Table of Contents

Teaching and Learning The Metric System

Unit 1
- Suggested Teaching Sequence
- Objectives
- Rules of Notation
- Metric Units, Symbols, and Referents
- Metric Prefixes
- Linear Measurement Activities
- Area Measurement Activities
- Volume Measurement Activities
- Mass (Weight) Measurement Activities
- Temperature Measurement Activities

Unit 2
- Objectives
- Suggested Teaching Sequence
- Metrics in the Office
- Type It Metric Style
- Write & Spell It Right
- Trying Out Metric Units
- Use Those Metric Terms
- Writing Metric Terms

Unit 3
- Objective
- Suggested Teaching Sequence
- Metric-Metric Equivalents
- Changing Units at Work

Unit 4
- Objective
- Suggested Teaching Sequence
- Working With Metrics
- Proofreading Metric Terms
- Metric Layouts

Unit 5
- Objective
- Suggested Teaching Sequence
- Metric-Customary Equivalents
- Any Way You Want It

Testing Metric Abilities
Answers to Exercises and Test
Tools and Devices List
References
metrics for metrics
metrics for general office clerks clerk-typists, typists metrics for metrics for
TEACHING AND LEARNING
THE METRIC SYSTEM

This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution.

Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of this package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers.

Classroom experiences with this instructional package suggest the following teaching-learning strategies:

1. Let the first experiences be informal to make learning the metric system fun.
2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric." Comparing metric units to customary units can be confusing.
3. Students will learn quickly to estimate and measure in metric units by "doing."
4. Students should have experience with measuring activities before getting too much information.
5. Move through the units in an order which emphasizes the simplicity of the metric system (e.g., length to area to volume).
6. Teach one concept at a time to avoid overwhelming students with too much material.

Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks.

Unit 3 focuses on job-related metric equivalents and their relationships.

Unit 4 provides experience in recognizing and using metric units, terms, and symbols in proofing, typing, and layout tasks.

Unit 5 is designed to give students practice in converting customary and metric measurements. Students should learn to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation.

Using These Instructional Materials

This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring.

This instructional package also was designed to accommodate a variety of individual teaching and learning styles. Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher.

Gloria S Cooper
Joel H. Magisios
Editors

This publication was developed pursuant to contract No. OEC-0-74-9335 with the Bureau of Occupational and Adult Education, U.S. Department of Health, Education and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U.S. Office of Education and no official endorsement by the U.S. Office of Education should be inferred.
UNIT 1

SUGGESTED TEACHING SEQUENCE

1. These introductory exercises may require two or three teaching periods for all five areas of measurement.
2. Exercises should be followed in the order given to best show the relationship between length, area, and volume.
3. Assemble the metric measuring devices (rules, tapes, scales, thermometers, and measuring containers) and objects to be measured.*
4. Set up the equipment at work stations for use by the whole class or as individualized resource activities.
5. Have the students estimate, measure, and record using Exercises 1 through 5.
6. Present information on notation and make Table 1 available.
7. Follow up with group discussion of activities.

*Other school departments may have devices which can be used. Metric suppliers are listed in the reference section.

OBJECTIVES

The student will demonstrate these skills for the Linear, Area, Volume or Capacity, Mass, and Temperature Exercises, using the metric terms and measurement devices listed here.

<table>
<thead>
<tr>
<th>SKILLS</th>
<th>EXERCISES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>(pp. 3-4)</td>
</tr>
<tr>
<td>1.</td>
<td>Recognize and use the unit and its symbol for:</td>
</tr>
<tr>
<td>2.</td>
<td>Select, use, and read the appropriate measuring instruments for:</td>
</tr>
<tr>
<td>3.</td>
<td>State or show a physical reference for:</td>
</tr>
<tr>
<td>4.</td>
<td>Estimate within 25% of the actual measure</td>
</tr>
<tr>
<td>5.</td>
<td>Read correctly</td>
</tr>
</tbody>
</table>

RULES OF NOTATION

1. Symbols are not capitalized unless the unit is a proper name (mm not MM).
2. Symbols are not followed by periods (m not m).
3. Symbols are not followed by an s for plurals (25 g not 25 gs).
4. A space separates the numerals from the unit symbols (4 l not 41).
5. Spaces, not commas, are used to separate large numbers into groups of three digits (45 271 km not 45,271 km).
6. A zero precedes the decimal point if the number is less than one (0.52 g not .52 g).
7. Litre and metre can be spelled either with an -re or -er ending.
METRIC UNITS, SYMBOLS, AND REFERENTS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Metric Unit</th>
<th>Symbol</th>
<th>Useful Referents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>millimetre</td>
<td>mm</td>
<td>Thickness of dime or paper clip wire</td>
</tr>
<tr>
<td></td>
<td>centimetre</td>
<td>cm</td>
<td>Width of paper clip</td>
</tr>
<tr>
<td></td>
<td>metre</td>
<td>m</td>
<td>Height of door about 2 m</td>
</tr>
<tr>
<td></td>
<td>kilometre</td>
<td>km</td>
<td>12-minute walking distance</td>
</tr>
<tr>
<td>Area</td>
<td>square centimetre</td>
<td>cm²</td>
<td>Area of this space</td>
</tr>
<tr>
<td></td>
<td>square metre</td>
<td>m²</td>
<td>Area of card table top</td>
</tr>
<tr>
<td></td>
<td>hectare</td>
<td>ha</td>
<td>Football field including sidelines and end zones</td>
</tr>
<tr>
<td>Volume and Capacity</td>
<td>millilitre</td>
<td>ml</td>
<td>Teaspoon is 5 ml</td>
</tr>
<tr>
<td></td>
<td>litre</td>
<td>l</td>
<td>A little more than 1 quart</td>
</tr>
<tr>
<td></td>
<td>cubic centimetre</td>
<td>cm³</td>
<td>Volume of this container</td>
</tr>
<tr>
<td></td>
<td>cubic metre</td>
<td>m³</td>
<td>A little more than a cubic yard</td>
</tr>
<tr>
<td>Mass</td>
<td>milligram</td>
<td>mg</td>
<td>Apple seed about 10 mg, grain of salt, 1 mg</td>
</tr>
<tr>
<td></td>
<td>gram</td>
<td>g</td>
<td>Nickel about 5 g</td>
</tr>
<tr>
<td></td>
<td>kilogram</td>
<td>kg</td>
<td>Webster's Collegiate Dictionary</td>
</tr>
<tr>
<td></td>
<td>metric ton</td>
<td>t</td>
<td>Volkswagen Beetle</td>
</tr>
</tbody>
</table>

METRIC PREFIXES

<table>
<thead>
<tr>
<th>Multiples and Submultiples</th>
<th>Prefixes</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>1×10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>1×10^2</td>
<td>hecto</td>
<td>h</td>
</tr>
<tr>
<td>1×10^1</td>
<td>deka</td>
<td>da</td>
</tr>
<tr>
<td>Base Unit 1 = 10^0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0.1 = 10^{-1}$</td>
<td>deci</td>
<td>d</td>
</tr>
<tr>
<td>$0.01 = 10^{-2}$</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>$0.001 = 10^{-3}$</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>$0.000\ 001 = 10^{-6}$</td>
<td>micro</td>
<td>μ</td>
</tr>
</tbody>
</table>

Table 1-a

Table 1-b
LINEAR MEASUREMENT ACTIVITIES
Metre, Centimetre, Millimetre

I. THE METRE (m)

A. DEVELOP A FEELING FOR THE SIZE OF A METRE

1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you.

THAT IS HOW HIGH A METRE IS!

2. Hold one arm out straight at shoulder height. Put the metre stick along this arm until the end hits the end of your fingers. Where is the other end of the metre stick? Touch yourself at that end.

THAT IS HOW LONG A METRE IS!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN METRES

Now you will improve your ability to estimate in metres. Remember where the length and height of a metre was on your body.

For each of the following items:

Estimate the size of the items and write your estimate in the ESTIMATE column. Measure the size with your metre stick and write the answer in the MEASUREMENT column.

Decide how close your estimate was to the actual measure. If your estimate was within 25% of the actual measure you are a "Metric Marvel."

