Thermal Analysis of Refrigeration Systems Used for Vaccine Storage

Michal Chojnacky
Physicist

National Institute of Standards and Technology
Process Measurements Division
Gaithersburg, MD

michalc@nist.gov

Project funded by the Centers for Disease Control and Prevention

CDC Contact: Tony Richardson, Public Health Advisor
Current Problem

CDC administers ~ $3 billion of vaccine through Vaccines for Children (VFC) program each year.

Storage temperature control is vital to maintaining vaccine potency
- Storage outside 2 °C to 8 °C range can render vaccines ineffective
- A meta-analysis estimates 14 to 35% of delivered vaccines are subjected to inappropriate storage temperatures

Social and economic costs of improperly stored vaccines
- Cost of manufacturing and delivering vaccine wasted
- Vaccine delivery delayed
- Reported vaccination rates are erroneously high
- Recipients are not protected

$3 B/yr program X 30% loss due to known thermal excursions = $900 M/yr loss
Background and Purpose

Challenges in ensuring VFC providers follow good vaccine storage and temperature maintenance practices

- 45,000+ providers, many different storage and temperature monitoring methods
- Suitability of commercial refrigerators for vaccine storage not well documented
- Impact of refrigerator loading pattern, normal refrigerator use, environmental temperature fluctuations, …unknown!
- Inadequate temperature monitoring: improper thermometer placement, possible device inaccuracies, and absence of continuous temperature data collection

Need for research that matches everyday conditions experienced by vaccine providers

- Improve storage and handling guidelines and practice
Experimental Method: Measurement System

- 19 thermocouples and 3 to 6 electronic data loggers arranged throughout refrigerators
 - Calibrated at ice point (0 °C)
 - Sensors attached to vaccine vials, walls, inside glycol-filled bottles, and hanging in air
 - Recorded data continuously during trials lasting 15 hours to several days

<table>
<thead>
<tr>
<th>Device name</th>
<th>U(k=2), °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple measurement system</td>
<td>0.12</td>
</tr>
<tr>
<td>Data logger A</td>
<td>0.58</td>
</tr>
<tr>
<td>Data logger B</td>
<td>1.41</td>
</tr>
<tr>
<td>Data logger C</td>
<td>0.67</td>
</tr>
<tr>
<td>Data logger D</td>
<td>0.59</td>
</tr>
<tr>
<td>Data logger E</td>
<td>0.59</td>
</tr>
</tbody>
</table>

- Rate of data collection
 - Thermocouples = 10 s
 - Data loggers = 30 s to 1 min

- 100,000 – 500,000 data points collected during each trial
 - Complete picture of temperature behavior over time
 - Condense into representative samples and averages to find correlations between tested criteria and temperature trends
Experimental Method: Tested Criteria

4 refrigerator styles
- Freezerless, Dormitory-style, Dual Zone Fridge/Freezer, Pharmaceutical grade

Varied refrigerator loading patterns
- Low, medium, and high density loads
- Plastic trays, cardboard boxes, and combined trays/boxes storage configurations
- With and without water bottles (3 - 5% total capacity) in refrigerator door

Normal use simulation - open / close refrigerator door
Door left ajar
Increased room temperature
Power outage and recovery
Experimental Method: Measurement Matrix

<table>
<thead>
<tr>
<th>Trial</th>
<th>Load Density</th>
<th>Packing Style</th>
<th>Water Bottles</th>
<th>Measurement Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Trays</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

- Cross cutting matrix captures range of normal usage conditions
 - Normalize measurements across different refrigeration systems
- Refrigerator temperature set points left unchanged throughout study
 - “Out of box” midpoint temperature dial settings ~ 4 – 6 °C
Results: temperature stability of refrigerators

Freezerless Refrigerator

Dual Zone Refrigerator

data collected over 26 day period

Pharmaceutical Refrigerator

Dorm-style Refrigerator

51 days

45 days

31 days

top wall

near cooling unit

back of tray, near wall

severe set point drift after 2 weeks
Comparison of Refrigerator Performance in Response to Tested Criteria

