</td>
<td>• Calibrations repeated at established/appropriate intervals to preserve metrological traceability</td>
</tr>
<tr>
<td>Measurement Assurance</td>
<td>• Ensure the validity of the measurement process</td>
</tr>
<tr>
<td></td>
<td>• Ensure calibration and reference materials</td>
</tr>
</tbody>
</table>
Objectives

1. Introduce Measurement Traceability
2. Discuss Requirements (as Related to Toxicology)
3. Offer Real World In-Laboratory Examples
3. Offer Real World In-Laboratory Examples
3. Offer Real World In-Laboratory Examples (BAC)

- Unbroken Chain of Comparisons
 - NIST Traceable Standards, Pipette Calibrations
- Documented Measurement Uncertainty
 - Sources of Uncertainty, % Contribution
- Documented Measurement Procedure
 - Written SOP, Case File Documentation
- Technical Competence
 - Analyst Competencies and PT results
- Realization of SI Units
 - mg/dL, g%, g/100mL
- Documented Calibration Intervals
 - Twice annually, with pre-procedure checks
- Measurement Assurance
 - Control Chart Tracking, Maintain CRM/RM
Objectives

1. Introduce Measurement Traceability
2. Discuss Requirements (as Related to Toxicology)
3. Offer Real World In-Laboratory Examples
Objectives

1. Introduce Measurement Traceability
2. Discuss Requirements (as Related to Toxicology)
3. Offer Real World In-Laboratory Examples

4. Wait? What about MY Laboratory?
Objectives

4. Wait? What about MY Laboratory?

1. Can you implement traceability by yourself?

2. Would it help to establish buy-in and communicate underlying principles to stakeholders?

3. Can you identify “process champions” who will assist at the work unit or bench level?
REPLACE THIS SPACE WITH A MESSAGE

rpkaras@fbi.gov