<table>
<thead>
<tr>
<th>Estimate (m)</th>
<th>Measurement (m)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of door knob from floor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of door.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width of table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of wall of this room.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance from you to wall.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
II. THE CENTIMETRE (cm)

There are 100 centimetres in one metre. If there are 4 metres and 3 centimetres, you write \(403\text{ cm} = (4 \times 100\text{ cm}) + 3\text{ cm} = 400\text{ cm} + 3\text{ cm}\).

A. DEVELOP A FEELING FOR THE SIZE OF A CENTIMETRE

1. Hold the metric ruler against the width of your thumbnail. How wide is it? ________ cm
2. Measure your thumb from the first joint to the end. ________ cm
3. Use the metric ruler to find the width of your palm. ________ cm
4. Measure your index or pointing finger. How long is it? ________ cm
5. Measure your wrist with a tape measure. What is the distance around it? ________ cm
6. Use the tape measure to find your waist size. ________ cm

B. DEVELOP YOUR ABILITY TO ESTIMATE IN CENTIMETRES

You are now ready to estimate in centimetres. For each of the following items, follow the procedures used for estimating in metres.

<table>
<thead>
<tr>
<th>Estimate (cm)</th>
<th>Measurement (cm)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Length of a paper clip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Diameter (width) of a coin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Width of a postage stamp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Length of a pencil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Width of a sheet of paper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. THE MILLIMETRE (mm)

There are 10 millimetres in one centimetre. When a measurement is 2 centimetres and 5 millimetres, you write \(25\text{ mm} = (2 \times 10\text{ mm}) + 5\text{ mm} = 20\text{ mm} + 5\text{ mm}\). There are 1000 mm in 1 m.

A. DEVELOP A FEELING FOR THE SIZE OF A MILLIMETRE

Using a ruler marked in millimetres, measure:

1. Thickness of a paper clip wire. ________ mm
2. Thickness of your fingernail. ________ mm
3. Width of your fingernail. ________ mm
4. Diameter (width) of a coin. ________ mm
5. Diameter (thickness) of your pencil. ________ mm
6. Width of a postage stamp. ________ mm

B. DEVELOP YOUR ABILITY TO ESTIMATE IN MILLIMETRES

You are now ready to estimate in millimetres. For each of the following items, follow the procedures used for estimating in metres.

<table>
<thead>
<tr>
<th>Estimate (mm)</th>
<th>Measurement (mm)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thickness of a nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Diameter (thickness) of a bolt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Length of a bolt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Width of a sheet of paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Thickness of a board or desk top</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Thickness of a button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 1
AREA MEASUREMENT ACTIVITIES
Square Centimetre, Square Metre

WHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOW MANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE.

I. THE SQUARE CENTIMETRE (cm²)

A. DEVELOP A FEELING FOR A SQUARE CENTIMETRE

1. Take a clear plastic grid, or use the grid on page 6.
2. Measure the length and width of one of these small squares with a centimetre ruler.

THAT IS ONE SQUARE CENTIMETRE!

3. Place your fingernail over the grid. About how many squares does it take to cover your fingernail? _______ cm²
4. Place a coin over the grid. About how many squares does it take to cover the coin? _______ cm²
5. Place a postage stamp over the grid. About how many squares does it take to cover the postage stamp? _______ cm²
6. Place an envelope over the grid. About how many squares does it take to cover the envelope? _______ cm²
7. Measure the length and width of the envelope in centimetres. Length _______ cm; width _______ cm. Multiply to find the area in square centimetres. _______ cm x _______ cm = _______ cm². How close are the answers you have in 6. and 7.?

B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE CENTIMETRES

You are now ready to develop your ability to estimate in square centimetres.

Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres.

Exercise 2

(continued on next page)
B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE METRES

You are now ready to estimate in square metres. Follow the procedures used for estimating in metres.

<table>
<thead>
<tr>
<th></th>
<th>Estimate (m²)</th>
<th>Measurement (m²)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Door.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Full sheet of newspaper.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Chalkboard or bulletin board.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Floor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Wall.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wall chart or poster.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Side of file cabinet.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

°CENTIMETRE GRID

THE CENTER FOR VOCATIONAL EDUCATION

Exercise 2
VOLUME MEASUREMENT ACTIVITIES
Cubic Centimetre, Litre, Millilitre, Cubic Metre

I. THE CUBIC CENTIMETRE (cm³)
A. DEVELOP A FEELING FOR THE CUBIC CENTIMETRE
1. Pick up a colored plastic cube. Measure its length, height, and width in centimetres.
 THAT IS ONE CUBIC CENTIMETRE!
2. Find the volume of a plastic litre box.
 a. Place a ROW of cubes against the bottom of one side of the box. How many cubes fit in the row? _______
 b. Place another ROW of cubes against an adjoining side of the box. How many rows fit inside the box to make one layer of cubes? _______
 How many cubes in each row? _______
 How many cubes in the layer in the bottom of the box? _______
 c. Stand a ROW of cubes up against the side of the box.
 How many LAYERS would fit in the box? _______
 How many cubes in each layer? _______
 How many cubes fit in the box altogether? _______
 THE VOLUME OF THE BOX IS _______ CUBIC CENTIMETRES.
 d. Measure the length, width, and height of the box in centimetres. Length _______ cm; width _______ cm; height _______ cm. Multiply these numbers to find the volume in cubic centimetres.
 _______ cm x _______ cm x _______ cm = _______ cm³.
 Are the answers the same in c. and d.?
B. DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC CENTIMETRES
 You are now ready to develop your ability to estimate in cubic centimetres.
 Remember the size of a cubic centimetre. For each of the following items, use the procedures for estimating in metres.

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimate (cm³)</th>
<th>Measurement (cm³)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index card file box</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>Freezer container</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>Paper clip box</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>Box of staples</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
</tbody>
</table>

II. THE LITRE (l)
A. DEVELOP A FEELING FOR A LITRE
1. Take a one litre beaker and fill it with water.
2. Pour the water into paper cups, filling each as full as you usually do. How many cups do you fill?
 THAT IS HOW MUCH IS IN ONE LITRE!
3. Fill the litre container with rice.
 Fill the litre container with rice.
 THAT IS HOW MUCH IT TAKES TO FILL A ONE LITRE CONTAINER!

Exercise 3
(continued on next page)
B. DEVELOP YOUR ABILITY TO ESTIMATE IN LITRES

You are now ready to develop your ability to estimate in litres. To write two and one-half litres, you write 2.5 l, or 2.5 litres. To write one-half litre, you write 0.5 l, or 0.5 litre. To write two and three-fourths litres, you write 2.75 l, or 2.75 litres.

For each of the following items, use the procedures for estimating in metres.

<table>
<thead>
<tr>
<th>Estimate (l)</th>
<th>Measurement (l)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Medium-size freezer container.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Large freezer container.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Small freezer container.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Bottle or jug.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. THE MILLILITRE (ml)

There are 1000 millilitres in one litre. 1000 ml = 1 litre. Half a litre is 500 millilitres, or 0.5 litre = 500 ml.

A. DEVELOP A FEELING FOR A MILLILITRE

1. Examine a centimetre cube. Anything which holds 1 cm³ holds 1 ml.
2. Fill a 1 millilitre measuring spoon with rice. Empty the spoon into your hand. Carefully pour the rice into a small pile on a sheet of paper.
 THAT IS HOW MUCH ONE MILLILITRE IS!
3. Fill the 5 ml spoon with rice. Pour the rice into another pile on the sheet of paper.
 THAT IS 5 MILLILITRES, OR ONE TEASPOON!
4. Fill the 15 ml spoon with rice. Pour the rice into a third pile on the paper.
 THAT IS 15 MILLILITRES, OR ONE TABLESPOON!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN MILLILITRES

You are now ready to estimate in millilitres. Follow the procedures used for estimating metres.

<table>
<thead>
<tr>
<th>Estimate (ml)</th>
<th>Measurement (ml)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Small juice can.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Paper cup or tea cup.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Soft drink can.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. THE CUBIC METRE (m³)

A. DEVELOP A FEELING FOR A CUBIC METRE

1. Place a one metre square on the floor next to the wall.
2. Measure a metre up the wall.
3. Picture a box that would fit into that space.
 THAT IS THE VOLUME OF ONE CUBIC METRE!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC METRES

For each of the following items, follow the estimating procedures used before.