I. Loading density

<table>
<thead>
<tr>
<th>Little or No Impact</th>
<th>Negative Impact on Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREEZERLESS</td>
<td>DUAL ZONE</td>
</tr>
<tr>
<td>• No significant impact on performance</td>
<td>• Possible minor increase in location-specific temperature variation for high density loads</td>
</tr>
<tr>
<td>PHARMACEUTICAL</td>
<td>DORM-STYLE</td>
</tr>
<tr>
<td>• No significant impact on performance</td>
<td>• Noticeable impact on performance due to lack of air circulation</td>
</tr>
<tr>
<td></td>
<td>• High-density loading patterns increased location-specific temperature variation</td>
</tr>
</tbody>
</table>

Density variation pattern in dorm-style fridge

Low Density Pack | Medium Density Pack | High Density Pack
II. Packing style (Trays, Boxes, or Mixed)

<table>
<thead>
<tr>
<th>FREEZERLESS, PHARMACEUTICAL & DUAL ZONE</th>
<th>DORM-STYLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No noticeable impact on performance</td>
<td>• Indeterminable due to overall poor refrigerator stability</td>
</tr>
</tbody>
</table>

Packing style variation in freezerless refrigerator

- Plastic Trays
- Cardboard Boxes
- Mixed Trays and Boxes
III. Opening/ closing refrigerator door

<table>
<thead>
<tr>
<th>Little or No Impact</th>
<th>Negative Impact on Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHARMACEUTICAL</td>
<td>DORM-STYLE</td>
</tr>
<tr>
<td>• Vial temperatures not significantly affected</td>
<td>• Most sensors record brief temp increases, overall decrease</td>
</tr>
<tr>
<td></td>
<td>• Exacerbates already poor temperature control</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DUAL ZONE</td>
<td></td>
</tr>
<tr>
<td>• Small increases in vial temps, but remained within 2 °C to 8 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FREEZERLESS</td>
<td></td>
</tr>
<tr>
<td>• Small increases in vial temps, but remained within 2 °C to 8 °C</td>
<td></td>
</tr>
<tr>
<td>• Water bottles in door reduced temperature change. Without bottles, temp increased up to 1.2 °C higher</td>
<td></td>
</tr>
</tbody>
</table>
III. Door opening continued

False Alarm Alert: Temperature Monitor Placement Matters!

Sensors in air, attached to walls, or near cooling vents show temperature spikes > 8 °C in all refrigerator types

TC #19 (magenta) shows temperature < 2 °C

- Inside glycol-filled bottle, directly on glass shelf under cooling vent
- Repeated door opening results in driving temp down
- Monitor placed in this location NOT a good indicator of stored vaccine temperature!
IV. Door left ajar

<table>
<thead>
<tr>
<th>Refrigerator type</th>
<th>time until vial temp > 8 °C</th>
<th>maximum vial temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREEZERLESS</td>
<td>1 to 49 min</td>
<td>18.6 °C</td>
</tr>
<tr>
<td>DUAL ZONE</td>
<td>3 to 60 min</td>
<td>19.5 °C</td>
</tr>
<tr>
<td>PHARMACEUTICAL</td>
<td>35 min, most did not exceed</td>
<td>8.7 °C</td>
</tr>
<tr>
<td>DORM-STYLE</td>
<td>1 to 5 min</td>
<td>23.8 °C</td>
</tr>
</tbody>
</table>

- Rate of temperature increase dependent on vial storage method and location
- Water bottle ballast reduced negative impact of open door
- Pharmaceutical type refrigerator best equipped to withstand accidents
- Some TCs (air, walls, near cooling vent) driven below 2 °C once door closed

Freezerless Refrigerator Trial
V. Increasing room temperature

<table>
<thead>
<tr>
<th>Little or No Impact on Performance</th>
<th>Negative Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREEZERLESS</td>
<td>DORM-STYLE</td>
</tr>
<tr>
<td>- Room and fridge temperature directly related</td>
<td>- Room and fridge temperature directly related</td>
</tr>
<tr>
<td>- For every 1 °C increase in room temp, fridge temp rises ~0.1 °C</td>
<td>- For every 1 °C increase in room temp, fridge temp rises ~0.3 °C</td>
</tr>
<tr>
<td>- Small room temp fluctuations will not greatly impact refrigerator performance</td>
<td>- Small room temp fluctuations pose greater threat</td>
</tr>
<tr>
<td>DUAL ZONE</td>
<td></td>
</tr>
<tr>
<td>- 1 °C change in ambient temp → fridge temp ± 0.05 °C</td>
<td></td>
</tr>
<tr>
<td>- Moderate room temp fluctuations will not greatly impact refrigerator performance</td>
<td></td>
</tr>
<tr>
<td>PHARMACEUTICAL</td>
<td></td>
</tr>
<tr>
<td>- Very small impact on performance</td>
<td></td>
</tr>
<tr>
<td>- 1 °C change in ambient temp → fridge temp ± 0.02 °C</td>
<td></td>
</tr>
<tr>
<td>- Able to withstand large room temp fluctuations</td>
<td></td>
</tr>
</tbody>
</table>
VI. Power outage

