Checking the Net Contents of Packaged Goods

as adopted by the National Conference on Weights and Measures

* This copy of Handbook 133 includes Supplements 1, 2, and 3
NBS Handbook 133
Third Edition*

Checking the Net Contents of Packaged Goods

as adopted by the National Conference on Weights and Measures

* This copy of Handbook 133 includes Supplements 1, 2, and 3
NBS HANDBOOK 133 – THIRD EDITION
CHECKING THE NET CONTENTS OF PACKAGED GOODS

C. S. Brickenkamp
S. Hasko
M. G. Natrela

National Bureau of Standards
Gaithersburg, MD 20899

Supersedes NBS Handbook 133, Second Edition

NOTE: As of 23 August 1988, the National Bureau of Standards (NBS) became the National Institute of Standards and Technology (NIST) when President Reagan signed into law the Omnibus Trade and Competitiveness Act.

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

September 1988 This copy of Handbook 133 includes Supplements 1, 2, and 3.
FOREWORD

This handbook compiles the latest package checking procedures adopted by the National Conference on Weights and Measures (NCWM). At the 1985 annual meeting, the NCWM voted to adopt Handbook 133.

This edition includes amendments adopted at the annual meetings in 1986 through 1998. The Conference recommends adoption and promulgation by the States of these procedures as updated in this handbook.

The National Bureau of Standards has a statutory responsibility for "cooperation with the States in securing uniformity of weights and measures laws and methods of inspection." In partial fulfillment of this responsibility, the Bureau is pleased to publish these recommendations of the National Conference.

ERNEST AMBLER
Director
National Bureau of Standards
PURPOSE

This handbook has been prepared as a procedural guide for compliance testing of net content statements on packaged goods. Compliance testing of packaged goods is the determination of the conformance of the results of the packaging, distribution, and retailing process (the packages) with specified legal requirements for net contents declarations. Although the handbook has been developed primarily for use by government officials, it also should be useful to commercial and industrial establishments involved in the packaging, distribution, and sale of commodities.

SCOPE

In 1959, the National Bureau of Standards published Handbook 67, "Checking Prepackaged Commodities", also a guide for compliance testing the net contents of packages. This handbook differs from NBS Handbook 67 in two significant areas:

1. Two categories of sampling plans are presented for packager subject to the average requirement.
 - The sampling plans in Handbook 67 have been modified and appear as "Category B" sampling plans in Handbook 133.
 - A new set of sampling plans ("Category A") have been introduced.

2. Comprehensive test procedures are provided in detail for a wide variety of commodities. Handbook 67 described tests on packages labeled by weight and by volume only.

This handbook provides procedures using statistical sampling techniques to test individual lots of packages for conformance with legal requirements. Anything that is put into a container, wrapped, or banded, (or merely measured in advance of sale) and labeled as to quantity may be inspected.

The labeled quantity may be of: weight; volume; linear, square, or cubic measure; count; or combinations thereof. Prepackaged commodities may be examined to determine conformance with Federal, State, or local net contents labeling regulations. Compliance testing of packaged goods is generally directed toward protecting the consumer/purchaser from receiving packages with less than the labeled quantity of contents and toward advising the manufacturer when improvements in delivered product quantities are necessary. Tests for health and safety may require different sampling and test measurements.

Inspection for compliance with other labeling requirements (such as size of lettering or units of measurement) may also accompany package quantity compliance testing, but is not covered in this document.
Supplement 1

Foreword

This supplement compiles the latest amendments adopted by the National Conference on Weights and Measures at the Annual Meetings in 1989 and 1990 and editorial corrections recommended by the U.S. Department of Agriculture and others.

The National Institute of Standards and Technology (NIST) has a statutory responsibility for "cooperation with the States in securing uniformity of weights and measures laws and methods of inspection." In partial fulfillment of this responsibility, the Institute is pleased to publish these recommendations of the National Conference.

Reason for and Use of This Supplement

Only minor additions and revisions to NIST (formerly National Bureau of Standards - NBS) Handbook 133, Third Edition, "Checking the Net Contents of Packaged Goods," were adopted by the National Conference on Weights and Measures in 1989 and 1990. A few editorial corrections were also necessary. This supplement therefore consists of change pages to the Third Edition.

A list of the changes that have been made to Handbook 133 and adopted by the Conference are listed on the next pages as "Addendum - 1990." The change pages that follow include the editorial corrections. Please insert the "Addendum - 1990" pages in front of page v and, as appropriate, replace existing pages in the Third Edition with the change pages.
Supplement 2

Foreword

This supplement compiles the latest amendments adopted at the Annual Meeting in 1991 by the National Conference on Weights and Measures. It is the second supplement to be issued to the Third Edition of Handbook 133. The first supplement, which was published in September 1990, covered changes made to Handbook 133 in 1949 and 1990.

The National Institute of Standards and Technology (NIST) has a statutory responsibility for "cooperation with the States in securing uniformity of weights and measures laws and methods of inspection." In partial fulfillment of this responsibility, the Institute is pleased to publish these recommendations of the National Conference.

Reason for and Use of This Supplement

A list of changes that have been made to Handbook 133 and adopted by the Conference are listed on the next page as "Addendum - 1991;" the change pages that follow also include a few editorial changes necessitated by the conversion to a 2-column format. From insert the "Addendum - 1991" page in front of page 5 and replace pages 3-44 through 3-56 in the Third Edition with the change pages. As a result of the 2-column format, there will be some duplication of material on page 3-44 and the new page 3-45.
Supplement 3

Foreword

The National Institute of Standards and Technology (NIST) has a statutory responsibility for "cooperation with the States in securing uniformity of weights and measures laws and methods of inspection." In partial fulfillment of this responsibility, the Institute is pleased to publish these recommendations of the National Conference.

Reason for and Use of This Supplement

A list of changes that have been made to Handbook 133 and adopted by the Conference are listed on the next page as "Addendum - 1992"; the change pages that follow also include a few editorial changes necessitated by the conversion to a 2-column format. Please insert the "Addendum - 1992" page in front of page 7 and make the following changes to the Third Edition as amended:

<table>
<thead>
<tr>
<th>Remove from B-133:</th>
<th>Replace with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages 2-5 and 2-6</td>
<td>Change pages 2-5 and 2-6</td>
</tr>
<tr>
<td>Pages 3-35 through 3-52</td>
<td>Change pages 3-39 through 3-50</td>
</tr>
<tr>
<td>Chapter 5 contents page</td>
<td>Revised Chapter 5 contents page</td>
</tr>
<tr>
<td>Pages 5-17 through 5-19</td>
<td>Change pages 5-17 through 5-20</td>
</tr>
<tr>
<td>Appendix A contents page</td>
<td>Revised Appendix A contents page</td>
</tr>
<tr>
<td>Pages A-15 and A-16</td>
<td>Change pages A-15 and A-16</td>
</tr>
<tr>
<td>Pages B-17 and B-18</td>
<td>Change pages B-17 and B-18</td>
</tr>
</tbody>
</table>

In keeping with the move toward the primary use of metric measurements as recommended in the Omnibus Trade and Competitiveness Act of 1988, the National Conference on Weights and Measures Laws and Regulations Committee will introduce proposals to the voting membership in the 1993-94 work year that will add metric examples before customary unit examples wherever possible.
<table>
<thead>
<tr>
<th>Section</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9.</td>
<td>Working clarified concerning disposition of individual short weight or measure packages. See Item 240.1B in 1989 Report of the 74th NCWM.</td>
<td>2-18</td>
</tr>
<tr>
<td>2.11.</td>
<td>The definition of used tare was made consistent with the new procedures adopted for meat and poultry (Section 3.18) which permit drying in a microwave oven.</td>
<td>2-19</td>
</tr>
<tr>
<td>2.11.</td>
<td>Same as above for dried used tare</td>
<td>2-20</td>
</tr>
<tr>
<td>2.12.</td>
<td>Reference to Table 2-15 on page B-15 added.</td>
<td>2-25</td>
</tr>
<tr>
<td>2.12.</td>
<td>Reference to Table 2-12 added.</td>
<td>2-26</td>
</tr>
<tr>
<td>2.13.4.</td>
<td>Reference to Meat and Poultry Inspection Manual dropped per USDA request (manual being phased out).</td>
<td>2-28</td>
</tr>
<tr>
<td>3.1</td>
<td>Under item (f), 'by subtraction' deleted.</td>
<td>3-14</td>
</tr>
<tr>
<td>3.11.4(a)</td>
<td>Procedure for exhausting foam products changed. See Item 240.2 in 1990 Report of the 74th NCWM.</td>
<td>3-30</td>
</tr>
<tr>
<td>3.18.1.</td>
<td>Reference changed from Section 3.18.3.5 for tare definition to Section 2.11.</td>
<td>3-46</td>
</tr>
<tr>
<td>3.18.1.</td>
<td>Reference to products for which no gray area has yet been determined was added.</td>
<td>3-46</td>
</tr>
<tr>
<td>3.18.1.</td>
<td>Figure 3-15 moved for clarity.</td>
<td>3-48, 3-49</td>
</tr>
<tr>
<td>3.12.2.(p)</td>
<td>Reference to bacon with re-feeding liquid as 'inadequacy' was deleted.</td>
<td>2-50</td>
</tr>
<tr>
<td>3.18.3(f)</td>
<td>References corrected from Section 3.18.3.2 to 3.18.3.3 and from 3.18.3.8. to 3.18.3.h.</td>
<td>3-53</td>
</tr>
<tr>
<td>4.16.</td>
<td>Section added. See Item 232.7B in 1989 Report of the 74th NCWM.</td>
<td>4-43, 4-45</td>
</tr>
<tr>
<td>4.6.4.</td>
<td>Method D, Determining the Net Contents of Compressed Gas Cylinders added. See Item 232.14 in 1990 Report of the 75th NCWM.</td>
<td>4-18, 4-19, 4-46, 4-50</td>
</tr>
<tr>
<td>5.1.3.</td>
<td>Correct references to report forms on pages A-9 and A-20.</td>
<td>5-3</td>
</tr>
<tr>
<td>5.3.2.</td>
<td>Correct references to report forms on pages A-9 and A-10.</td>
<td>5-7</td>
</tr>
<tr>
<td>5.4.</td>
<td>Revised to recognize weight and reference Section 2.12.4. of the Uniform Method of Sale of Commodities. See Item 240.3 in 1989 Report of the 74th NCWM.</td>
<td>5-8, 5-12</td>
</tr>
</tbody>
</table>