<table>
<thead>
<tr>
<th>Estimate (m³)</th>
<th>Measurement (m³)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Office desk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. File cabinet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Small room.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 3
The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matter from the object. Weight is the term that most people use when they mean mass. The weight of an object is affected by gravity; the mass of an object is not. For example, the weight of a person on earth might be 120 pounds; that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon is less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measure weight—it measures mass. We will use the term mass here.

The symbol for gram is g.
The symbol for kilogram is kg.
There are 1,000 grams in one kilogram, or 1,000 g = 1 kg.
Half a kilogram can be written as 500 g, or 0.5 kg.
A quarter of a kilogram can be written as 250 g, or 0.25 kg.
Two and three-fourths kilograms is written as 2.75 kg.

I. THE KILOGRAM (kg)

DEVELOP A FEELING FOR THE MASS OF A KILOGRAM
Using a balance or scale, find the mass of the items on the table. Before you find the mass, notice how heavy the object “feels” and compare it to the reading on the scale or balance.

<table>
<thead>
<tr>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1 kilogram box.</td>
</tr>
<tr>
<td>2. Textbook.</td>
</tr>
<tr>
<td>4. Package of paper.</td>
</tr>
<tr>
<td>5. Your own mass.</td>
</tr>
</tbody>
</table>

B. DEVELOP YOUR ABILITY TO ESTIMATE IN KILOGRAMS
For the following items ESTIMATE the mass of the object in kilograms, then use the scale or balance to find the exact mass of the object. Write the exact mass in the MEASUREMENT column. Determine how close your estimate is:

<table>
<thead>
<tr>
<th>Estimate (kg)</th>
<th>Measurement (kg)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bag of rice.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Bag of nails.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Large purse or briefcase.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Another person.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. A few books.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II. THE GRAM (g)

A. DEVELOP A FEELING FOR A GRAM

1. Take a colored plastic cube. Hold it in your hand. Shake the cube in your palm as if shaking dice. Feel the pressure on your hand when the cube is in motion, then when it is not in motion. THAT IS HOW HEAVY A GRAM IS!

2. Take a second cube and attach it to the first. Shake the cubes in first one hand and then the other hand; rest the cubes near the tips of your fingers, moving your hand up and down. THAT IS THE MASS OF TWO GRAMS!

3. Take five cubes in one hand and shake them around. THAT IS THE MASS OF FIVE GRAMS!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS

You are now ready to improve your ability to estimate in grams. Remember how heavy the 1 gram cube is, how heavy the two gram cubes are, and how heavy the five gram cubes are. For each of the following items, follow the procedures used for estimating in kilograms.

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimate (g)</th>
<th>Measurement (g)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two thumbtacks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pencil.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-page letter and envelope.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package of margarine.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEMPERATURE MEASUREMENT ACTIVITIES

Degree Celsius

I. DEGREE CELSIUS (°C)

Degree Celsius (°C) is the metric measure for temperature.

A. DEVELOP A FEELING FOR DEGREE CELSIUS

Take a Celsius thermometer. Look at the marks on it.

1. Find 0 degrees.
 WATER FREEZES AT ZERO DEGREES CELSIUS (0°C)
 WATER BOILS AT 100 DEGREES CELSIUS (100°C)
2. Find the temperature of the room. _____ °C. Is the room cool, warm, or about right?
3. Put some hot water from the faucet into a container. Find the temperature. _____ °C. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm?
4. Put some cold water in a container with a thermometer. Find the temperature. _____ °C. Dip your finger into the water. Is it cool, cold, or very cold?
5. Bend your arm with the inside of your elbow around the bottom of the thermometer. After about three minutes find the temperature. _____ °C. Your skin temperature is not as high as your body temperature.

NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS (37°C).
A FEVER IS 39°C.
A VERY HIGH FEVER IS 40°C.

B. DEVELOP YOUR ABILITY TO ESTIMATE IN DEGREES CELSIUS

For each item, ESTIMATE and write down how many degrees Celsius you think it is. Then measure and write the MEASUREMENT. See how close your estimates and actual measurements are.

<table>
<thead>
<tr>
<th>Estimate (°C)</th>
<th>Measurement (°C)</th>
<th>How Close Were You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mix some hot and cold water in a container. Dip your finger into the water.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pour out some of the water. Add some hot water. Dip your finger quickly into the water.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Outdoor temperature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sunny window sill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Mix of ice and water.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Temperature at floor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Temperature at ceiling.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 5
UNIT 2

OBJECTIVES

The student will recognize, select, and write correctly metric quantities used in job related tasks.
- Given a metric measurement task, select the appropriate metric unit.
- Given a metric measurement task in this occupation, estimate then measure the metric quantity.
- Given a metric quantity, write the measurement correctly using either the symbols or the name of the unit.

SUGGESTED TEACHING SEQUENCE

1. Present or make available Information Sheet 2.
2. Present or make available the information in Tables 1b, 2, and 3. Discuss how to use these tables as reference aides. (Metric prefixes are located in Table 1b. Table 2 is a style reference containing rules for capitalization, punctuation, spacing, spelling, fractions and mathematical operations. It also contains suggestions for writing and typing metric units, terms, and symbols. Table 3 gives the correct spelling of metric units and symbols.)
3. Give the students practice in measuring, selecting, and correctly writing metric units by completing Exercises 6, 7, and 8.
4. Test performance by using Section A of “Testing Metric Abilities.”

METRICS IN THE OFFICE

Changeover to the metric system is underway. Large corporations in such areas as transportation, chemicals, information systems, electronics, health equipment and supplies are already using the metric measurements to compete on the world market. The metric system has been used in various parts of the industrial and scientific communities for years. Legislation passed in 1975 authorizes an orderly transition to metric. As business and industry make this changeover, employees will need competency in using metric measurement in job-related tasks.

Business and office workers are more concerned with the correct usage of metric terms and symbols than with actual measurement tasks. They use metric terms to place orders, bill customers, type and proof correspondence.

Paper sizes and weights are changing. Margins are changing to centimetres and millimetres. Postal rate calculations will be based on grams. Business and office students need to learn to pronounce and spell the names of metric units, write the symbols, and use proper metric notation. In addition, they need to be able to recognize the incorrect use of terms; for example, if kilograms of chocolate (half a metric ton) is ordered, instead of 500 grams (about a pound).
1. CAPITALIZATION

1.1 Units

Unit names are typed in lower case except for the unit Celsius. The modifier "degree" in "degree Celsius" is lower case.

Correct: meter, litre, watt, degree Celsius
Incorrect: METRE, LITRE, WATT, degree celsius

1.2 Symbols

All symbols are typed in lower case except for those units named after people, and for the prefixes mega-, giga-, and tera-

Correct: kg, m, W (James Watt), °C (Anders Celsius), M (mega-), T (tera-), G (giga-)
Incorrect: KILOGRAM, MILLI-METRE, KILO-GRAM, MEGAHERTZ, MEGA HERTZ

1.3 Table Headings

Units of measure in a table heading can be typed in either all capitals or all lower case. Do not mix capital and lower case letters in an individual unit of measure.

Correct: GRAMS, METRES
Incorrect: Grams, Litres

2. PUNCTUATION

2.1 Period

Do not use a period after a metric symbol unless the symbol ends a sentence.

Correct: 12 cm, 350 g, 90 km/h, 50 m
Incorrect: 12 cm., 350 g., 90 km./h., 50 m.

2.2 Semicolon

A semicolon separates numbers in a sequence.

Correct: 61 311.1; 5.2; 0.45
Incorrect: 61 311.1, 5.2, 0.45

2.3 Hyphen

2.3.1 Compound units

Use a hyphen or space to type compound unit names in full.

Correct: newton-metre, millimetre
Incorrect: newton·metre, milli·metre

2.3.2 Prefixes

There is no hyphen or space between a prefix and a unit of measure.

Correct: millimetre, kilogram
Incorrect: milli·metre, kilo·gram

3. SPACING

3.1 Prefix and Unit Symbols

Do not leave a space between a symbol or name having a prefix.

Correct: mm, kg, megahertz
Incorrect: m m, k g, mega hertz

3.2 Numbers and Symbols

A space is left between a number and a symbol. The symbol for "degree Celsius" can be written with or without a space.

Correct: 10 m², 8 ºm, 21°C or 21 °C
Incorrect: 10 m², 8 m, 21 ºC

3.3 Grouping Numbers

Numbers that are 1,000 and larger use a space instead of a comma to separate groups of three digits. A space is left after each group of three numbers both to the left and to the right of the decimal point. In a four digit number the space does not have to be used except to align with tabulation.