<table>
<thead>
<tr>
<th>Refrigerator type</th>
<th>Time after power off until vial temp > 8 °C without water bottles</th>
<th>Time after power off until vial temp > 8 °C with water bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREEZERLESS</td>
<td>1.5 to 4.75 hrs</td>
<td>2 to 8 hrs</td>
</tr>
<tr>
<td>DUAL ZONE</td>
<td>1.25 to 4.75 hrs</td>
<td>1.25 to 4.75 hrs</td>
</tr>
<tr>
<td>DORM-STYLE</td>
<td>0.75 to 2.5 hrs</td>
<td>1 to 4.25 hrs</td>
</tr>
<tr>
<td>PHARMACEUTICAL</td>
<td>0.75 to 2.25 hrs</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Vials that resisted thermal excursions during an outage the longest were:
- Contained in boxes, trays, and/or original packaging
- Placed away from the top refrigerator shelf
- In a fridge with a water bottle “temperature ballast”

Pharmaceutical fridge suffered from poor insulation provided by glass doors

Allow 6 to 9 hrs for thermal re-equilibration following an outage
VII. Defrost cycle

<table>
<thead>
<tr>
<th>FREEZERLESS</th>
<th>DORM-STYLE</th>
<th>DUAL ZONE</th>
<th>PHARMACEUTICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Defrost cycle runs every 2-3 days</td>
<td>- No defrost cycle</td>
<td>- Defrost cycle runs at ~30 h intervals</td>
<td>- Impact of defrost cycle on internal fridge temperature / performance is negligible</td>
</tr>
<tr>
<td>- Vials occasionally exceeded 8 °C for <15 min</td>
<td>- Refrigerator interior quickly becomes encased in frost and ice</td>
<td>- Vial temperatures increased ~0.5 °C, did not exceed 8 °C</td>
<td></td>
</tr>
<tr>
<td>- Thermometers in air / near walls recorded dramatic temperature spike followed by a drop below 2 °C</td>
<td></td>
<td>- Some sensors in air / near walls recorded temperatures > 8 °C for 10-20 min, followed by a drop below 2 °C for <10 min</td>
<td></td>
</tr>
</tbody>
</table>

Continuous Temperature Monitoring
- Vital to proper vaccine storage
- Current “manual check” system:
 - Possible false alarm if checked during defrost cycle
 - Failure to recognize existence of defrost cycle and take any necessary protective measures
- Freezerless fridge example
 - Cumulative effect of time above 8 °C during multiple defrost cycles?
 - Evaluate on case-by-case basis
- Monitor placement is very important!
Vaccine Vial Storage Methods and Locations

DUAL ZONE

- Never place vials directly on glass shelf = 2 - 5 °C colder

PHARMACEUTICAL

- No storage in vegetable crisper: thermally isolated + floor level runs cold

FREEZERLESS

- 1 – 2 °C colder than main fridge space
Vaccine Vial Storage Methods and Locations

DUAL ZONE
- Never place vials directly on glass shelf = 2 - 5 °C colder
- No storage in vegetable crisper: thermally isolated + floor level runs cold

PHARMACEUTICAL
- Avoid storing on top shelf – near cooling vent. First location to exceed max allowed temp during outages.
- Manufacturer recommends no floor storage, but vial TC maintained at 2 – 8 °C throughout testing

FREEZERLESS
- 1 – 2 °C colder than main fridge space
Vaccine Vial Storage Methods and Locations

DUAL ZONE

- Never place vials directly on glass shelf = 2 - 5 °C colder
- No storage in vegetable crisper: thermally isolated + floor level runs cold

PHARMACEUTICAL

- Avoid storing on top shelf – near cooling vent. First location to exceed max allowed temp during outages.
- Manufacturer recommends no floor storage, but vial TC maintained at 2 – 8 °C throughout testing

FREEZERLESS

- 1 – 2 °C colder than main fridge space

Best storage practice – place vaccines in center fridge space, contained in original packaging, cardboard boxes, and/or plastic trays to minimize thermal excursions
Vaccine Vial Storage Methods and Locations