iii-1990
<table>
<thead>
<tr>
<th>Section</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apdx B</td>
<td>Reference to MAV for polyethylene labeled by weight added to Table 2-4.</td>
<td>B-9</td>
</tr>
<tr>
<td></td>
<td>In Table 2-12, Group 5 Lower Limit for Individual Weights changed to 1% of labeled weight per U.S. Department of Agriculture request. Lower Limit of 1.5 oz for largest weight of 160 oz in Group 4 is equivalent to 0.94% of the labeled weight. A fixed Lower Limit of 2 oz (or 4 oz, depending on the scale being used) in Group 5 (which can range from a labeled weight of 160 oz up) is too small as a percentage of the labeled weight for large labeled weights. For example, a Lower Limit of 2 oz (or a labeled weight of 80 lb (800 oz) is equivalent to 0.25% of the labeled weight. The new Lower Limit of 1% is more equitable for large labeled weights.</td>
<td>B-15</td>
</tr>
<tr>
<td>Apdx C</td>
<td>Definition of dried used tare and used tare changed to be consistent with changes made to Section 2.11, above.</td>
<td>C-2, C-8</td>
</tr>
</tbody>
</table>

in-1960
<table>
<thead>
<tr>
<th>Section</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.18.1.</td>
<td>Added "in this Handbook" to the sentence that notes where new gray area determinations will be printed.</td>
<td>3-46</td>
</tr>
<tr>
<td>3.18.2.</td>
<td>Amended title to include "and Size of City Area."</td>
<td>3-47</td>
</tr>
<tr>
<td>3.18.2.a.</td>
<td>Rewrote section to make it clear that packaging materials must be carefully cleaned before weighing tare and to specify a zero gray area for bacon packages with no free-flowing liquid inside as well as packages with no absorbent materials.</td>
<td>3-47</td>
</tr>
<tr>
<td>3.18.2.b.</td>
<td>Rewrote this section to clarify 1st definition of "ham hock meat" and make the same types of changes noted above for 3.18.2.a.</td>
<td>3-49</td>
</tr>
<tr>
<td>3.18.2.d.</td>
<td>Amended this section to establish a definition of "fresh poultry" for net weight determinations and make it clear that the gray area should only be applied to cut fresh poultry in retail packages when wet tare tests are conducted.</td>
<td>3-49</td>
</tr>
<tr>
<td>3.18.3.a.(1)</td>
<td>Clarified procedures for cleaning tare materials. Also added a paragraph on the repackaging of packages opened for tare determination.</td>
<td>3-49</td>
</tr>
<tr>
<td>3.18.3.a.(2)</td>
<td>Added a paragraph on procedures to follow when there is no free-flowing liquid or absorbent materials in contact with the product.</td>
<td>3-50</td>
</tr>
<tr>
<td>3.18.3.i.(1)</td>
<td>Expanded title to include bacon, sausage and luncheon meats with no free-flowing liquid or absorbent materials.</td>
<td>3-51</td>
</tr>
<tr>
<td>3.18.3.g.(1)</td>
<td>Expanded the scope of the paragraph to cover the testing of bacon, sausages, or luncheon meats with no free-flowing liquid or absorbent tare materials.</td>
<td>3-51</td>
</tr>
<tr>
<td>3.18.3.h.(3)</td>
<td>Changed the title and added a sentence to indicate that the information listed in the section may be proprietary and not always available from the packer.</td>
<td>3-53</td>
</tr>
</tbody>
</table>
Supplement 3

Addendum 1992

<table>
<thead>
<tr>
<th>Section</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1(c)</td>
<td>Amended definition of inspection lot at point of pack.</td>
<td>2-6</td>
</tr>
<tr>
<td>3.17.</td>
<td>Amended title to include "Dry Pet Foods." Edited entire section to include references to Dry Pet Foods.</td>
<td>3-39</td>
</tr>
<tr>
<td>3.17.4</td>
<td>Edited entire subsection to reference Dry Pet Foods. Added laboratory mill to 1. Equipment, and included oven test procedures for Dry Pet Foods in b. Procedures.</td>
<td>3-42</td>
</tr>
<tr>
<td>3.18.2.b</td>
<td>Updated addresses and telephone numbers of USDA regional offices.</td>
<td>3-45</td>
</tr>
<tr>
<td>Chapter 5 - Index</td>
<td>Added § 58. Baler Twine</td>
<td>-</td>
</tr>
<tr>
<td>§ 58.</td>
<td>Added Baler Twine Test Procedures</td>
<td>3-17</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Flour Seminary Sheet edited to include Dry Pet Foods</td>
<td>A-12</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Added Baler Twine Worksheet</td>
<td>A-16</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Table 3-3 amended to include Dry Pet Foods</td>
<td>B-17</td>
</tr>
</tbody>
</table>
INTRODUCTION TO THE THIRD EDITION

The following tables list the revisions made to the second edition of the handbook.

<table>
<thead>
<tr>
<th>Section</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9.</td>
<td>Revised 1987, 1988</td>
<td>1-10</td>
</tr>
<tr>
<td>2.11.</td>
<td>Revised 1988</td>
<td>2-19</td>
</tr>
<tr>
<td>2.13.</td>
<td>Revised 1988</td>
<td>2-26</td>
</tr>
<tr>
<td>3.16.</td>
<td>Added 1986</td>
<td>3-37</td>
</tr>
<tr>
<td>3.17.</td>
<td>Added 1987</td>
<td>3-40</td>
</tr>
<tr>
<td>3.18.</td>
<td>Added 1988</td>
<td>3-49</td>
</tr>
<tr>
<td>4.12.</td>
<td>Revised 1988</td>
<td>4-32</td>
</tr>
<tr>
<td>4.15.</td>
<td>Added 1987</td>
<td>4-37</td>
</tr>
<tr>
<td>5.4.3.</td>
<td>Revised 1987</td>
<td>5-10</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Worksheets Added</td>
<td>A-13 to A-15</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Table 3-3 Added</td>
<td>B-17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.2.</td>
<td>Revised to explain all sampling plans</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3.1.(c)</td>
<td>Reference to moisture loss added</td>
<td>1-4</td>
</tr>
<tr>
<td>1.6.</td>
<td>Emphasis on checkweighers added</td>
<td>1-7</td>
</tr>
<tr>
<td>1.9.</td>
<td>Footnote 2 added, description of gray area added</td>
<td>1-10</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Reference to both standard pack report forms added</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>Reference to Section 3.18. added</td>
<td>2-6</td>
</tr>
<tr>
<td>2.5.</td>
<td>Section 2.9. renumbered 2.5.</td>
<td>2-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Editorial Changes</th>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.2.</td>
<td>Revised to explain all sampling plans</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3.1.(c)</td>
<td>Reference to moisture loss added</td>
<td>1-4</td>
</tr>
<tr>
<td>1.6.</td>
<td>Emphasis on checkweighers added</td>
<td>1-7</td>
</tr>
<tr>
<td>1.9.</td>
<td>Footnote 2 added, description of gray area added</td>
<td>1-10</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Reference to both standard pack report forms added</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>Reference to Section 3.18. added</td>
<td>2-6</td>
</tr>
<tr>
<td>2.5.</td>
<td>Section 2.9. renumbered 2.5.</td>
<td>2-7</td>
</tr>
<tr>
<td>Section</td>
<td>Action</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>2.5.1.</td>
<td>Figure 2.4. added</td>
<td>2-8</td>
</tr>
<tr>
<td>2.5.2.</td>
<td>Revised to incorporate changes in H-44</td>
<td>2-9</td>
</tr>
<tr>
<td>2.7.</td>
<td>Figures 2-6, 2-7 added</td>
<td>2-13,2-14</td>
</tr>
<tr>
<td>2.11.4.</td>
<td>Figure 2-9 added</td>
<td>2-24</td>
</tr>
<tr>
<td>2.12.</td>
<td>Further information about Table 2-8 added</td>
<td>2-26</td>
</tr>
<tr>
<td>3.5.</td>
<td>Step 2 Footnote added, Figure 3-5 added, Figure 3-7 deleted</td>
<td>3-6, 3-8</td>
</tr>
<tr>
<td>3.8.1.</td>
<td>More information given on selection MAV's</td>
<td>3-18</td>
</tr>
<tr>
<td>4.1.</td>
<td>Reference temperature for wine added</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Clarification on reference temperature added</td>
<td></td>
</tr>
<tr>
<td>4.5.</td>
<td>Step 10. Determination of package errors simplified</td>
<td>4-9</td>
</tr>
<tr>
<td>5.4.2.</td>
<td>Typographical errors corrected</td>
<td>5-10</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Form revised</td>
<td>A-1</td>
</tr>
<tr>
<td></td>
<td>Form added</td>
<td>A-2</td>
</tr>
<tr>
<td></td>
<td>Form corrected</td>
<td>A-3, A-4</td>
</tr>
<tr>
<td></td>
<td>Worksheet corrected</td>
<td>A-5, A-6</td>
</tr>
<tr>
<td></td>
<td>Worksheet corrected</td>
<td>A-9, A-10</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Table 2-9 MAV for "55.0 to 69.00 lb ea" corrected</td>
<td>B-12</td>
</tr>
<tr>
<td></td>
<td>Table 3-1 revised to accommodate new Scales code in H-44</td>
<td>B-16</td>
</tr>
<tr>
<td></td>
<td>Table 4-2 revised to accommodate new Scales code in H-44</td>
<td>B-19</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Definitions added:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"dried used tare"</td>
<td>C-2</td>
</tr>
<tr>
<td></td>
<td>"gray area"</td>
<td>C-3</td>
</tr>
<tr>
<td></td>
<td>"gutless"</td>
<td>C-4</td>
</tr>
<tr>
<td></td>
<td>"petroleum products"</td>
<td>C-5</td>
</tr>
<tr>
<td></td>
<td>"unused tare"</td>
<td>C-8</td>
</tr>
<tr>
<td></td>
<td>"used tare"</td>
<td>C-8</td>
</tr>
<tr>
<td>Section</td>
<td>Action</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Definitions revised:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"dry tare"</td>
<td>C-2</td>
</tr>
<tr>
<td></td>
<td>"reasonable variation"</td>
<td>C-6</td>
</tr>
<tr>
<td></td>
<td>"wet tare"</td>
<td>C-8</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Deleted (inspectors reported that it was not being used)</td>
<td></td>
</tr>
<tr>
<td>Appendix G</td>
<td>Became Appendix F</td>
<td>F-1</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Became Appendix G</td>
<td>G-1</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Added</td>
<td>H-1</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Deleted</td>
<td></td>
</tr>
</tbody>
</table>
HOW TO USE THIS HANDBOOK

This handbook contains information on equipment, test methods, calculations, and test reporting. It is divided into five chapters, the first of which covers several introductory items directed primarily to the administrator of a package-testing program. The remainder (Chapters 2 through 5 and the appendices) is intended as a handbook for the field testing official.