Correct: 12,486 g, 1,035 cm, 1,025 m
Incorrect: 12,486 g, 1,035 cm, 1,025 m

Table 2
TYPE IT METRIC STYLE

3.4 Decimals
No space is used before or after the decimal point.

Correct: Incorrect:
5.15 m 5.15 m
1.964.36 kg 1.964.36 kg

3.5. Mathematical Signs
Leave a space on each side of mathematical operation signs (multiplication, division, etc.) except within a compound symbol.

Correct: Incorrect:
2 cm x 3 cm 2 cm x 3 cm
8 g x 5 g 8 g x 5 g
kg/m² kg/m²
N m N m

3. SPELLING:
3.1 “re” or “er”
Both “re” and “er” are correct for the metric terms metre/meter and litre/liter. Whichever spelling you use, use that spelling consistently.

4.2 Plurals
1.2.1 Unit symbols
Do not add an “a” to a symbol to show a plural.

Correct: Incorrect:
8 cm 8 cm
8 gm 8 gm
3 ml 3 ml

1.2.2 Unit names
Unit names are made plural when required.

Correct: Incorrect:
75 metres 75 metre
2.2 kilograms 2.2 kilogram
3 litres 3 litre

4.2.3 Decimal fractions
Decimal fractions which are one or less are singular.
Decimal fractions more than one are always plural.

Correct: Incorrect:
0.5 gram (five tenths of a gram)
0.8 litre (eight tenths of a litre)
2.2 kilograms (two and two tenths kilograms)
25.3 millilitres (25 and one tenth millilitre)

5. Fractions and Mathematical Operations
5.1 Fractions
5.1.1 Decimals
Decimal notation is preferred for all fractions. However, common fractions with a denominator of 2, 3, 4, or 5 are acceptable.

Correct: Incorrect:
1.25 km 1.125 km
0.75 m 0.75 m
0.75 g or 3/4 g
1.25 m or 1 1/4 m

5.1.2 Quantities less than one
In numbers less than one, a “0” precedes the decimal point.

Correct: Incorrect:
0.46 cm 0.46 cm
0.871 g 0.871 g
0.75 ml 0.75 ml

5.2 Multiplication
5.2.1 Unit symbols
Use a raised dot to indicate symbols for units derived as a product.

Correct: Incorrect:
N m (newton-metre) N m
Pa (pascal second) Pa

5.2.2 Metric number calculations
Use “x” as a multiplier symbol for calculations. Do not use the “product dot.”

Correct: Incorrect:
6.2 mm x 6 6.2 mm x 6
120 cm x 10 120 cm x 10
72 mm x .01 72 mm x .01

Table 2
(continued)
5.3 Division
Division is indicated by the diagonal (oblique stroke or solidus). Only one diagonal should be used in a compound unit of measure.

<table>
<thead>
<tr>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm/s</td>
<td>cm/s</td>
</tr>
<tr>
<td>km/h</td>
<td>km/h</td>
</tr>
</tbody>
</table>

5.4 Powers
5.4.1 Squares and cubes
Use metric symbols with a superscript to indicate area and volume.

<table>
<thead>
<tr>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 mm²</td>
<td>55 sq. mm</td>
</tr>
<tr>
<td>10 cm²</td>
<td>10 cu. cm</td>
</tr>
<tr>
<td>3.4 m²</td>
<td>3.4 sq. m</td>
</tr>
</tbody>
</table>

5.4.2 Scientific notation
Division can also be shown by using a negative exponent.

Example: m/s⁻¹ = ms⁻¹

Correct: Incorrect :
km/h⁻¹ = km/s
m/s² = m/s²

6. OTHER SUGGESTIONS

6.1 Combining Metric Units
Do not combine metric units in one expression.

Correct: Incorrect :
10.21 m 10 m 20 cm 1 mm
400 cm by 750 cm 100 cm by 75 cm

6.2 Combining Words and Symbols
Do not combine metric words and symbols in one expression.

Correct: Incorrect :
kilowatts per hour kilowatts/h
kW/h kW/hour

6.3 Prefixes
Use one prefix with a unit of measure.

Correct: Incorrect :
Mg (megagram) kg (kilogram)
mm (millimetre) dm (decimetre)

6.4 Customary and Metric Symbols
Do not combine Customary and metric symbols in the same expression.

<table>
<thead>
<tr>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/m³</td>
<td>kg/ltr³</td>
</tr>
<tr>
<td>m/s²</td>
<td>m/s²</td>
</tr>
</tbody>
</table>

6.5 The Use of "Per"
Use the word "per" when writing out a metric expression. Substitute a diagonal (oblique stroke or solidus) to indicate the word per when writing metric symbols.

Correct: Incorrect :
kilometres per hour kilometres/hour
km/h kph
joule per kilogram joule/kilogram
J/kg J/kg

6.6 Typing Suggestions

6.6.1 Typeface
Type metric symbols in upright (roman) type. Use of italic (script) letters should be avoided.

Correct: Incorrect :
m m

6.6.2 micro - µ
If the symbol µ (mu) is not available, spell out the unit name. If necessary, the symbol can be made by striking the lowercase "u" and adding a tail to the lower left side.

Correct: micrometre jam

6.6.3 ohm - Ω
If the symbol Ω (Omega) is not available, spell out the unit name.

Correct: ohm Ω

6.6.4 litre - l
The symbol for litre is the lowercase "l." This is often confused with the numeral "1" (one). In cases where confusion might exist, spell out the unit name in full.

Correct: 0.5 litre

Table 2
(continued)
WRITE & SPELL IT RIGHT

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Plural</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>metre</td>
<td>metres</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>centimetre</td>
<td>centimetres</td>
<td>cm</td>
</tr>
<tr>
<td></td>
<td>millimetre</td>
<td>millimetres</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>kilometre</td>
<td>kilometres</td>
<td>km</td>
</tr>
<tr>
<td>area</td>
<td>square metre</td>
<td>square metres</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td>square centimetre</td>
<td>square centimetres</td>
<td>cm²</td>
</tr>
<tr>
<td></td>
<td>square millimetre</td>
<td>square millimetres</td>
<td>mm²</td>
</tr>
<tr>
<td>volume/capacity</td>
<td>cubic metre</td>
<td>cubic metres</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td>cubic centimetre</td>
<td>cubic centimetres</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>litre</td>
<td>litres</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>millilitre</td>
<td>millilitres</td>
<td>ml</td>
</tr>
<tr>
<td>mass</td>
<td>gram</td>
<td>grams</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>kilogram</td>
<td>kilograms</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>metric ton</td>
<td>metric tons</td>
<td>t</td>
</tr>
<tr>
<td>temperature</td>
<td>degree Celsius</td>
<td>degrees Celsius</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>kelvin</td>
<td>kelvins</td>
<td>K</td>
</tr>
<tr>
<td>time</td>
<td>day</td>
<td>days</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>hour</td>
<td>hours</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>minute</td>
<td>minutes</td>
<td>min</td>
</tr>
<tr>
<td></td>
<td>second</td>
<td>seconds</td>
<td>s</td>
</tr>
<tr>
<td>velocity</td>
<td>metre per second</td>
<td>metres per second</td>
<td>m/s</td>
</tr>
<tr>
<td>frequency</td>
<td>hertz</td>
<td>hertz</td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td>megahertz</td>
<td>megahertz</td>
<td>MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Plural</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>force</td>
<td>newton</td>
<td>newtons</td>
<td>N</td>
</tr>
<tr>
<td>conductance</td>
<td>siemens</td>
<td>siemens</td>
<td>S</td>
</tr>
<tr>
<td>electric current</td>
<td>ampere</td>
<td>amperes</td>
<td>A</td>
</tr>
<tr>
<td>electric change</td>
<td>coulomb</td>
<td>coulombs</td>
<td>C</td>
</tr>
<tr>
<td>electric potential</td>
<td>volt</td>
<td>volts</td>
<td>V</td>
</tr>
<tr>
<td>electric capacitance</td>
<td>farad</td>
<td>farads</td>
<td>F</td>
</tr>
<tr>
<td>electrical resistance</td>
<td>ohm</td>
<td>ohms</td>
<td>Ω</td>
</tr>
<tr>
<td>power</td>
<td>watt</td>
<td>watts</td>
<td>W</td>
</tr>
<tr>
<td>energy</td>
<td>joule</td>
<td>joules</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>kilojoule</td>
<td>kilojoules</td>
<td>kJ</td>
</tr>
<tr>
<td>illuminance</td>
<td>lux</td>
<td>lux</td>
<td>lx</td>
</tr>
<tr>
<td>luminous intensity</td>
<td>candelas</td>
<td>candelas</td>
<td>cd</td>
</tr>
<tr>
<td>density</td>
<td>kilogram per cubic metre</td>
<td>kilograms per cubic metre</td>
<td>kg/m³</td>
</tr>
<tr>
<td>pressure/stress</td>
<td>pascal</td>
<td>pascals</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>kilopascal</td>
<td>kilopascals</td>
<td>kPa</td>
</tr>
<tr>
<td>amount of substance</td>
<td>mole</td>
<td>moles</td>
<td>mol</td>
</tr>
<tr>
<td>luminous flux</td>
<td>lumen</td>
<td>lumens</td>
<td>lm</td>
</tr>
<tr>
<td>magnetic flux</td>
<td>weber</td>
<td>webers</td>
<td>Wb</td>
</tr>
<tr>
<td>magnetic inductance</td>
<td>tesla</td>
<td>teslas</td>
<td>T</td>
</tr>
<tr>
<td>inductance</td>
<td>henry</td>
<td>henries</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 3
TRYING OUT METRIC UNITS

