Multi-Model Simulation: The Command and Control (C2) Wind Tunnel

A Model-Based Simulation Integration Platform for Rapid Synthesis of Distributed Heterogeneous Simulations

Himanshu Neema
Janos Sztipanovits

Mar. 23, 2015
Command and Control (C2) Architecture Analysis
(AFOSR/PRET project with UC Berkeley and George Mason, 2006-2009)

C2 issues to be studied experimentally:

- Distributed Mission Operation
 - Synchronization and coordination
 - Distributed dynamic decision making
 - Network effects

- Increased Information Sharing
 - Shared situation awareness
 - Common Operation Picture (COP)
 - Network effects

- Seamless Integration of Manned/Unmanned Assets
 - Mixed-Initiative Teams

- System Level Impact Analysis
 - Cyber attacks and Resilient solutions
 - Strategy/gaming
How can we integrate the simulated heterogeneous system components?
How can we integrate the simulation engines?
How can we rapidly synthesize and deploy integrated simulations?
Integrated control, communication, and power system
(Pilot and joint experiment with WSU, 2011)
5-Bus Example: Power Grid Model

Tool: SimPower/MATLAB
Semantics: Continuous Time
5-Bus Example: Communication Model

Tool: NS-2
Semantics: Discrete Event
Other Tools: OMNeT++
OPNET, TrueTime,..
5-Bus Example: Control Center Model

Tool: MATLAB
Semantics: Discrete time

Other Tools: DEVS, LabView,
Semantics: Discrete Event
Integration Challenges

• Simulators have different timing models
• Execution needs to be coordinated
• Data needs to be shared
• Different time-scale and resolution
• Logical time v.s. real time
• Different simulation engines

• Modeling languages are different
• Semantics is different:
 - continuous time
 - discrete time
 - discrete event
• Simulated systems are interacting but modeling languages do not have construct to express them
• No support for specifying experiments
Multi-Model Integration Challenges

Integrating *models*

- Heterogeneous models for different domains: human organizations, communication networks, C2 software systems, vehicle simulations, etc. These models need to talk to each-other somehow.

- Needed: an overarching *integration model* that *connects* and *relates* these heterogeneous domain models in a logically coherent framework.

Integrating *simulations*

- Heterogeneous simulators and emulators for different domains: Colored Petri Nets, OMNET++, DEVS, Simulink/Stateflow, Delta3D, etc.

- Needed: an underlying *software infrastructure* that *connects* and *relates* the heterogeneous simulators in a logically and temporally coherent framework.

Key idea: Integration is about messages and shared data across system components. Why don’t we model these messages and shared data elements and use these models to facilitate model and system integration?
Model and Simulation Integration Approach in C2WT

Model Integration Language - MIL
Hierarchical Ported Models /Interconnects
Information Flows
Interactions

Semantic Backplane

Semantic Interface

MIL Translators
- MIL ↔ SL/SF Fed
- MIL ↔ OMNet Fed
- MIL ↔ SUMO Fed

Domain Specific Simulation Tools
- Dymola
- Modelica
- MATLAB Simulink
- OMNeT++
- SUMO

HLA Federates

HLA BUS
What is High-Level Architecture (HLA)?

- An IEEE standard for “interoperable” and “reusable” models and simulations.
 - Most used specification (also used in the demo) is IEEE HLA 1.3 (1998)
 - Most recent specification is IEEE HLA 1516 (2000+)
- DoD-wide policy requires ALL defense models and simulations to comply with the standard.
- Primary goal is to provide a general purpose infrastructure for “distributed” simulation and analysis.
- Software implementing the HLA specification is called Run-Time Infrastructure (RTI).
 - Several commercial and open-source RTIs are available.
 - In the demo we used an open-source RTI PORTICO v2.0.1 implemented in Java language (http://porticoproject.org/).
Example: Integration model of a specific C2 scenario

Federates (component simulators) publish and subscribe to various types of interactions. (—)
Specific dataflows across networks are specified via ported federates and dataflow connections (-----)
Other tool integration examples and capabilities

DEVSJAVA Discrete Event Simulation (DEVS)

OMNeT++ Network Simulation integration

- Omnet, Inet packages
 - Omnet is a generic discrete event simulation package (module specification with .md files, implementation in c++, modular, customizable plugin architecture)
 - Inet: network protocols for omnet (ig, wireless, ad hoc, etc)
- Omnet integration
 - Challenges
 - Scheduler integration
 - Data type mapping
 - C2 Wind Tunnel network support
 - Build in NetworkSim federate, takes care of omnet scheduler synchronization and data conversion
 - Built in network interaction (NetworkInteractions)
 - Derive interactions from the NetworkInteraction to specify custom data types
 - Derived interactions will be sent through the network simulator
 - Federates can be connected to network endpoints, addressing is based endpoint names

Library of supported tools and mechanisms:

- **Other simulation tools** (NS-2, Delta3D, Google Earth, Java/C/C++, FMU-CS, etc.)
- **Passive federates** (e.g. Loggers, monitors, etc.)
- **Live components** (e.g. Emergency response, Traffic conditions, Human-in-the-loop, etc.)
- **Advanced support** (e.g. Legacy FOMs, COAs, Expt. Config., Remote deployment, Gaming, etc.)

3D Visualization model integration

- OGRE 3D (open source graphics engine)
 - Widely used 3D engine in games
 - C++ implementation
- C2 Wind Tunnel integration
 - Simple java interface for OGRE (most of our federates are java based)
 - The UAV/SensorFed federate: An example visualization federate
 - Interpolation for smooth animation
 - Time interpolation
 - Object position estimation (dead reckoning)
Ongoing efforts

• With NIST:
 – Building automation with Cyber & Network Effects Analysis
 – Performance Impact of Securing Security Industrial Control Systems
 (uses Railroad Infrastructure and Network Simulations)

• With AFRL:
 – System Science of SecUrity and REsilience (SURE): Threat modeling,
 Cyber effects analysis, Resilient Architectures, Decentralized security

• Global Cities Challenge (sequel to Smart America)
 – Real-time Optimized Metro Routes (from an App) based on real-time
 traffic input and look-ahead of traffic demands based on historical
 information. Also, support for analytics to improve metro efficiency in
 a number of ways.
OpenMETA & C2WT for Building Automation

1. Discrete & Parametric Design Space Exploration for Building Automation
 • Multi-domain, component-based modeling
 • Joint exploration across design domains
 • Integration of NIST Building Tools for DSE

2. Cyber & Network Effect Simulation with C2WT
 • Addressing scale and solvability challenges of multi-domain, multi-scale simulation with time partitioning across integrated simulations
 • Analysis of cyber and network effect on integrated building automation components
 – Buildings library from LBNL as FMU federates,
 – OMNeT++ models as network federates,
 – MATLAB/Simulink models for controller models, and
 – Perform integrated simulation studies using C2WT
Key URLs and Contact

- C2WT community wiki – https://wiki.isis.vanderbilt.edu/OpenC2WT

- **Contact:**

 Himanshu Neema
 Senior Staff Engineer
 Institute for Software Integrated Systems, Vanderbilt University
 Email: himanshu@isis.vanderbilt.edu
 Ph: +1-615-497-8136, Fax: 343-7440
 http://www.isis.vanderbilt.edu