The second chapter discusses fundamentals and general sampling procedures. The testing official should study this chapter thoroughly before attempting to follow the test procedures given in subsequent parts of the handbook.

The third, fourth, and fifth chapters detail the test methods. Chapter 3 covers packages labeled by weight; Chapter 4 covers packages labeled by volume; and, Chapter 5 covers other package quantities. These three chapters provide the test methods for checking different types of packages.

Appendix A contains report forms and worksheets for field test use. Appendix B provides the tables referred to in Chapters 2 through 5 of the handbook. The testing official should tab these tables for quick reference in the field. Appendix C is a glossary of terms used throughout the handbook. Appendix D compiles pertinent parts of net contents regulations at the Federal level and those recommended by the National Conference on Weights and Measures for State adoption.

Appendix E describes how to select a random sample. This section, like Chapter 2, should be studied by the testing official prior to following the test procedures in Chapters 3, 4, and 5. Appendix F is a random number table, and should also be tabbed for easy reference. Appendix G explains how to determine a range and an average range. Appendix H provides examples of completed report forms and worksheets. Appendix I lists equipment tolerances for field test weights and flasks.

An index at the end of the handbook will be valuable for directing the official to the appropriate test method for specific commodities.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iii</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>iv</td>
</tr>
<tr>
<td>SCOPE</td>
<td>iv</td>
</tr>
<tr>
<td>INTRODUCTION TO THE THIRD EDITION</td>
<td>v</td>
</tr>
<tr>
<td>HOW TO USE THIS HANDBOOK</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1. REGULATORY AGENCIES</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2. PACKAGE REQUIREMENTS</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.1. The Average and Individual Package Requirements</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.2. Two Exceptions</td>
<td></td>
</tr>
<tr>
<td>1.3. THE PACKAGE TESTING PROGRAM</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3.1. Where to Test</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3.2. What to Test</td>
<td>1-4</td>
</tr>
<tr>
<td>1.3.3. Special Precautions</td>
<td>1-5</td>
</tr>
<tr>
<td>1.4. INSPECTION BY SAMPLING</td>
<td></td>
</tr>
<tr>
<td>1.5. AUDIT TESTING</td>
<td>1-6</td>
</tr>
<tr>
<td>1.6. 100% TESTING</td>
<td>1-6</td>
</tr>
<tr>
<td>1.6.1. Checkweighers</td>
<td>1-7</td>
</tr>
<tr>
<td>1.7. SAMPLING PLANS FOR THE AVERAGE REQUIREMENT</td>
<td>1-7</td>
</tr>
<tr>
<td>1.8. WHY THERE ARE TWO CATEGORIES OF SAMPLING PLANS</td>
<td></td>
</tr>
<tr>
<td>1.8.1. Lots That Average at the Labeled Net Contents</td>
<td>1-8</td>
</tr>
<tr>
<td>1.8.2. Lots That Average Below the Labeled Net Contents</td>
<td>1-9</td>
</tr>
<tr>
<td>1.8.3. Lots That Average Above the Labeled Net Contents</td>
<td>1-9</td>
</tr>
<tr>
<td>1.9. ALLOWANCES FOR VARIATIONS DUE TO MOISTURE LOSS OR GAIN</td>
<td>1-9</td>
</tr>
<tr>
<td>1.10. DECISIONS PRELIMINARY TO PACKAGE INSPECTION</td>
<td>1-10</td>
</tr>
</tbody>
</table>
CHAPTER 2. GENERAL CONSIDERATIONS 2-1

2.1. THE PACKAGE CHECKING ROUTINE 2-1

2.2. THE REPORT FORMS AND WORKSHEETS 2-2

2.2.1. Filling Out the Report Form Heading 2-2
2.2.2. Filling Out the Tare Information on the Report Form 2-3
2.2.3. Recording Package Errors and Determining Whether the Lot Conforms to the Requirements 2-4

2.3. DEFINITION OF THE LOT 2-5

2.3.1. The Inspection Lot of Standard Pack Packages 2-6
2.3.2. The Inspection Lot of Random Pack Packages 2-6
2.3.3. Size of the Inspection Lot 2-7

2.4. PACKAGE ERRORS 2-7

2.5. RECORDING PACKAGE ERRORS 2-7

2.5.1. The Unit of Measure and Dimensionless Units 2-8
2.5.2. Choosing the Unit of Measure 2-9
2.5.3. How to Use the Crosshatched Area of the Report Form 2-10

2.6. SELECTING THE SAMPLING PLAN 2-12

2.7. SAMPLING PLANS IN CATEGORY A 2-12

2.7.1. Decision Criterion: Individual Packages 2-13
2.7.2. Decision Criterion: The Average Error 2-15

2.8. SAMPLING PLANS IN CATEGORY B 2-17

2.8.1. Decision Criterion: Individual Packages 2-17
2.8.2. Decision Criterion: The Average Error 2-18

2.9. INDIVIDUAL PACKAGES 2-18

2.10. THE CRITERIA FOR WEIGHING PACKAGES NOT LABELED BY WEIGHT 2-18

2.11. TARE 2-19

2.11.1. Choosing Packages for Tare 2-21
2.11.2. Cleaning Tare Materials 2-21
2.11.3. Tare Neither Glass Nor Aerosol 2-21
2.11.4. Alternative Tare Procedure 2-22
2.12. MAV's

2.13. EXCEPTIONS TO THE MAV's

2.13.1. Polyethylene Sheetng and Films
2.13.2. Textiles
2.13.3. Malt
2.13.4. Meats and Poultry from Federally-Inspected Plants

2.14. MOISTURE ALLOWANCE

CHAPTER 3. METHODS OF TEST FOR PACKAGES LABELED BY WEIGHT

3.1. WEIGHING EQUIPMENT
3.2. PREPARATION FOR TESTING
3.3. RECORDING PACKAGE WEIGHTS
3.4. READING THE PACKAGE TESTING SCALE
3.5. STANDARD PACK LABELED BY WEIGHT: CORE METHOD (UNUSED TARE)
3.6. STANDARD PACK LABELED BY WEIGHT: USED TARE
3.7. STANDARD PACK LABELED BY WEIGHT: ALTERNATIVE TARE
3.8. RANDOM PACK LABELED BY WEIGHT
3.8.1. Selecting the MAV
3.8.2. Random Pack, Unused Tare, Category B Sampling Plans
3.8.3. Random Pack, Used Tare or Alternative Tare Methods, or Category A Sampling Plans
3.9. LARGE PACKAGES AND THE SUBSTITUTION METHOD
3.10. THE DETERMINATION OF DRAINED WEIGHT
3.10.1. Equipment
3.10.2. Procedure
3.11. AEROSOL PACKAGES
3.11.1. Equipment
3.11.2. Preparation for Test
3.11.3. The Determination of Net Contents: Part I
3.11.4. Exhausting the Aerosol Container

Page
2-25
2-26
2-26
2-27
2-27
2-28
2-28
3-1
3-1
3-5
3-5
3-5
3-6
3-10
3-14
3-17
3-18
3-18
3-20
3-22
3-24
3-25
3-25
3-26
3-26
3-27
3-28
3-30
3.11.5. Determination of Net Contents: Part 2 3-32
3.11.6. Test Allowances for Foam Product Aerosols 3-33
3.12. FROZEN FOOD AND OTHER FROZEN PRODUCTS 3-33
3.13. DRAINED WEIGHT OF FROZEN FOODS 3-33
3.13.1. Equipment 3-34
3.13.2. Procedure 3-34
3.14. GLAZED RAW SEAFOOD AND FISH 3-35
3.14.2. Procedure 3-35
3.15. CANNED COFFEE 3-36
3.16. BORAX 3-37
3.16.1. Equipment 3-37
3.16.2. Procedure 3-37
3.16.3. Determination of Volume 3-38
3.16.4. Action 3-39
3.17. FLOUR 3-39
3.17.1. Background for Administrator and Inspector 3-39
3.17.2. Field Equipment 3-41
3.17.3. Procedure 3-41
3.17.4. Moisture Content Laboratory Test 3-45
3.18. MEAT AND POULTRY FROM FEDERALLY-INSPECTED PLANTS 3-46
3.18.1. Background for Administrator and Inspector 3-46
3.18.2. Types of Products 3-50
3.18.3. Procedure 3-50

CHAPTER 4. METHODS OF TEST FOR PACKAGES LABELED BY VOLUME 4-1
4.1. MEASURING LIQUID VOLUMES 4-1
4.2. EQUIPMENT FOR LIQUID VOLUME DETERMINATIONS 4-4
4.3. USING LIQUID VOLUMETRIC MEASURES 4-5
4.4. STANDARD PACK LIQUIDS LABELED BY LIQUID VOLUME: GENERAL METHOD, PART 1, MEASURING THE WEIGHT OF A KNOWN VOLUME 4-7
4.5. STANDARD PACK LIQUIDS LABELED BY LIQUID VOLUME: GENERAL METHOD, PART 2, USING THE WEIGHT OF THE LABELED VOLUME 4-11
4.6. OTHER METHODS OF LIQUID VOLUME MEASUREMENT

4.6.1. Method A: Determining the Volume at the Liquid Level of Fill (Depth Gage Method)

4.6.2. Method B: Measuring the Weight of a Known Volume for Every Package

4.6.3. Method C: Measuring the Volume Delivered from the Package

4.7. MILK

4.7.1. Summary

4.7.2. Procedure

4.8. MAYONNAISE AND SALAD DRESSING

4.8.1. Equipment

4.8.2. Procedure

4.9. PAINT, VARNISH, AND LACQUERS - NONAEROSOL

4.9.1. Equipment

4.9.2. Field Auditing Procedure

4.9.3. In-Plant Auditing Procedure

4.9.4. Possible Violation Procedure

4.10. VERY VISCOUS MATERIALS

4.10.1. Equipment

4.10.2. Preparation for Test

4.10.3. Procedure

4.11. PEAT MOSS

4.11.1. Compressed Volume

4.11.2. Volume after Stewing

4.11.3. Equipment

4.11.4. Procedure

4.12. BARK MULTCH

4.12.1. Equipment

4.12.2. Procedure

4.13. SOLIDS OR SEMISOLIDS

4.13.1. Equipment

4.13.2. Procedure

4.14. GOODS LABELED BY CAPACITY

4.14.1. Equipment
4.14.2. Procedure 4-36

4.15. ICE CREAM NOVELTIES 4-38
4.15.1. Equipment 4-38
4.15.2. Procedure 4-39

CHAPTER 5. METHODS OF TEST FOR PACKAGES LABELED BY COUNT, LENGTH, AREA, THICKNESS, OR COMBINATIONS OF QUANTITIES 5-1

5.1. PACKAGES LABELED BY COUNT WHEN THE LABELED COUNT IS 51 OR MORE UNITS PER PACKAGE 5-1
5.1.1. Equipment 5-1
5.1.2. Audit Procedure 5-1
5.1.3. Possible Violation Procedure 5-3