To give you practice with metric units, first estimate the measurements of the items below. Write down your best guess next to the item. Then actually measure the item and write down your answers using the correct metric symbols. The more you practice, the easier it will be.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Estimate</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Middle desk drawer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. File cabinet drawer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Box of rubber bands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Wastebasket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Bottle of typewriter cleaner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Letter size file drawer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Coffee cup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Ream of paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Typing eraser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Paper clip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Dictionary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Business letter in an envelope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Stapler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Room temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Outside temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Hot tap water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Cold tap water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length

1. Width of file drawer
2. File folder width
3. Length of standard paper clip
4. Width of desk top
5. Length of table
6. Length of typing book
7. Height of the typewriter desk
8. Width of "a" key on a typewriter
9. Height of a four-drawer letter file cabinet

Area

10. Desk top
11. Small business card
12. Sheet of typing paper
13. Typing book cover
14. Envelope

Volume/Capacity

15. Small file box
USE THOSE METRIC TERMS

It is important to know what metric measurement to use. Show what measurement to use in the following situations.

1. Determining the area of desk top	13. Determining the height of file cabinet
2. Measuring the length of desk calendar	14. Finding the depth of file cabinet
3. Measuring the width of desk calendar	15. Determining the capacity of file drawer
4. Determining the area of in-out basket	16. Ordering a bottle of liquid correction fluid
5. Measuring the length of desk pad	17. Determining how much water to put in a coffee pot
7. Determining the top margin of a letter	19. Finding the mass of a business letter
8. Setting the side margin of a letter	20. Finding the mass of a package of 5 typing books
10. Determining the correct dimensions of a piece of paper	22. Determining temperature of the office
11. Ordering a box of carbon paper	23. Adjusting chair to comfortable height
12. Determining the width of file folder	24. Finding distances for a mileage report
	25. Ordering typing paper

THE CENTER FOR VOCATIONAL EDUCATION
WRITING METRIC TERMS

1. Using the reference materials, write metric symbols for the following:
 a) 900 farads
 b) 46 teslas
 c) 9 webers
 d) 465 metres
 e) 900 kilolitres
 f) 649 micrograms
 g) 41 megavolts
 h) 28 centimetres
 i) 981 lumens
 j) 968 cubic millimetres
 k) 1 square metre
 l) 465 metric tons
 m) 90 kilometres per hour
 n) 14 hours
 o) 76 degrees Celsius

2. Using the reference materials, write the numeral and write out the metric term for each of the following:
 a) 975 cm³
 b) 841 l
 c) 91 mm
 d) 47 μg
 e) 418 T
 f) 46 N·m
 g) 78 Wb/m²
 h) 14 m³
 i) 871 ml
 j) 94 g
 k) 853 kPa
 l) 95°C
 m) 461 V
 n) 978 Tm
 o) 81 kl

3. Write the metric symbol for the metric words that are written out, and write the metric words in full for the metric symbols that are given. Use Tables 1b, 2, and 3 as a guide, if necessary.
 a) Paper width, 210 millimetres
 b) Stapler mass, 400 grams
 c) Bookshelf width, 97 centimetres
 d) File cabinet height, 1.5 metres
 e) Cooler of water, 5 litres
 f) Dictionary cover area, 450 square centimetres
 g) Volume of 1 cup of coffee, 215 millilitres
 h) Typing book mass, 1 kilogram
 i) Eraser, 50 mm
 j) Desk drawer area, 10 880 cm²
 k) 500 ml of coffee
 l) Room temperature, 22°C
 m) Mass of a paper clip, 0.5 g
 n) Height of one bookshelf, 30 cm
 o) Room length, 10 m
 p) Duplicator fluid, 4 l
UNIT 3

OBJECTIVE

The student will recognize and use metric equivalents.

• Given a metric unit, state an equivalent in a larger or smaller metric unit.

SUGGESTED TEACHING SEQUENCE

1. Make available the Information Sheets (3 - 8) and the associated Exercises (9 - 15), one at a time.

2. As soon as you have presented the Information, have the students complete each Exercise.

3. Check their answers on the page titled ANSWERS TO EXERCISES AND TEST.

4. Test performance by using Section B of "Testing Metric Abilities."

METRIC-METRIC EQUIVALENTS

Centimetres and Millimetres

Look at the picture of the nail next to the ruler. The nail is 57 mm long. This is 5 cm + 7 mm. There are 10 mm in each cm, so 1 mm = 0.1 cm (one-tenth of a centimetre). This means that 7 mm = 0.7 cm, so 57 mm = 5 cm + 7 mm

= 5 cm + 0.7 cm

= 5.7 cm. Therefore 57 mm is the same as 5.7 cm.

Now measure the paper clip. It is 34 mm. This is the same as 3 cm + _____ mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), 4 mm = _____ cm. So, the paper clip is 34 mm = 3 cm + 4 mm

= 3 cm + 0.4 cm

= 3.4 cm. This means that 34 mm is the same as 3.4 cm.

Now you try some.

a) 26 mm = _____ cm
e) 132 mm = _____ cm
b) 583 mm = _____ cm
f) 802 mm = _____ cm
c) 94 mm = _____ cm
g) 1 400 mm = _____ cm
d) 680 mm = _____ cm
h) 2 307 mm = _____ cm

Exercise 9
Metres, Centimetres, and Millimetres

There are 100 centimetres in one metre. Thus,

- \(2 \text{ m} = 2 \times 100 \text{ cm} = 200 \text{ cm}\),
- \(3 \text{ m} = 3 \times 100 \text{ cm} = 300 \text{ cm}\),
- \(8 \text{ m} = 8 \times 100 \text{ cm} = 800 \text{ cm}\),
- \(36 \text{ m} = 36 \times 100 \text{ cm} = 3600 \text{ cm}\).

There are 1000 millimetres in one metre, so

- \(2 \text{ m} = 2 \times 1000 \text{ mm} = 2000 \text{ mm}\),
- \(3 \text{ m} = 3 \times 1000 \text{ mm} = 3000 \text{ mm}\),
- \(6 \text{ m} = 6 \times 1000 \text{ mm} = 6000 \text{ mm}\),
- \(24 \text{ m} = 24 \times 1000 \text{ mm} = 24000 \text{ mm}\).

From your work with decimals you should know that

- one-half of a metre can be written \(0.5 \text{ m}\) (five-tenths of a metre),
- one-fourth of a centimetre can be written \(0.25 \text{ cm}\) (twenty-five hundredths of a centimetre).

This means that if you want to change three-fourths of a metre to millimetres, you would multiply by 1000. So

\[
0.75 \text{ m} = 0.75 \times 1000 \text{ mm} \\
= \frac{75}{100} \times 1000 \text{ mm} \\
= 75 \times 10 \text{ mm} \\
= 750 \text{ mm}. \text{ This means that } 0.75 \text{ m} = 750 \text{ mm}.
\]

Information Sheet 4

Fill in the following chart.

