Robust Generation of Entanglement and Gate Operations with Trapped Ions Using Adiabatic Approaches

K. Toyoda, T. Watanabe, K. Uchida, S. Haze, S. Urabe, Osaka Univ., Japan

Dicke state generation with RAP

Symmetric Dicke states:
- Entangled states symmetric with regard to permutation of particles

\[
|D^m_N\rangle = \frac{1}{\sqrt{C_m^N}} \sum_{\pi} P_{\pi} \left(|\uparrow\uparrow\uparrow\cdots\uparrow\rangle + \sum_{m \neq 0} (-1)^{m+n} |m\rangle |\uparrow\cdots\uparrow\downarrow\cdots\downarrow\rangle \right)
\]

- Single photon generation by collective coupling
- Projective measurement on large Dicke state yields different classes of entangled states -use as entanglement resources for QIP

Rapid adiabatic passage (RAP/ARP)

Population transfer using optical pulse with time-dep. envelope/frequency

Advantages:
- Robustness against pulse area (intensity/time) fluctuation
- One step transfer over multi-level ladder

Disadvantages:
- Dynamical phase due to time-dependent pulse envelope leading to uncontrollable global phase

Applications:
- Large (entangled) state preparation

DICKE STATES

Symmetric: \[|D^m_N\rangle = \frac{1}{\sqrt{C_m^N}} \sum_{\pi} P_{\pi} \left(|\uparrow\uparrow\uparrow\cdots\uparrow\rangle + \sum_{m \neq 0} (-1)^{m+n} |m\rangle |\uparrow\cdots\uparrow\downarrow\cdots\downarrow\rangle \right) \]

Dicke state gen. by RAP

Distributed measurement on both ions

Basis transformation (Wigner-Sh寇 restoration)

Energy

Dicke state generation with square pulse:

Summary
- Rapid adiabatic passage of two ions in sideband transitions
- Individual addressing using AC Stark shifter optical beam
- Entanglement generation by adiabatic passage
- Fidelity: 0.66 ± 0.03
- Effect of AC Stark shift due to time-dependent pulse envelope analyzed

Prospects
- Dicke state generation with more particles/excitations

Robust single-qubit gate with tripod-STIRAP

STIRAP in λ-type three-level system
- Population transfer using a dark state

STIRAP in tripod-type four-level system
- Two dark states
- Geometric phase factors form 2x2 matrix non-commutative(non-Abelian) unitary operations

Gate operations using tripod-STIRAP
- Robust operations
- Insensitive to pulse shapes (peak height, length)

References
- Tripod system
 - Gate operations/hoovemier: QC
 - Applications of non-Abelian holonomy to cold atoms

Encoding to levels in single 40Ca+

Z-rotation gate

X-rotation gate

References
- Tripod system
 - Gate operations/hoovemier: QC
 - Applications of non-Abelian holonomy to cold atoms

Summary
- X-rotation and Z-rotation with two STIRAP on a tripod system
- Demonstrated using single 40Ca+
- Visibility > 0.9

Prospects
- Verifying robustness
- Implement to S-D optical qubit