5.2. PACKAGES LABELED BY COUNT WHEN THE LABELED COUNT IS 50 OR FEWER UNITS PER PACKAGE 5-4
5.2.1. Procedure 5-5
5.2.2. Example 5-5

5.3. PACKAGES LABELED BY LINEAR OR SQUARE (AREA) MEASURE 5-6
5.3.1. Equipment 5-6
5.3.2. Procedure 5-7

5.4. POLYETHYLENE SHEETING 5-8
5.4.1. Equipment 5-8
5.4.2. Preparation for Test 5-10
5.4.3. Procedure 5-10

5.5. PAPER PLATES 5-13
5.5.1. Equipment 5-13
5.5.2. Preparation for test 5-13
5.5.3. Procedure 5-13

5.6. SANITARY PAPER PRODUCTS 5-15
5.6.1. Equipment 5-15
5.6.2. Procedure 5-15

5.7. PRESSED AND BLOWN GLASS TUMBLERS AND STEMWARE 5-16
5.7.1. Procedure 5-17

ACKNOWLEDGMENTS xiv

Page 5-18
REFERENCES

APPENDIX A: FORMS AND WORKSHEETS

APPENDIX B: TABLES

APPENDIX C: GLOSSARY

APPENDIX D: PACKAGE NET CONTENTS REGULATIONS

D.1. FEDERAL REGULATIONS

D.1.1. U.S. Department of Health and Human Services, Food and Drug Administration

D.1.2. U.S. Department of Agriculture, Food Safety and Inspection Service

D.1.3. Federal Trade Commission

D.1.4. Environmental Protection Agency

D.1.5. U.S. Department of the Treasury, Bureau of Alcohol, Tobacco and Firearms

D.2. REGULATIONS RECOMMENDED BY THE NCWM FOR STATE ADOPTION

APPENDIX E: SELECTION OF A RANDOM SAMPLE

E.1. INTRODUCTION

E.2. LOT NUMBERING SYSTEMS

E.2.1. Serial Lot Numbering System

E.2.2. Three-dimensional Numbering System

E.3. THE RANDOM NUMBER TABLE

E.3.1. General

E.3.2. Random Starting Place

E.4. OBTAINING RANDOM NUMBERS FOR THE SAMPLE

E.4.1. Serial Lot Numbering System

E.4.2. Three-dimensional Lot Numbering System

E.5. OTHER METHODS OR TABLES TO OBTAIN RANDOM NUMBERS

E.6. OTHER CONSIDERATIONS WHEN SELECTING THE SAMPLE

E.6.1. Selecting the Tare Sample

E.6.2. Selecting the Sample at Different Locations
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1. Differences between Category A and Category B</td>
<td>1-8</td>
</tr>
<tr>
<td>2-1. The standard pack report form heading</td>
<td>2-2</td>
</tr>
<tr>
<td>2-2. Places to record tare sample information and the nominal gross weight on the standard pack report form</td>
<td>2-3</td>
</tr>
<tr>
<td>2-3. The crosshatched area of the report form and place to record lot disposition</td>
<td>2-4</td>
</tr>
<tr>
<td>2-4. Reading a mechanical scale</td>
<td>2-8</td>
</tr>
<tr>
<td>2-5. Example of package errors, ranges, and total error recorded on part of the report form</td>
<td>2-11</td>
</tr>
<tr>
<td>2-6. Example of a larger sample size selected on the report form</td>
<td>2-13</td>
</tr>
<tr>
<td>2-7. Example of lot failing the individual package requirement</td>
<td>2-14</td>
</tr>
<tr>
<td>2-8. Example of calculation of T</td>
<td>2-16</td>
</tr>
<tr>
<td>2-9. Example of alternative tare procedure</td>
<td>2-24</td>
</tr>
<tr>
<td>3-1. Equal-arm package testing scale for small weights</td>
<td>3-2</td>
</tr>
<tr>
<td>(avoid duplex units)</td>
<td></td>
</tr>
<tr>
<td>3-2. Mechanical package testing scale tower faces</td>
<td>3-2</td>
</tr>
<tr>
<td>3-3. Test weight kit</td>
<td>3-4</td>
</tr>
<tr>
<td>3-4. Outline of package test, standard pack package labeled by weight</td>
<td>3-7</td>
</tr>
<tr>
<td>3-5. Steps 1 - 5 completed on a report form</td>
<td>3-8</td>
</tr>
<tr>
<td>3-6. The determination of the gross weight of a package</td>
<td>3-11</td>
</tr>
<tr>
<td>3-7. Examples of substitution weighing</td>
<td>3-23</td>
</tr>
<tr>
<td>3-8. The determination of tare for packages labeled by</td>
<td>3-26</td>
</tr>
<tr>
<td>drained weight (example: olives)</td>
<td></td>
</tr>
<tr>
<td>3-9. Portable test stand for all aerosol products</td>
<td>3-27</td>
</tr>
<tr>
<td>except paints and coatings</td>
<td></td>
</tr>
<tr>
<td>3-10. Portable test stand for aerosol paints and coatings</td>
<td>3-29</td>
</tr>
<tr>
<td>3-11. Portable test stand showing aerosol foam product</td>
<td>3-30</td>
</tr>
<tr>
<td>ready to expel in upright position</td>
<td></td>
</tr>
<tr>
<td>FIGURES (Continued)</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3-12. Portable test stand showing aerosol foam product ready to expel in inverted position</td>
<td>3-31</td>
</tr>
<tr>
<td>3-13. Density cup and funnel</td>
<td>3-38</td>
</tr>
<tr>
<td>3-14. An example of a gray area</td>
<td>3-41</td>
</tr>
<tr>
<td>3-15. No gray area for meat or poultry from a Federally inspected plant if Category A sampling plan (or 100% test) and used dry tare are employed</td>
<td>3-48</td>
</tr>
<tr>
<td>3-16. Gray area for poultry or hot dogs from a Federally inspected plant using wet tare</td>
<td>3-49</td>
</tr>
<tr>
<td>4-1. Standard measuring flask and graduate for test packages labeled in metric units of volume</td>
<td>4-5</td>
</tr>
<tr>
<td>4-2. Reading the liquid level on the neck of a flask</td>
<td>4-7</td>
</tr>
<tr>
<td>4-3. Weighing a known volume of liquid</td>
<td>4-10</td>
</tr>
<tr>
<td>4-4. Measuring the diameter of a paint can</td>
<td>4-23</td>
</tr>
<tr>
<td>4-5. Measuring the distance to the liquid level</td>
<td>4-25</td>
</tr>
<tr>
<td>4-6. Top view of paint can showing locations at which depth measurements are made</td>
<td>4-26</td>
</tr>
<tr>
<td>4-7. Measuring the distance to the bottom of a container</td>
<td>4-24</td>
</tr>
<tr>
<td>4-8. Empty density cup and slicker plate</td>
<td>4-29</td>
</tr>
<tr>
<td>4-9. Density cup filled with product</td>
<td>4-31</td>
</tr>
<tr>
<td>4-10. Plastic disk (beveled edge upward) inserted in the seat of a container to be tested</td>
<td>4-36</td>
</tr>
<tr>
<td>4-11. Disk in place for flash fill (or trim-full) capacity determination</td>
<td>4-37</td>
</tr>
<tr>
<td>4-12. Displacement vessel for ice cream novelties</td>
<td>4-39</td>
</tr>
<tr>
<td>4-13. Using a looped-end wire to submerge a cone</td>
<td>4-41</td>
</tr>
<tr>
<td>5-1. Deadweight dial micrometer</td>
<td>5-9</td>
</tr>
<tr>
<td>5-2. Preparing to measure the dimensions of a paper plate</td>
<td>5-14</td>
</tr>
<tr>
<td>E-1. Package selection worksheet for a serial lot numbering system</td>
<td>E-3</td>
</tr>
</tbody>
</table>
FIGURES (Continued)

E-2. Choosing a staring place for a three-dimensional lot numbering system Page E-4
E-3. Package selection worksheet for a three-dimensional numbering system E-5
E-4. Completed example of package selection using a three-dimensional lot numbering system E-6

xix
CHAPTER 1. INTRODUCTION

1.1. Regulatory agencies
1.2. Package requirements
1.3. The package testing program
1.4. Inspection by sampling
1.5. Audit testing
1.6. 100% Testing
1.7. Sampling plans for the average requirement
1.8. Why there are two categories of sampling plans
1.9. Allowances for variations due to moisture loss or gain
1.10. Decisions preliminary to package inspection
CHAPTER 1. INTRODUCTION

This chapter provides background information on package regulations, regulatory and enforcement agencies in the United States, and package testing programs. The concept of checking packaged goods by sampling is introduced. Other terms that are routine to package inspection are also discussed in the context of this handbook, such as the average requirement, audit testing, and moisture allowance.

1.1. Regulatory Agencies

In the United States, several regulatory agencies have authority in packaged product labeling. At the national level, the U.S. Department of Agriculture promulgates requirements for packaged goods containing meat or poultry, as part of the department's responsibility under the Federal Meat Inspection Act as amended by the Wholesome Meat Act and the Poultry Products Inspection Act as amended by the Wholesome Poultry Products Act. The Food and Drug Administration under the U.S. Department of Health and Human Services promulgates requirements for packages containing all other food products and all drug and cosmetic products and medical devices as part of this agency's responsibility under the Food, Drug, and Cosmetic Act and the Fair Packaging and Labeling Act (FPLA). The Federal Trade Commission promulgates requirements for many non-food consumer packaged products as part of the agency’s responsibility under the FPLA.

The Environmental Protection Agency promulgates requirements for packaged pesticides as part of the agency's responsibility under the Federal Insecticide, Fungicide and Rodenticide Act. The Bureau of Alcohol, Tobacco, and Firearms in the U.S. Department of the Treasury promulgates regulations for packaged tobacco and alcoholic beverages as part of its responsibility under the Federal Alcohol Administration Act.

Packaged goods produced for distribution for sale also come under the jurisdiction of State and local weights and measures agencies, which have their own legal requirements for packaged goods.

Those parts of the pertinent Federal and State regulations are listed in Appendix D. The agencies responsible for these regulations are listed in Table 1-1, Appendix B.