<table>
<thead>
<tr>
<th>Metre (m)</th>
<th>Centimetre (cm)</th>
<th>Millimetre (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>639</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 10

Millilitres to Litres

There are 1000 millilitres in one litre. This means that:

- 2000 ml is the same as 2 litres,
- 3000 ml is the same as 3 litres,
- 4000 ml is the same as 4 litres,
- 12000 ml is the same as 12 litres.

Since there are 1000 millilitres in each litre, one way to change millilitres to litres is to divide by 1000. For example,

- \(1000 \text{ ml} = \frac{1000}{1000} \text{ litre} = 1 \text{ litre}\),
- \(2000 \text{ ml} = \frac{2000}{1000} \text{ litres} = 2 \text{ litres}\).

And, as a final example,

- \(28000 \text{ ml} = \frac{28000}{1000} \text{ litres} = 28 \text{ litres}\).

What if something holds 500 ml? How many litres is this? This is worked the same way.

- \(500 \text{ ml} = \frac{500}{1000} \text{ litre} = 0.5 \text{ litre}\) (five-tenths of a litre).

So 500 ml is the same as one-half (0.5) of a litre.

Change 57 millilitres to litres.

- \(57 \text{ ml} = \frac{57}{1000} \text{ litre} = 0.057 \text{ litre}\) (fifty-seven thousandths of a litre).

Information Sheet 5

Now you try some. Complete the following chart.

<table>
<thead>
<tr>
<th>Millilitres (ml)</th>
<th>Litres (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>3</td>
</tr>
<tr>
<td>6000</td>
<td>6</td>
</tr>
<tr>
<td>14000</td>
<td>14</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
</tr>
<tr>
<td>700</td>
<td>0.7</td>
</tr>
<tr>
<td>250</td>
<td>0.25</td>
</tr>
<tr>
<td>275</td>
<td>0.275</td>
</tr>
</tbody>
</table>

Exercise 11
Litres to Millilitres

What do you do if you need to change litres to millilitres? Remember, there are 1,000 millilitres in one litre, or 1 litre = 1,000 ml.

So,

- 2 litres = 2 × 1,000 ml = 2,000 ml,
- 7 litres = 7 × 1,000 ml = 7,000 ml,
- 13 litres = 13 × 1,000 ml = 13,000 ml,
- 0.65 litre = 0.65 × 1,000 ml = 650 ml.

Now you try some. Complete the following chart.

<table>
<thead>
<tr>
<th>litres</th>
<th>millilitres ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8,000</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>46,000</td>
</tr>
<tr>
<td>0.4</td>
<td>400</td>
</tr>
<tr>
<td>0.53</td>
<td>530</td>
</tr>
</tbody>
</table>

Exercise 12

Grams to Kilograms

There are 1,000 grams in one kilogram. This means that

- 2,000 grams is the same as 2 kilograms,
- 5,000 g is the same as 5 kg,
- 700 g is the same as 0.7 kg, and so on.

To change from grams to kilograms, you use the same procedure for changing from millilitres to litres.

Try the following ones.

<table>
<thead>
<tr>
<th>grams g</th>
<th>kilograms kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,000</td>
<td>4</td>
</tr>
<tr>
<td>9,000</td>
<td></td>
</tr>
<tr>
<td>23,000</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
</tbody>
</table>

Exercise 13

Kilograms to Grams

To change kilograms to grams, you multiply by 1,000.

- 4 kg = 4 × 1,000 g = 4,000 g,
- 23 kg = 23 × 1,000 g = 23,000 g,
- 0.75 kg = 0.75 × 1,000 g = 750 g.

Complete the following chart.

<table>
<thead>
<tr>
<th>kilograms kg</th>
<th>grams g</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7,000</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>400</td>
</tr>
<tr>
<td>0.63</td>
<td>630</td>
</tr>
</tbody>
</table>

Exercise 14

Changing Units at Work

Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements.

- a) 500 cm of tape is _______ m
- b) 250 ml of solution is _______ l
- c) 2 cm stamp is _______ mm
- d) 500 g of mimeograph ink is _______ kg
- e) 0.05 litre of fluid is _______ ml
- f) 1.5 m file cabinet is _______ mm
- g) 2500 g package is _______ kg
- h) 24 cm side margin is _______ mm
- i) 500 ml of fluid is _______ l
- j) 0.5 t of paper is _______ kg
- k) 10 m of twine is _______ cm
- l) 3.5 cm paper clip is _______ mm
- m) 20 kg typewriter is _______ g
- n) 25 cm wide envelope is _______ mm
- o) 2,400 mm room divider length is _______ cm
UNIT 4

OBJECTIVES

The student will correctly proof, type, and layout pages, using metric units, terms, and symbols.

- Given a proofing exercise with metric terms, identify the incorrect usage of terms and symbols, and correctly type the exercise using proper rules of notation.
- Given layout information and metric dimensions, prepare an attractive typing layout for a page.

SUGGESTED TEACHING SEQUENCE

1. Present or make available Information Sheet 9 and Tables 1b, 2, and 3. Review the reference format and ways of using the reference material.

2. Using the references, have students complete the proofing and typing exercises in Exercise 16.

3. Assemble equipment (paper, rulers, scissors, etc.) and have students complete the layouts in Exercise 17.

WORKING WITH METRICS

Typing

The American Metric Council recommends when the following metric symbols are used frequently that they be included on typewriters:

1. superscripts ² and ³ for squares and cubes
2. sign • for a product dot
3. symbol ° for degree
4. symbol Ω for ohm
5. symbol μ for micro

A special type element is available for some typewriters which contains these and many other characters used in technical reports. Other typewriters can use replaceable character keys.

If neither of these options is available the following procedures can be used on regular keyboards. Superscripts, product dots, and degree symbols can be produced by rolling the platen half a space before typing the figure. Numerals are typed as superscripts, the period is substituted for the product dot and a lower case “o” is typed for the degree symbol. “Ohm” (Ω) should be spelled out whenever possible. Micro (µ) can be produced by striking a lower case “u” and adding a tail to the lower left side.

Layout and Margins

Layout designs and margins will be given in millimetres and centimetres. 2.5 cm will be used instead of 1 inch margins, 3.75 cm for 1 1/2 inches, 5 cm for 2 inches, etc.*

PROOFREADING METRIC TERMS

Part 1. Type the following memo. Be sure to proof it before you begin typing. (There are spelling, symbol, and notation errors.) Prepare a final mailable copy.

To: All Staff
Date: December 14, 19-
From: Paul Jones, President
Subject: Adoption of Metric System

Due to the recent adoption of the metric system by the United States Government, we find some need to expand this company's background knowledge of the system. We will be required to order more of our equipment and supplies utilizing the metric unit of measure. Also, our customers will gradually begin to order in metric quantities. Therefore, we must prepare to meet this challenge. Please review the following information and keep it available for easy reference.

1. Linear measures will be: millimetres (mM) and centimeters (cm.) instead of inches; metres (M) will replace feet and yards; kilometres will take the place of miles. Speed will be recorded in km per hour rather than mph.

2. Area is measured by cm² replacing square inches: square feet and square yards will be replaced by m². The unit of land measure which replaces the acre will be the hectare.

3. Liquid supplies will be measured in millimetres (ml) and litres (L) (replacing the cup, pint, quart, gallon); and very large quantities will be measured in kilolitres (kls).

4. Weights will be determined in grammes, kilograms, and tonnes.

5. A comfortable room temperature will be 20 degrees Celsius (20°C) instead of 68°F. Also, scientific use of temperature will be shown in Kelvins.

6. The following electrical terms will not change: volts (v.), henries (H), webres (wb), farades (F), and Wats (Ws), etc.

Training programs will be scheduled for all employees in the very near future. Let's go metric!

Part 2.

Proof the following advertisement. There are spelling, symbol, notation, and substitution errors. Type a final printable copy.

FOR SALE

Lovely old colonial home located on wooded ten-hectare lot in Worthmoore school district, just 10 Km from the nearest shopping centre. The house has 225 sq. m. of floor space; a large 400 cms x 730cm livingroom; formal 335 cm x 430 centilitre dining room; three bedrooms; two full baths; finished basement; and separate two-car garage. It has a 250 liter water heater, 400 Litre fuel oil tank, and 15 cms of insulation in the attic.