DORM-STYLE REFRIGERATOR

- Consistently unacceptable performance, regardless of vaccine storage location
- Placement on/ near floor, cooling and freezer unit further reduces temperature stability
- No “good” storage area

The dorm-style refrigerator is NOT recommended for vaccine storage under any circumstance!
Vaccine Temperature Monitoring: Electronic Data Loggers

ADVANTAGES

- **Continuous monitoring** - ensures that all thermal excursions are captured, improving confidence in vaccine supply efficacy
- Easy to use
- Quickly analyze results, eliminating time-consuming paperwork
- Archival data stored electronically
- Alarm capabilities, some with email notification mean that problems are revealed (and can be dealt with) immediately
- Wireless models allow for real-time monitoring
- Can be calibrated by end-users at the ice point

DISADVANTAGES

- Data logger use requires computer capability and some training
Monitoring Vial Temperature Effectively

Best Location for Temperature Sensors

Sensor probe inside glycol-filled bottle, placed in the same locations as vials.
Monitoring Vial Temperature Effectively

Best Location for Temperature Sensors
- Sensor probe inside glycol-filled bottle, placed in the same locations as vials

Worst Location for Temperature Sensors
- Sensors attached to walls
Dual Zone Case Study:
Does freezer setting affect refrigerator performance?

- Sensors arranged throughout both freezer and refrigerator compartments
- Varied freezer set point dial, refrigerator temp setting left unchanged
 - 50%, 75%, and 100% (maximum cold setting)
- Change in refrigerator sensor temperatures ~10% temperature drop recorded by freezer sensors
Dual Zone Case Study: Is this refrigerator model suitable for frozen vaccine storage?

Freezer thermostat dial set to midpoint position: vaccine vial temperatures between -13 °C and -11 °C

Maximum cold setting: vial temperatures fluctuate between -19 °C and -13 °C
- Upper limit exceeded
- 5 °C fluctuation due to freezer control is large – no room for set point error

Defrost cycle temperature spike
- 2+ hr thermal excursion > -15 °C, every 24 hrs
- Possible significant impact on vaccine quality

Upper temperature limit for frozen vaccine storage = -15 °C
Summary of Results

Freezerless, dual zone, and pharmaceutical type refrigerators are suitable for refrigerated vaccine storage
- Performance unaffected by variations in packing density or type
- Able to withstand small (2 - 5 °C) environmental temperature fluctuations
- Water bottle ballast improves temperature stability under non-ideal conditions
- Store vaccine vials in boxes or trays placed in the center of the refrigerator
- Dual zone freezer control may not be adequate for maintaining vaccines < 15 °C

Dorm-style refrigerators should NOT be used for vaccine storage
- Severe temperature control drift
- Lack of air circulation = spatial thermal non-uniformity
- Susceptible to small room temperature fluctuations

Continuous temperature monitoring is an integral part of effective vaccine storage management
- Manual checks do not sufficiently capture temperature behavior over time
- Thermal excursions most likely to occur when nobody is around
- Widespread implementation of electronic temperature loggers is a simple and inexpensive way to dramatically improve vaccine storage practices
- Proper placement of temperature monitors is crucial to obtaining meaningful data
- Sensor placement should match locations/ methods in which vaccine vials are stored
Next Steps

Guidelines for use of vaccine-storage refrigerators
- Include measurements of small, under-the-counter pharmaceutical grade model

Develop methods for accurate cold-chain measurements with electronic thermometers
- In-depth testing of at least five data-logger models to evaluate
 - Manufacturer-specified accuracy
 - Stability over 6 month period
 - Proper use so that measurements reflect vaccine vial temperatures
- Validation of IR thermometers (used in VFC site visits)

Improve guidelines for purchasing thermometers
- “NIST certified” and “NIST traceable” claims sometimes lack official status, authentication or validation
- Appendix to NSF thermometer certification requirements in NSF ANSI 2

Investigate technologies for cold-chain monitoring during shipment
- Performance of chemically activated sensors and electronic data loggers

Test new storage and handling guidelines for practicality, user friendliness
- Evaluation by CDC, AIM, VFC program coordinators and selected VFC clinics
Thank You!

Many thanks to the Virginia and DC VFC Programs for their contributions to this study.

Additional thanks to Tony Richardson and the Centers for Disease Control for their work in supporting this project.