Federal statutes set requirements that affect State regulations. Therefore, State agencies using this handbook should keep abreast of the revisions to Federal agency regulations that may contain sampling or testing information not in the regulations at the time of publication of this handbook.

1-1
1.2. Package Requirements

1.2.1. The Average and Individual Package Requirements

Although net-content regulations often differ in wording, a uniform operational interpretation has traditionally been applied for the purpose of testing the net contents of packages for compliance with these regulations. The quantity of contents of packaged goods must meet two requirements.

- First, the average quantity of contents of packages in a lot, shipment, or delivery must equal or exceed the quantity printed on the label.

- The second requirement applies to the individual package: the variation of individual package contents from the labeled quantity must not be "unreasonably large".

Both requirements apply simultaneously to any given collection of packages, and this handbook provides methods to test packages against them. Limits of "reasonable variation" for individual packages are listed in tables of "MAV"s" (see Section 2.12. and pages B-9 through B-15).

In common parlance, it is often said that the package net contents must meet "the average requirement" (even though there are two requirements).

1.2.2. Two Exceptions

a. Packages Labeled by Count When the Count Is 50 or Fewer. -- The average requirement is based on an underlying assumption about the way that the package quantities are distributed (called the "normal distribution"). When very low numbers of discrete items are packaged and labeled by count, the count of items in the packages does not follow this "normal distribution" and, therefore, the average requirement cannot be applied. See Section 5.1. for the necessary special sampling and testing procedures.

b. Allowable Difference. -- The National Conference on Weights and Measures (NCWM), an organization of State and local weights and measures officials, has adopted standards, called "uniform laws and regulations", upon which individual jurisdictions may model their laws and regulations. Several States have adopted that portion of the NCWM Uniform Regulation for the Method of Sale of Commodities which provides a tolerance for pressed and blown glass tumblers and stemware. In this regulation, such a tolerance is called an "allowable difference". When packaged product quantities are given an al-

'The acronym "MAV" is from the term "maximum allowable variation". The meaning of the term derives from the regulations that permit no unreasonable variations.

'This handbook does not explain the statistical bases for the sampling plans presented herein. For further information, see any textbook including explanations on "acceptance sampling".

'This regulation is part of National Bureau of Standards (NBS) Handbook 130, "Uniform Laws and Regulations," as adopted by the National Conference on Weights and Measures, and revised and printed each year by the U.S. Government Printing Office.

1-2
1.3. The Package Testing Program

For the benefit of the regulatory agency program administrators, several items concerning the establishment of a broad and diversified package testing program are discussed in this section.

1.3.1. Where to Test

Packaged commodities may be tested in any location from packaging plant to retail outlet.

a. Point of Pack

Checking packages at the location where they are packaged ("point of pack") has the greatest impact on the packaging process. The official can sample from the largest number of packages of a single product available at one place, and the manufacturer can immediately correct any problems found before packages are distributed. Small economies are obtainable if the packager can recover and repackage the product from packages that must be opened for testing purposes. When the product is packaged at the retail store (in the supermarket meat counter being the classic example), package inspection at retail is equivalent to inspection at the point of pack.

The effectiveness of package testing programs conducted by individual State and local agencies would be maximized if these agencies established reciprocity with other State, county, and city jurisdictions to recognize results of tests carried out by other agencies at packaging plants.

Package testing at production point cannot entirely replace that at wholesale or retail outlets, especially for packages that are permutable or subject to tampering. Since only manufacturing practices can be examined at production point, testing of packages at wholesale and retail outlets must also be part of a complete package inspection program. The results of distribution practices, possible tampering with the product, and environmental effects can only be detected by wholesale and retail checking. Thus, inspection resources should be divided, if possible, between testing at the packaging location and testing at wholesale and retail locations.

b. Wholesale

When possible, warehouse-outlet package testing is a good alternative to testing at the production point with respect to testing large amounts of product. There is a severe drawback to checking at wholesale, however, namely getting to the stacks of pallets, breaking down film-wrapped or wired skids, and opening sealed cartons. Labor costs, equipment, and time requirements, including the time needed to restack skids and pallets, can be excessive. Because of the importance of wholesale testing to the follow-up of inaccuracies discovered during retail checking, guidelines are given in Appendix E to simplify selection of the package sample at wholesale outlets.

1-3
c. Retail

Package testing at retail checks the soundness of the manufacturing, distribution, and retailing processes of the widest variety of goods available at a single location.

Package testing at retail locations checks the accuracy of the package label at the locations where consumers purchase the product. It is an excellent means for State and local jurisdictions to monitor packaging procedures and to detect present or potential problems.

Retail package testing is not conducive to checking very many lots of an individual product or a substantial amount of any single production lot. Thus, it is more difficult to detect generally good or bad packaging processes, and the impact of a single inspection on a packager and the packaging process is small. Therefore, at the very least, follow-up inspection of a particular brand or lot code number at a number of retail and wholesale outlets is extremely important in any retail checking scheme.

At the point of sale, a large number of processes impinge on the quality or quantity of the product. Hence, there may be many possible reasons for any inspection lot being out of compliance. A shortage in weight or measure may be the result of mistreatment of the product in the store, of a failure to rotate stock, of mishandling by a middle agent, of failure of some part of the packaging process, or simply the result of moisture loss, if the product is packaged in permeable media and subject to moisture loss. Therefore, locating fault in order to correct defects will be more difficult when retail testing is employed.

d. Moisture Loss

Allowance for moisture loss during the course of good distribution practices must be made when Federal or State regulations provide for them. Allowances for moisture loss are not applied at point of pack testing, to hermetically sealed packages, or to pesticides.

1.3.2. What to Test

The products to be tested can be chosen in many ways. For a State or local government agency, the decision can be based on marketplace surveys (e.g., sales volume and sales value of various packaged goods) and audit testing (see Section 1.5.) to cover as large a product variety as possible at food stores, farm stores, drug, hardware, or specialty outlets, discount and department stores. Follow-up of possible problems detected in audit testing or in review of past performance will tend to concentrate inspection resources on particular commodity types, brand names, retail or wholesale locations, or even particular neighborhoods.

The expected benefits for the public must, of course, be balanced against the cost of testing. Expensive products should be tested because of their cost per unit. However, inexpensive items also should be tested because of their sales volume, the overall cost to individual purchasers becoming considerable over an extended period. Items on special sale and special products produced for local consumption should not be overlooked.

1-4
Some officials may have a roster of packaging plants (or an individual plant) to inspect for a broad range of items, one of which will include net quantity. In such cases, the official may be instructed as to what to test.

1.3.3. Special Precautions

In testing food, cosmetic, or drug products, the inspector must observe all health standards and regulations for handling the product. For the safety of the inspector and public, pesticides, herbicides, and other poisonous or hazardous materials should be handled (and, if necessary, disposed of) with extreme caution, observing all health standards and label warnings.

The procedures in this handbook are designed to be technically sound. The measurements and the recording of these measurements must be performed by the official carefully, so that they are also legally defensible. Forms and worksheets are designed to provide assurance that all the required data will be entered instead of leaving it to memory and judgment. For similar reasons, it is also important to maintain an unbroken "chain of custody" when taking sample packages back to a laboratory for further measurements.

1.4. Inspection by Sampling

Weights and measures regulation, testing, and enforcement require a balance between the need to assure equity and the need to minimize the cost of testing to the taxpayer. Testing a "sample" of packages is one means of achieving this balance.

This handbook describes package compliance testing methods to be used in conjunction with sampling techniques. The only alternative to sampling to determine compliance with package requirements is 100% testing. [See Section 1.6.]

The techniques of statistically sound sampling based on a sampling plan provide important benefits. First is conservation of the inspector's time needed to test a single lot, thus reducing the cost of such testing. Since testing entails some package destruction, package integrity can be preserved to a large extent by following a sampling plan.

A second benefit is the increased impact of an inspector on the package production, distribution, and marketing sectors. Sampling according to prescribed sampling plans is a most effective and efficient method of marketplace surveillance. Surveillance by sampling is an efficient means to protect package purchasers (who cannot check the quantity of contents themselves) and also to encourage good manufacturing and distribution processes among packagers and package sellers.

Compliance testing using a sampling plan utilizes a step-by-step method of obtaining evidence, comparing the evidence with package requirements, then making a decision about the compliance of the packages.

Sampling plans are discussed further in Sections 1.7. and 1.8. and in detail in Chapter 2. Inspection procedures using sampling plans consist of five steps:

1. Define and count the number of packages comprising the "inspection lot", upon which action is taken. (The "inspection lot" is defined in Section 2.3., page 2-5.)

2. Choose a random sample from the inspection lot. [Instructions for taking a random sample are given in Appendix E.]
3. Determine the net contents of each package in the sample (described in Chapters 3, 4, and 5).

4. Perform calculations based on individual package net contents determinations (described in Sections 2.7 and 2.8, and as part of the package checking routine in Chapters 3, 4, and 5).

5. Decide whether the inspection lot is in conformance with the requirements. This decision is based upon the criteria established in the sampling plan (described in Sections 2.7, and 2.8, and as part of the package checking routine in Chapters 3, 4, and 5).

1.5. Audit Testing

In order to speed the process of detecting possible package net contents violations, officials often use audit testing procedures. These may entail, for example, very small sample sizes or predetermined and catalogued tare weights, or any other shortcut in testing.

Audit procedures are not definitive, but are fast and enable an inspector to cover more products at a single location than would otherwise be possible with the more rigorous techniques. An official who finds a possible violation should then use the more rigorous methods given in this handbook to confirm the condition of the lot that is, to determine whether or not the packaged product complies with net contents labelling requirements. This handbook does not discuss audit testing at length, but does provide audit methods for packaged goods labeled by count (Section 5.1.2.) and for paint, varnish, or lacquers (Sections 4.9.2, and 4.9.3.).

Although mixed lot code testing is not intended just for audit testing, it can be a time saver for audit tests. When packages are checked at retail, inspection lots may be defined as identically labeled packages that are mixed with respect to lot code (helping to indicate a manufacturer's overall process quality). If testing reveals poor quality, segregation by lot code before further testing will simplify follow-up inspection.

1.6. 100% Testing

Upon occasion, it may be necessary to check every package in a lot, shipment, or delivery.

State regulations and those of the Federal Trade Commission (see Appendix D) are specific in this instance:

1. The average of a lot, shipment, or delivery must equal or exceed the labeled net contents;

2. No "unreasonable" shortage in any package is permitted.

Other Federal requirements are not so explicit, but are compatible with the requirements noted above.
When every package in the lot is tested, no (zero) packages may fall below the limits set by the MAV and, at the same time, the average quantity of contents of the lot, shipment, or delivery must equal or exceed the labeled quantity.1

1.6.1. Checkweighers

If a packager uses checkweighers, not only must the average of the lot equal (or exceed) the label, but under no circumstances should the checkweigher accept packages that are short measure by more than the MAV.