Special features: two wood burning fireplaces with 4 ms³ of cut wood; wine cellar kept at constant 12°C; 4-stall stable with 500 Kg of feed; 25 M² of formal garden; 4 kiloliter of riding trails; 2 hectare of woods; 1 1/2 hA fenced pasture; .75 km driveway bordered by a stone fence 1 3/8 m high.

For information call Metric Realty at 466-4874, Ext. 2.
METRIC LAYOUTS

You have been given information for two layouts for typing. Your task is to prepare correct sizes of the items and plan an attractive layout for each page. (The figures shown for both layouts are the actual measurements you are to use; however, the drawings are scaled down from the actual size.)

LAYOUT 1.

LAYOUT 2.

Exercise 17
OBJECTIVE

The student will recognize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation.

- Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table.
- Given a Customary unit, state the replacement unit.

SUGGESTED TEACHING SEQUENCE

1. Assemble packages and containers of materials.
2. Present or make available Information Sheet 10.
3. Have students find approximate metric-Customary equivalents by using Exercise 18.
4. Test performance by using Section D of "Testing Metric Abilities."

METRIC-CUSTOMARY EQUIVALENTS

During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps:

1. Determine which conversion table is needed.
2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number.
3. Read the equivalent(s) from the next column.

Below is a table of metric-Customary equivalents which tells you what the metric replacement for Customary units are.* This table can be used with Exercise 18, Part 1. The symbol ≈ means "nearly equal to."

*Adapted from Let's Measure Metric, A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975.
ANY WAY YOU WANT IT

1. One of your office tasks may be typing purchase orders, making changes from Customary units to metric units of measure (as some suppliers will sell metric quantities only). To develop your skill in determining approximate Customary equivalents, use the Table on Information Sheet 10 and give the approximate metric quantity (both number and units) for each of the following Customary quantities.

<table>
<thead>
<tr>
<th>Customary Quantity</th>
<th>Metric Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 1 gal. of typewriter cleaner</td>
<td></td>
</tr>
<tr>
<td>b) 5 oz. of correction fluid</td>
<td></td>
</tr>
<tr>
<td>c) 1/2 in. tape</td>
<td></td>
</tr>
<tr>
<td>d) 2 lbs. of hand cleaner</td>
<td></td>
</tr>
<tr>
<td>e) 25 ft. of string</td>
<td></td>
</tr>
<tr>
<td>f) 9 in. reference manual</td>
<td></td>
</tr>
<tr>
<td>g) Two-gallon waste basket</td>
<td></td>
</tr>
<tr>
<td>h) 1 pt. of hand cleaner</td>
<td></td>
</tr>
<tr>
<td>i) 1/2 lb. of rubber bands</td>
<td></td>
</tr>
<tr>
<td>j) 30 in. x 60 in. desk</td>
<td></td>
</tr>
<tr>
<td>k) 1 fl. oz. liquid re-type</td>
<td></td>
</tr>
<tr>
<td>l) 5 lb. package</td>
<td></td>
</tr>
<tr>
<td>m) 6 in. pair of scissors</td>
<td></td>
</tr>
<tr>
<td>n) 3 mile distance</td>
<td></td>
</tr>
</tbody>
</table>

2. Use the following conversion tables to find the metric or Customary equivalent for these quantities.

<table>
<thead>
<tr>
<th>MILLIMETRES TO INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCHES TO MILLIMETRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

Exercise 18
SECTION A
1. One kilogram is about the mass of a:
 [A] nickel
 [B] apple seed
 [C] basketball
 [D] Volkswagen "Beetle"

2. A square metre is about the area of:
 [A] this sheet of paper
 [B] a card table top
 [C] a bedspread
 [D] a postage stamp

3. When setting side margins, the unit of measure to be used would be:
 [A] micrometres
 [B] kilometres
 [C] centimetres
 [D] metres

4. The mass of a business letter would be measured in:
 [A] millilitres
 [B] litres
 [C] metres
 [D] grams

5. The correct way to write twenty grams is:
 [A] 20 gms
 [B] 20 Gm.
 [C] 20 g
 [D] 20 g

SECTION B
6. The correct way to write twelve thousand millimetres is:
 [A] 12,000 mm.
 [B] 12,000 mm
 [C] 12,000 mm
 [D] 12,000 mm

7. A business form 20 centimetres wide is the same as:
 [A] 2,000 millimetres
 [B] 200 millimetres
 [C] 0.02 millimetre
 [D] 2 millimetres

8. A paper 216 millimetres wide is the same as:
 [A] 21.6 centimetres
 [B] 21.6 metres
 [C] 2.16 metres
 [D] 0.216 metre

SECTION C
9. Which metric term is misspelled?
 [A] lumens
 [B] milligrams
 [C] degree Celsius
 [D] lux

10. Which sentence is correctly typed?
 [A] The card has a mass of 2 gs.
 [B] The temperature is 33 degrees C.
 [C] The area of the floor is 9,000 m².
 [D] The executive traveled 1,500 km.

SECTION D
11. Which metric term is misspelled?
 [A] henries
 [B] watts
 [C] kilograms
 [D] Celsius

12. Which term is the correct way to write kilometres per hour:
 [A] k.p.h.
 [B] km/hr.
 [C] km/h
 [D] kilometres/hour

13. The metric unit which replaces the cubic yard is:
 [A] cubic kilogram
 [B] cubic microwatt
 [C] cubic litre
 [D] cubic metre

14. The metric unit which replaces the quart is:
 [A] microlitre
 [B] kilolitre
 [C] millilitre
 [D] litre

15. The equivalent of 150 mm is:
 [A] 5.91 in.
 [B] 15.0 in.
 [C] 1.50 in.
 [D] 5.0 in.

16. The equivalent of 210 mm is:
 [A] 8.26 in.
 [B] 8.0 in.
 [C] 20.26 in.
 [D] 20.0 in.
EXERCISES 1 THRU 6

The answers depend on the items used for the activities.

EXERCISE 7

Currently accepted metric units of measurement for each question are shown in Table 1a. Standards in each occupation are being established now, so answers may vary.

EXERCISE 8

Part 1.

a) 900 F
 b) 46 T
 c) 9 Wb
 d) 900 kl
 e) 649 μg
 f) 41 MV
 g) 28 cm

EXERCISE 9

Part 2.

a) 210 mm
 b) 400 g
 c) 97 cm
 d) 1 m
 e) 51
 f) 450 cm²
 g) 215 ml
 h) 1 kg
 i) 50 millimetres
 j) 10 880 cubic centimetres
 k) 500 millilitres
 l) 22 degrees Celsius
 m) 0.5 gram
 n) 30 centimetres
 o) 10 metres
 p) 4 litres

EXERCISES 10 THRU 14

Tables are reproduced in total. Answers are in parentheses.

Exercise 10

<table>
<thead>
<tr>
<th>metre</th>
<th>centimetre</th>
<th>millimetre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>(300)</td>
<td>(3000)</td>
</tr>
<tr>
<td>4</td>
<td>(400)</td>
<td>(4000)</td>
</tr>
<tr>
<td>5</td>
<td>(500)</td>
<td>5000</td>
</tr>
<tr>
<td>6</td>
<td>(600)</td>
<td>6000</td>
</tr>
<tr>
<td>0.8</td>
<td>80</td>
<td>(800)</td>
</tr>
<tr>
<td>0.6</td>
<td>(60)</td>
<td>600</td>
</tr>
<tr>
<td>(0.025)</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>(0.148)</td>
<td>14.8</td>
<td>148</td>
</tr>
<tr>
<td>(6.39)</td>
<td>639</td>
<td>(6 390)</td>
</tr>
</tbody>
</table>

Exercise 11

<table>
<thead>
<tr>
<th>millilitres</th>
<th>litres</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>3</td>
</tr>
<tr>
<td>6000</td>
<td>(6)</td>
</tr>
<tr>
<td>(8 000)</td>
<td>8</td>
</tr>
<tr>
<td>(14 000)</td>
<td>(14)</td>
</tr>
<tr>
<td>(23 000)</td>
<td>23</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
</tr>
<tr>
<td>700</td>
<td>(0.7)</td>
</tr>
<tr>
<td>(900)</td>
<td>0.9</td>
</tr>
<tr>
<td>250</td>
<td>(0.25)</td>
</tr>
<tr>
<td>(470)</td>
<td>0.47</td>
</tr>
<tr>
<td>275</td>
<td>(0.275)</td>
</tr>
</tbody>
</table>