1.7. Sampling Plans for the Average Requirement

Several categories of sampling plans are provided in this handbook. Two categories of sampling plans, Category A and Category B, are provided for testing packages subject to the average requirement.

The regulatory agency has the authority to specify the appropriate sampling plan categories according to the agency's operating procedures.

As mentioned in Section 1.2, packages must meet two requirements when they are subject to the average requirement. The first, which applies to the whole inspection lot, is that the average net contents must equal or exceed the labeled contents. The descriptions of the sampling plan categories have specific computations to provide evidence that this requirement has been met. The second requirement is that individual package variations may not be "unreasonable." The limits of reasonable individual package variations are called "MAV's" in this handbook. When using sampling techniques for compliance testing of packaged goods, a very few packages in any given sample may be allowed to exceed the limits defined by the MAV.

1.8. Why There Are Two Categories of Sampling Plans

Judgments based on sampling (less than complete information) are by nature subject to uncertainty. There is an inherent risk of making wrong decisions.

Lots that do not conform to the regulation may be mistakenly accepted and lots that do conform may be erroneously rejected.

Many kinds of sampling plans can conceivably be devised, categorized according to their probability of accepting inspection lots whose average net contents at least equals the declared net contents. For the moment, we will set aside requirements on individual packages in our discussion of Category A and B plans.

Category B plans split the risks of making incorrect decisions between the packager and the consumer, giving acceptable inspection lots a 50% probability of acceptance. Category A sampling plans give acceptable inspection lots a "high" probability of acceptance.

1See exceptions in Section 5.1. (low count) and Section 5.7. (glassware).

2An "acceptable inspection lot" is one in which the average net contents exactly equals the labeled net contents.

1-7
Figure 1-1 illustrates some of the differences between Category A and Category B sampling plans.

In this depiction, the sample size is the same for Categories A and B.

Greater than the label

Labeled net contents

Less than the label

Lot Average

Figure 1-1. Differences between Category A and Category B.

1.8.1. Lots That Average at the Labeled Net Contents

For lots that average at the labeled net contents (see the dashed vertical line):

- We expect Category B sampling plans to pass 50% of all such lots sampled (point "a").
- We expect Category A sampling plans to accept a much larger percentage of all such lots sampled (point "b").

*This description has been greatly simplified by showing only lots that have a variability that fits well within the MAV limits. For further information, see G. N. Lauer, "Probabilities of Noncompliance for Sampling Plans in NBS Handbook 133," in the Journal of Quality Technology, Vol. 14, p. 162, July 1982.
1.8.2. Lots That Average Below the Labeled Net Contents

For lots that average less than the labeled net contents (see the dotted vertical line):

- The same relationship holds, that is, Category A plans pass a greater fraction of lots than do Category B plans (compare point d to point c) but,
- both categories pass fewer below-average lots than lots that average at the labeled contents. [Compare point d to e and point c to a.]

1.8.3. Lots That Average Above the Labeled Net Contents

- The same relationship again holds, that is, Category A plans pass more lots than Category B plans, but
- the probability of such lots being passed by either Category increases, as one should expect.

It has been traditional in package testing in the U.S. for Federal, State, and local regulatory officials to use sampling plans similar to Category B. Frequently, many jurisdictions employed a variety of "allowances" to their measurement results before taking enforcement action. Category A sampling plans are provided in order to reduce the risk of failing a lot when it averages below the labeled weight. Category A plans provide a rational, uniform alternative to the variety of allowances or tolerances formerly in use.

In the foregoing discussion of differences between A and B, it was assumed that the sample sizes are the same for A and B. For any given sample size, however, Category A plans, while reducing the probability of rejecting "good" lots, increase the probability of accepting "bad" lots. The Category A plans have therefore been designed to reduce the risk of accepting 100 many "bad" lots while still providing reasonably high probability of accepting "good lots". As a result, the sample sizes (for any given lot size) for Category A are larger than those for Category B.

Because Category A plans require larger sample sizes and additional arithmetic computations, jurisdictions (in the interests of economy and practicality) may not find Category A suitable for routine testing purposes.

1.9. Allowances for Variations Due to Moisture Loss or Gain

Some packaged products may lose or gain moisture (and, therefore, lose or gain weight) after packaging. Depending upon the nature of the product, its environmental history,
and the packaging material and method, moisture loss may occur even when good distribution practices are followed. Whenever the Federal or State laws or regulations governing packaged products allow variations in individual packages for loss or gain of moisture, these allowances have to be applied to individual packages and, thus, to the average net contents before a decision as to lot conformance can be made.

On the basis of technical and regulatory information presently available, this handbook cannot provide definitive moisture allowances for all products; however, it does provide two procedures (for flour, see Section 3.17., and for meat and poultry, see Section 3.18.) for determining compliance with those regulations that allow for quantity variations due to moisture loss or gain. These two procedures are based on the concept of a "gray area," also called a "no-decision" area, in which more information must be collected before lot compliance or noncompliance can be decided. When the average net weight of a sample is found less than the labeled weight but more than the boundary of the "gray area," the lot is said to be in the "gray" or "no-decision area." The "gray area" approach applies only to packages tested at retail or wholesale, not to those checked at the packaging plant. The gray area is not a tolerance.

1.10. Decisions Preliminary to Package Inspection

Prior to any package inspections, the package testing official's supervisor or program administrator must, at the very least, give directions concerning:

a. which sampling plan category is to be used under what circumstances in the jurisdiction, and

b. what procedures are to be followed when inspecting packages susceptible to moisture loss.

1Certain nonfood, packaged consumer items under the authority of regulations promulgated by the Federal Trade Commission are permitted variations "due to exposure." This may include solvents evaporation, not just loss of water.

2All Federal and State requirements, except those of the U.S. Environmental Protection Agency (regulating pesticides), permit variations due to moisture loss.
CHAPTER 2. GENERAL CONSIDERATIONS

2.1. The package checking routine
2.2. The report forms and worksheets
2.3. Definition of the lot
2.4. Package errors
2.5. Recording package errors
2.6. Selecting the sampling plan
2.7. Sampling plans in Category A
2.8. Sampling plans in Category B
2.9. Individual packages
2.10. The criteria for weighing packages not labeled by weight
2.11. Tare
2.12. MAV's
2.13. Exceptions to the MAV's
2.14. Moisture allowance
CHAPTER 2. GENERAL CONSIDERATIONS

This chapter introduces several subjects that require special study by the inspector prior to actual package testing. Chapter 2 provides explanations on how to define the group of packages upon which action will be taken, how to fill out a report form, how to read the tables in Appendix B, how to perform the arithmetic required in the procedures in chapters 3, 4, and 5. This chapter also describes general principles that will be followed throughout the handbook concerning measurement accuracy (the MAV/SP principle), recording package errors (using dimensionless units), the criteria for weighing packages not labeled by weight, and information on tare. A thorough study of Appendix E is also recommended before using the methods detailed in Chapters 3, 4, and 5.

2.1. The Package Checking Routine

The following topics in capital letters are explained in this chapter and in Appendix E, but not necessarily in the order in which the official will handle them during field testing. Step-by-step instructions for field testing are given in Chapters 3, 4, and 5.

In package testing, after determining the location of test and packaged product to be tested, the official will be expected to:

a. identify the INSPECTION LOT to be tested,
b. fill out a REPORT FORM, including information from the product label and the MAV (selected according to the labeled net contents),
c. count the number of packages in the lot and record the LOT SIZE,
d. refer to the designated SAMPLING PLAN and record SAMPLE SIZE, TARE SAMPLE SIZE, and ALLOWED NUMBER OF UNREASONABLE ERRORS,
e. select a RANDOM SAMPLE and the RANDOM TARE SAMPLE,
f. if label is not in terms of net weight, determine if WEIGHING METHOD may be employed (using one of the WORKSHEETS),
g. determine UNIT OF MEASURE and the MAV in DIMENSIONLESS UNITS (the use of dimensionless units is optional),
h. determine AVERAGE TARE (and CORRECTED TARE in some instances) and record on WORKSHEETS and REPORT FORM,
i. determine PACKAGE ERRORS (using a NOMINAL GROSS WEIGHT where possible), and record values on REPORT FORM, and
j. apply DECISION CRITERIA to determine whether the lot does or does not conform to net quantity requirements.
Tables and other material introduced in this chapter are referenced in Chapters 3, 4, and 5 when circumstances require their use. All report forms and worksheets appear in Appendix A and all tables are in Appendix B.

2.2. The Report Forms and Worksheets

The results of package testing must be documented on a report form. Examples of forms for standard pack packages are shown on pages A-1 and A-2. In the following sections and in subsequent chapters, the official will be referred to items corresponding to the numbered boxes indicated on these report forms. Chapters 3 and 4 introduce other report forms, derived from these examples.

Several worksheets are also introduced in Chapters 3, 4 and 5 and Appendix E.

We suggest that those reading the handbook for the first time keep handy a copy of the report forms on pages A-1 and A-2, and refer to them while reading the text. The box numbers are listed in Table 2-1 (on page B-2), together with the sections of the text in which they are explained. In addition, the page numbers of the look-up tables in the handbook are printed in the report form boxes.

2.2.1. Filling Out the Report Form Heading

The boxes on the report forms on pages A-1 and A-2 permit recording all the pertinent information for the simplest type of package—the "standard pack" package. [See Sections 2.3.1. for a definition of "standard pack."] The report form on page A-1 is designed for standard pack packages labeled not by weight but (for example) by liquid volume, count, area, etc. It is designed to be used with an appropriate worksheet. The report form on page A-2 is designed for standard pack packages labeled by weight.

```
<table>
<thead>
<tr>
<th>PDF</th>
<th>STANDARD PACK REPORT FORM</th>
<th>REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lot No. &amp; Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sample Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Total Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Percent Classes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-1. The standard pack report form heading.
```

Figure 2-1 shows the report form heading from page A-1; the heading on page A-2 has only minor differences. Starting across the top of the form, "lot code" and
"container description" information will help in follow-up testing. The labeled net contents is recorded in box 1. It is used to look up the "MAV", which is to be entered in box 3 (see Section 2.12). The selection of a "unit of measure" (box 2) may be guided by the labeled net contents and/or the measuring equipment being used, for example, the size of the scale division on the inspector's scale. (See Sections 2.5.1 for general information about the "unit of measure", 3.3, for packages labeled by weight, and 4.4, for packages labeled by volume.) ['Dimensionless units' (box 4) will also be explained in Section 2.9.1.)

On the left side of the form, sampling plan information is recorded. The official must first designate the "inspection lot" before determining the size of the lot to be tested (box 5). This is described in Section 2.3. Once the size of the lot is known, the official can look up the appropriate sample size (box 6), take sample size (box 7), and the number of package errors allowed to exceed the MAV (box 8) in Table 2-2 (Category A) or Table 2-5 (for Category B plans).

2.2.2. Filling Out the Tare Information on the Report Form or Worksheets

The determination of 'tare' is covered generally in Section 2.11. In general, no matter how the package is labeled (liquid volume, count, etc.), the inspector should try to convert to units of weight when testing the packages (see Section 2.10). This conversion process is detailed in Chapters 4 and 5, and noted on the worksheets that accompany the form on page A-1.

When packages are labeled by weight, no worksheets are needed and, therefore, the tare can be recorded directly on the report form. This is the next section of the report form on page A-2 (shown in Figure 2-2). It provides space to record the "gross weight" (unopened total package weight) in boxes labeled "a" and the "tare weight" in boxes labeled "b" for up to five packages.

![Figure 2-2. Places to record the sample information and the nominal gross weight on the Standard Pack Report Form - Weight Only.](image)

2-3
An additional worksheet may be appended if more than five packages are opened to determine tare. This section of the report form is used only when the packages are labeled by weight. Special worksheets are provided to record this information for packages labeled in other units (volume, count, etc.) (compare with page A-1).

Returning to Figure 2-2, Section 2.11.4, describes a special method to be used when tare variability is appreciable with respect to the variability of the net weight (boxes 9 through 12).

The average tare weight is recorded in box 13 and any corrections to the tare are entered in box 13a. Box 14 is used to record the "nominal gross weight", the weight against which all package gross weights will be compared to determine the package errors.

2.2.3. Recording Package Errors and Determining Whether the Lot Conforms to the Requirements

Figure 2-2 shows spaces beside the boxes labeled "d" and "e" for recording the package errors for those packages opened for tare. (The spaces beside the box labeled "c" are used only for the alternative tare procedure and are described in Section 2.11.4, and more fully in Section 3.11.1.)

Section 2.5.3, describes how to record package errors in the crosshatched area of the report form. See Figure 2-3.

Figure 2-3. The crosshatched area of the report form and the place to record lot disposition.

2-4
Appendix G explains how to calculate a "range" (R). The actual number of "unreasonable errors" (box 16) and the criteria for individual package errors (box 17) are explained in Sections 2.7.1. (for Category A plans) and 2.8.1. (for Category B). The "average error" (boxes 18 and 19) is explained in Sections 2.7.2.

(Category A) and 2.8.2. (for Category B). The special additional steps (boxes 21 through 27) to determine lot conformance when following a Category A sampling plan (when the average error is a minus value) are described in Section 2.7.3.

2.5. Definition of the Lot

As a first step in package testing, the official designates the collection of packages upon which action will be taken as a result of the official's test. This is the "INSPECTION LOT." Based on the factors likely to cause variations in quantity, the official should designate an inspection lot as the largest possible group of packages, in accordance with the following guidelines:

(i) The inspection lot must consist only of packages of the same product, with the same label, from the same packer.

For example, a lot shall consist of cans of peach halves, syrup added, 500 grams net weight, Brand X.

This rule should never be violated.

(ii) To the greatest extent possible, the inspection lot should consist only of packages packed at the same place, at the same time, under the same conditions. This guideline is in addition to the provisions of guideline (i). Therefore, a lot should consist of packages of the same product and the same label. They should also have the same lot code number if inspection is done at the warehouse, or be packages from the same filling line, packed during the same period, if inspection is done on-line at the packing plant. It is not absolutely necessary to sort by lot code when testing packages in a retail location; a shipment or delivery may in fact be composed of packages with different lot codes.

It is not always possible to take the second guideline into account in designating lots. In fact, taking both guidelines into account may lead to a very small inspection lot, the result of which is unsatisfactory. The inspection lot should be as large as possible without violating guideline (i), yet taking into account the factors mentioned in guideline (ii).

If the official cannot reach some packages because of physical or other constraints, those packages are not part of the inspection lot to be acted upon. In general, such restrictions on sampling should be avoided whenever possible.

State and local regulations apply to "lots." "Shipment," or "deliveries." A shipment or delivery will rarely be comprised of only one or two packages. If only one or two packages are found on retail shelves, more packages should be sought in storerooms or cases. When only one or two packages are available for test in a single location and it is evident that the shipment or delivery was larger, the average set contents of the
shipment or delivery cannot be determined. Only individual package errors can be ascertained and compared with the limits of reasonable variation (called \(MAV \)). If shortages are found for one or two packages, records should be kept and follow-up inspections conducted on larger lots or in other locations.

2.3.1. The Inspection Lot of Standard Pack Packages

"Standard pack" packages are defined as those packaged with identical labels in a few selected quantity sizes. For example, canned ham labeled "5 pounds" is a standard pack meat item. The package "targets" the amount of product put into the package according to the net contents already selected to be on the package container's label.

The inspection lot must always consist of packages with identical labels (except for the lot code).

a. When the location of test is a retail store: Because state and local regulations apply to "lot, shipments, or deliveries," a shipment or delivery comprised of packages with different lot codes may be acted upon as a single inspection lot. Follow-up inspection will require segregation of lots by lot code.

b. When the location of test is a warehouse: The inspection lot must consist of packages with the same manufacturer's lot code.

c. When the location of test is at a packing plant: The inspection lot should consist of packages with the same manufacturer's lot code, or be from a single shift's production run. Inspection lots may represent as little as 1 hour's production. The inspector determines inspection lot size, which may be smaller or larger than the production lot defined by the packer.

Note that the inspection lot is not, in general, the same as the "production lot."

2.3.2. The Inspection Lot of Random Pack Packages

"Random pack" packages are defined as those packaged with identical labels except for the labeled quantity. These packages are usually individually weighed and subsequently marked with the net quantity.

An example of a random pack meat item is whole chicken labeled by weight.

a. When the location of inspection is a retail store: An inspection lot may consist of all the packages packaged at that location and available for inspection at one time. Since the same production factors apply to all such packages, the entire retail counter, for example, may be considered the lot, except for those packages on the counter put up elsewhere that day at the store. [See Appendix E for more discussion on selecting the sample from this kind of lot.]

1 The NCVI Uniform Packaging and Labeling Regulation (NIST Handbook 130) defines a "random package" as "a package that is one of a lot, shipment, or delivery of packages of the same consumer commodity with no fixed pattern of weights. The procedures in this handbook for random pack packages apply to consumer and nonconsumer packages with quantity declarations of weight or of other measure.
State and local regulations apply to "lots, shipments, or deliveries". A shipment or delivery comprised of packages with different codes may be acted upon as a single inspection lot. Follow-up inspection will require separation of lots by lot code. See also Section 3.18, for meat or poultry products from Federally-inspected plants. These packages must be sorted by lot code.

b. Special inspection lots. — Upon occasion, the official may wish to define a lot of only one kind of packaged goods (e.g., ground beef) for special reasons, such as the large number of packages of one kind of goods, prior history of product or store, the unit price of the product, or because the results of audit testing indicate the possibility of shortage in a particular item.

c. When location of inspection is either a warehouse or on-line at the packaging plant: the definition of the inspection lot is the same as that for standard pack packages except that "identical labels" is construed to mean identical except for the numerical quantity of contents.

2.3.3. Size of the Inspection Lot

Refer to discussion on the definition of lot (Section 2.3.) for further information on forming the inspection lot from which a sample will be drawn. Count the number of packages in the inspection lot. This is the size of the inspection lot, (N), to be entered on the report forms (page A-1 or page A-2) in box 5.

2.4. Package Errors

In general, the actual package quantities that the official measures will not be the same as the labeled quantity. The deviation from the labeled quantity, rather than the actual package quantity, is the matter of interest to the official. Hence, positive or negative deviations from the label (called plus or minus errors or, in general, "package errors") will be the focus of the procedures in this handbook.

Package Error = (Measured Net Contents) - (Labeled Net Contents)

A positive (plus) package error means that there is more product in the package than the label declares. A minus package error means that there is less product than the label declares.

The official will record the individual package errors on the report form and then determine lot conformance based on these package errors.

2.5. Recording Package Errors

Section 2.6. describes how to use the sampling plans to select a sample and determine the compliance of the lot. Methods of measuring the net contents of the sample packages are described in Chapters 3, 4, and 5. This section describes the method for recording measurement results on the report form.
2.5.1. The Unit of Measure and Dimensionless Units

It is convenient to record package errors in terms of "dimensionless integers" or "dimensionless units". Mechanical package testing scales are traditionally designed to be read either in terms of units of weight or in terms of the number of scale graduations (see Figure 2-4). When recording scale readings in terms of the number of scale graduations without regard to their weight value, the inspector is using "dimensionless units". Package errors must be multiplied by the value of the scale graduation (called the "unit of measure") in order to arrive at the actual package error in weight units. For example, assume that an official measures package error to the nearest 0.002 lb. The scale used to weigh the packages has 0.002-lb divisions, on its face. If an individual package error is "-0.022 lb", the official may record the unit of measure as 0.002 lb, count the number of divisions on the scale face, then record this number as the individual package error, here "-11".

![Figure 2.4. Reading a mechanical package-testing scale.](image)

It is possible to use this type of notation with electronic digital scales as well. If an electronic device reads out to 0.001 lb, the inspector may record the unit of measure as 0.001 lb and then record package errors without regard to the decimal place. A -0.04 lb reading on an electronic scale becomes a "-4" on the report form, using a 0.01 lb unit of measure.
The report forms on pages A-1 through A-4 and the worksheets are designed on the assumption that dimensionless units will be used. Other forms may be designed to provide more room for recording individual package errors with the units of weight (or other measure) for each package.

It is essential that all comparative values be converted to dimensionless units as well, or else the package measurements must be converted back to the unit of measure.

Following the earlier example, suppose the MAV for these packages is 0.020 lb. The official converts the MAV to a dimensionless unit by dividing by the unit of measure used to record the package errors. With a unit of measure of 0.002 lb, the MAV in dimensionless units = \[\frac{0.020\text{ lb}}{0.002\text{ lb}} = 10. \]

On the report form on page A-2 the unit of measure is recorded in box 2 (i.e., 0.002 lb). The MAV in dimensionless units is recorded in box 4 (i.e., 10).