Exercise 12

<table>
<thead>
<tr>
<th>litres</th>
<th>millilitres</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8000</td>
</tr>
<tr>
<td>5</td>
<td>(5000)</td>
</tr>
<tr>
<td>45</td>
<td>(48 000)</td>
</tr>
<tr>
<td>(32)</td>
<td>32 000</td>
</tr>
<tr>
<td>0.4</td>
<td>(400)</td>
</tr>
<tr>
<td>0.53</td>
<td>(530)</td>
</tr>
<tr>
<td>(0.48)</td>
<td>480</td>
</tr>
</tbody>
</table>

Exercise 13

<table>
<thead>
<tr>
<th>grams</th>
<th>kilograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>4</td>
</tr>
<tr>
<td>9000</td>
<td>(9)</td>
</tr>
<tr>
<td>23000</td>
<td>(23)</td>
</tr>
<tr>
<td>(8 000)</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td>(0.3)</td>
</tr>
<tr>
<td>275</td>
<td>(0.275)</td>
</tr>
</tbody>
</table>

Exercise 14

<table>
<thead>
<tr>
<th>kilograms</th>
<th>grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7000</td>
</tr>
<tr>
<td>11</td>
<td>(11 000)</td>
</tr>
<tr>
<td>25</td>
<td>25000</td>
</tr>
<tr>
<td>0.4</td>
<td>(400)</td>
</tr>
<tr>
<td>0.63</td>
<td>(630)</td>
</tr>
<tr>
<td>(0.175)</td>
<td>175</td>
</tr>
</tbody>
</table>
EXERCISE 15

a) 5 m
b) 0.25 litre
c) 20 mm
d) 0.5 kg
e) 50 ml
f) 1 500 mm
g) 2.5 kg
h) 240 mm

EXERCISE 16

The correct answers are underlined in the following copy.

Part 1.

1. Linear measures will be: millimetres (mm) and centimetres (cm) instead of inches; metres (m) will replace feet and yards; kilometres will take the place of miles. Travel reports will reflect km rather than miles. Speed will be recorded in km/h rather than mph.

2. Area is measured by cm² replacing square inches; square feet and square yards will be replaced by m². The unit of land measure which replaces the acre will be the hectare.

3. Liquid supplies will be measured in millilitres (ml) and litres (l), replacing the cup, pint, quart, gallon; and very large quantities will be measured in kilolitres (kl).

4. Weights will be determined in grams, kilograms, and metric tons.

5. A comfortable room temperature will be 20 degrees Celsius (20°C) instead of 68°F. Also, scientific use of temperature will be shown in kelvins.

6. The following electrical terms will not change: volts (V), henries (H), webers (Wb), farads (F), and watts (W), etc.

Part 2.

Lovely old colonial home located on wooded ten-hectare lot in Worthmoore school district, just 10 km from the nearest shopping center. The house has 225 m² of floor space; a large 400 cm x 730 cm living room; formal 335 cm x 430 cm dining room; three bedrooms; two full baths; finished basement; and separate two-car garage. It has a 250 litre water heater, 400 litre fuel oil tank, and 15 cm of insulation in the attic.

Special features: 2 wood burning fireplaces with 4 m³ of cut wood; wine cellar kept at constant 12°C; 4 stall stable with 500 kg of feed; 25 m² of formal garden; 4 kilometres of riding trails; 2 hectares of woods; 1.5 ha fenced pasture; 0.75 km driveway bordered by a stone fence 1.875 m high.

EXERCISE 17

Teacher to determine criteria for attractive layout.

EXERCISE 18

Part 1.

a) 3.79 litres
b) 148 ml
c) 1.27 cm
d) 0.9 kg
e) 7.625 m
f) 22.86 cm
g) 7.58 litres

Part 2.

a) 0.04 in.
b) 1.77 in.
c) 0.99 in.
d) 3.27 in.
e) 2.13 in.
f) 2.84 in.
g) 0.43 in.
h) 2.36 in.
i) 0.87 in.
j) 0.31 in.
k) 0.95 in.
l) 2.96 in.

TESTING METRIC ABILITIES

1. C
2. B
3. C
4. D
5. D
6. D
7. B
8. A
Tools and Devices List

Suggested Metric Tools and Devices Needed to Complete Measurement Tasks in Exercises 1 Through 5

(* Optional)

Linear

- Metre Sticks
- Rules, 30 cm
- Measuring Tapes, 150 cm
- *Height Measure
- *Metre Tape, 10 m
- *Trundle Wheel
- *Area Measuring Grid

Volume/Capacity

- *Nesting Measures, set of 5, 50 ml - 1 000 ml
- Economy Beaker, set of 6, 50 ml - 1 000 ml
- Metric Spoon, set of 5, 1 ml - 25 ml
- Dry Measure, set of 3, 50, 125, 250 ml
- Plastic Litre Box
- Centimetre Cubes

Mass

- Bathroom Scale
- *Kilogram Scale
- *Platform Spring Scale
- 5 kg Capacity
- 10 kg Capacity
- Balance Scale with 8-piece mass set
- *Spring Scale, 6 kg Capacity

Temperature

- Celsius Thermometer

The Center for Vocational Education

The Ohio State University • 1960 Kenny Road • Columbus, Ohio 43210
REFERENCES

Let’s Measure Metric. A Teacher’s Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975, 80 pages; $1.50, must include check to state treasurer.

Activity-oriented introduction to the metric system designed for independent or group in-service education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; laboratory activities for individuals or groups. Templates for making metric tape, litre box, square centimetre grid.

Measuring with Meters or How to Weigh a Gold Brick with a Meter Stick. Metrication Institute of America, P.O. Box 238, Northfield, IL 60093, 1974, 23 min., 16 mm, sound, color; $310.00 purchase, $31.00 rental.

Film presents units for length, area, volume and mass, relating each unit to many common objects. Screen overprints show correct use of metric symbols and ease of metric calculations. Relationships among metric measurements of length, area, volume, and mass are illustrated in interesting and unforgettable ways.

Set of recommendations serving as interim guide “to accepted metric practices.” Section on rules for writing metric quantities covers: capitals, plurals, decimal points, grouping of numbers, spacing and compound units. Additional sections cover: common metric units and symbols, pronunciation, typewriting recommendations, longhand and shorthand recommendations and SI unit prefixes.

Comprehensive bibliography of instructional materials, reference materials and resource list for secondary, post-secondary, teacher education, and adult basic education. Instructional materials indexed by 15 occupational clusters, types of materials, and educational level.

Paper for teachers, curriculum developers, and administrators in vocational, technical and adult education. Covers issues in metric education, the metric system, the impact of metircation on vocational and technical education, implications of metric instruction for adult basic education, and curriculum and instructional strategies.

Service project report giving information on history of the metric system, its impact on business, industry, and education. Specific suggestions and materials for teaching metrics in business math, consumer education, typewriting, and shorthand. Bibliography and supplementary sources listed of abstracts, books, conference reports, kits, pamphlets, and periodicals.

Guideline for IBM personnel illustrating use of SI units in written materials. Content covers punctuation, spelling, usage and format, SI base units, supplementary units, derived units with special names, prefixes of SI units, and derived units without special names.

Commonly known as “NBS 330,” booklet defines modernized metric system (SI). Contains resolutions and recommendations of General Conference on Weights and Measures, as well as International Organization for Standardization (ISO) on practical use of the system.

METRIC SUPPLIERS

Dick Blick Company, P.O. Box 1267, Galesburg, IL 61401

Instructional quality rules, tapes, metre sticks, cubes, height measures, trundle wheels, measuring cups and spoons, personal scales, gram/kilogram scales, feelers and depth gages, beakers, thermometers, kits and other aids.

INFORMATION SOURCES

American National Metric Council, 1625 Massachusetts Avenue, N.W., Washington, D.C. 20036

Charts, posters, reports and pamphlets, Metric Reporter newsletter. National metric coordinating council representing industry, government, education, professional and trade organizations.

Free and inexpensive metric charts and publications, also lends films and displays.