2.5.2. Choosing the Unit of Measure

As a general rule, the official should record package measurements in a unit of measure less than or equal to the MAV/6. This is consistent with the principle expressed in NBS Handbook 441 that the error of standards used without correction "should be not greater than one-third of the smallest resistance to be applied when the standards are used." Since packages must meet both the individual package requirement and the average requirement, errors made in individual package measurements are additive (and do not cancel one another). Therefore, the 1:3 principle is tightened to 1:6, a ratio well suited to readily available testing equipment. For example, the MAV for packages labeled 2.50 lb is 1-3/8 oz (see Table 2-9 page B-10). MAV/6 is 0.229 oz. Since a 1/4 oz unit is larger than 0.229 oz, a 1/8 oz unit of measure would be the largest appropriate for recording measurements on these packages.

In Chapter 3, Table 3-1 presents recommended maximum units of measure to be used in recording package weights when the packages are labeled by weight and in Chapter 4, Table 4-2 presents maximum units of measure for common consumer products labeled by liquid volume.

It should be kept in mind that the MAV's for packages labeled in units other than weight (Tables 2-5, 2-10, or 2-11) apply to such packages, even though weighing may be the means of package contents measurement. In these instances, worksheets have been designed to accompany the report form on page A-1. For example, packages labeled "48 fl oz" have a MAV of 1.25 fl oz. (This value is recorded on a worksheet.) Assume that an inspector finds that 32.00 fl oz of the product under test weight 2.000 lb. Then, the MAV of 1.25 fl oz is equivalent to:

\[\frac{1.25\text{ fl oz}}{32.00\text{ fl oz}} \times 2.000\text{ lb} = 0.0781\text{ lb} \]

29
Chapter 2

(This value is recorded on the report form on page A-1.)

The MAV/6 value is 0.913 lb or about 3/16 oz. In this instance, 1/8-oz units (or 0.008-lb units) are appropriate for testing the packages. If these same 48-fl oz packages had a weight of 1,000 lb for each 32 fl oz, the MAV of 1.23 fl oz would be equivalent to only 0.0391 lb and MAV/6 = 0.007 lb. Thus, units of 1/16 oz (or 0.004 lb) would be a better choice for measuring these packages.

Equipment used to measure package quantities should be capable of discriminating measurements to 1/6 of the MAV for an individual package. This handbook suggests equipment that meets this criterion.

2.5.3. How to Use the Crosshatched Area of the Report Form

On the standard pack report forms on pages A-1 and A-2, package errors are entered in the "crosshatched" area. Five values are entered down the first column, then the next five in the second column, and so on. This area of the form is designed to aid the official in summing the individual package errors and determining the range of package errors. [Computations are explained in Section 2.7, and Appendix G.] Each package error is entered in a two-triangle block according to the following scheme:

\[
\begin{array}{c}
0, + \\
\end{array}
\]

If the package error is minus, it is entered in the lower left triangle of the block:

\[
\begin{array}{c}
2, \\
\end{array}
\]

This example indicates a package error of -2.

If the error is plus, it is entered in the upper right triangle of the block:

\[
\begin{array}{c}
1, \\
\end{array}
\]

This example indicates a package error of +1.

*This portion of the report form is based on that of the division of Measurement Standards, Department of Food and Agriculture, State of California (Report Form 524-003).
Zero errors are also recorded in the upper right triangle of the block.

When checking sample sizes greater than 50, additional report forms must be used to record the package errors.

To obtain the sum of package errors, add the individual package errors horizontally across the rows in the crosshatched area, separately adding lower left and upper right triangles. Record the sum of each horizontal row in the "nests" column on the extreme right, then add up the rightmost column, taking care to observe the plus and minus values. [See Figure 2-5 for an example.] Record the total error (algebraic sum) in box 15. The average error of the sample is obtained by dividing the total error by the number of packages in the sample. The average error is recorded in box 18.

In order to obtain the average range needed for Category A, the range for each set of five package errors (each column of package errors) can be recorded at the bottom of the crosshatched area in the spaces marked "Ranges".

Follow Appendix G for determining the range for each group of five packages. Sum the individual ranges and divide by the number of groups of five packages in order to determine the average range and record in box 21.

For example, with a sample size of 50, six groups of five packages will be listed in six columns in the crosshatched area. [See Figure 2-5.]

![Figure 2.5. Example of package errors, ranges, and total error recorded on part of the report form.](image-url)

2-11
2.6. Selecting the Sampling Plan

The average requirement applies to the vast majority of packages to be tested, and Category A or B plans (described below) should be used in these instances. Special sampling plans for pressed and blown glass tumblers and stemware are presented in Section 5.7, (pages 5-20 and B-23). Special sampling plans must be used for packages labeled by count and containing less than 51 units per package. These plans are introduced in Section 5.2. (pages 5-5 and B-22).

All the sampling plan tables (Table 2-2, 2-5, 5-1, or 5-2) are tabulated according to lot size. The official may use a larger sample size (a line further down the table) but must follow the entire sampling plan (all of the corresponding horizontal line).

The official enters the tables by finding the horizontal line that corresponds to the size of the inspection lot (first column). The other columns detail the size of the sample (second column), the number of packages to be selected for test determination (third column) and the number of individual packages permitted to exceed a "reasonable" value (last column).

2.7. Sampling Plans in Category A

Table 2-2 on page B-3 lists six sampling plans according to the inspection lot size (called "N") indicated in column 1. For each plan, column 2 indicates the number of packages to be chosen at random from the lot; this is the "sample size" (called "n"), Appendix E describes several methods for obtaining a random sample. (Note the special precautions for sample selection on page E-8.) Column 3 of Table 2-2 indicates the number of packages to be chosen randomly from the sample or from the stock of unused tare materials for determination of tare, this is the "tare sample size". Appendix E also describes methods for tare sample selection. Column 4 indicates the number of minus package errors that are allowed to exceed the MAV. This is the allowed number of unreasonable errors.

After recording the lot size in box 5 on the report forms (pages A-1 and A-2), the official selects a sampling plan from Table 2-2 according to the lot size and records the corresponding sample size in box 6 on the report form (checking that a Category A plan is being followed). The corresponding tare sample size is recorded in box 7 and the allowed number of unreasonable errors is recorded in box 8 on the report form.

As mentioned in Section 2.6, Table 2-2 lists the minimum sample size to be used for any given lot size. A larger sample size may be chosen at any time as long as the official follows the entire sampling plan (all of any given horizontal line, including the decision criteria corresponding to that sampling plan and that line). For example, the official may choose to take a sample size of 50 for a lot of 750 packages, rather than a sample of 30. However, the official must also take 5 packages to determine the tare and the lot can be considered out of conformance only if 3 or more packages in the sample of 50 are short measure by more than the MAV from the labeled quantity (or if the sample fails the average error requirement). See Figure 2-6.

1Sample sizes of 50 and over are the same as those in Military Standard 105-D, but the sampling plans are not the same as Military Standard 105-D because the decision criteria are different. In addition to the decision criterion for individual packages (Section 2.7.1), the lot must also pass the decision criterion for the average (Section 2.7.2).
Figure 2-6. An example of a larger sample size selected on the report form.

Obviously defective individual packages are not to be selected from the inspection lot to become part of the sample. [See Appendix E for guidance in this situation.] However, obviously defective packages should not be reintroduced into the lot.

After the quantity of contents in each sample package is measured and recorded, the decision criteria of the plan are applied. The decision criteria indicate the conformance or nonconformance of the lot with the package requirements.

2.7.1. Decision Criterion: Individual Packages

First, conformance is checked with the package requirement that permits individual packages to differ from the labeled quantity by a "reasonable" amount. The package error (see Section 2.4.) for each package in the sample is compared to the MAV for that package type and size. [See Section 2.12. for more information about MAV's.]

The minus errors that exceed the MAV are called "UNREASONABLE ERRORS". If the number of unreasonable errors exceeds the limit indicated in column 4 of Table 2-2 (page B-3) (corresponding to the sample size), the lot fails to conform with the package requirements. No further testing of the lot is necessary. On the report forms on pages A-1 or A-2, the allowed number of unreasonable errors from column 4 of Table 2-2 is recorded in box 8 and the individual package errors in the crosshatched area of the report form. Each minus package error that exceeds the MAV should be circled on the report form and the total number of circled package errors (the number of unreasonable errors) should be recorded in box 10 on the report form.

For example, the MAV for a 12 oz package is 0.036 lb (found by looking up the MAV in Table 2-8). Suppose the lot size is 500 packages. Table 2-2 indicates that a sample size of 30 and a sample of 2 is to be selected. Column 4 of Table 2-2 indicates that only one package may exceed the MAV. Therefore, a "1" is entered in box 8 on the report form. Suppose that three packages in the sample of 30 are short weight by more than 0.036 lb. They are circled and a "3" is entered in box 10. Since this value is greater than the value in box 8, the "yes" box is checked in box 17. The lot, in this example, fails to conform to the net contents requirements. See Figure 2-7.
Figure 2-7. Example of lot failing the individual package requirement.

If the number of unreasonable errors in the sample (recorded in box 16) is less than or equal to the number recorded in box 8, the lot complies with this first requirement. The average error must then be computed according to Section 2.7.2, before a final decision can be made as to the compliance of the lot with net quantity regulations.

When the lot size is 30 or less, all packages are tested. The lot is nonconforming if any minus package errors exceed the MAV. This corresponds to 100% testing.

2-14
2.7.2. Decision Criterion: The Average Error

The "average error" for the sample is computed by dividing the sum of the individual package errors (called the "total error" and recorded in box 15 on the report form on pages A-1 and A-2) by the number of packages in the sample (box 6). The average error is recorded in boxes 18 and 19 on the report form. If the total error (and, consequently, the average error) is zero or a positive number, a final decision on the lot can be made at this point; that is, the lot conforms with the package net quantity requirements.

When the lot size is 30 or less, all packages are tested; the lot is nonconforming if the total error has a minus value. This corresponds to 100% testing.

When the sample average is minus, the statistical values "d", "t", and "T" are computed or looked up in tables (as described below) and used to determine whether the lot conforms.

(i) First compute "d".

\[d = \bar{R} \times \left(0.8598/\sqrt{n}\right) \]

where

\(\bar{R} \) is the average range of package errors for groups of 5 packages taken in the order of weighing and \(n \) is the number of packages comprising the sample. (Appendix G contains a detailed example of how to calculate \(R \).

For the convenience of the official, Table 2-3 in column 2 (page B-3), gives values of 0.8598/\(\sqrt{n} \) for each sample size to use in the calculation of \(d \). See Figure 2-8 for a completed example.

\(R \) is recorded in box 21 and the value from column 2 of Table 2-3 is recorded in box 22 on the report form.

For example, if the sample size is 30, and \(\bar{R} = 2 \),

\[d = \left(0.8570 \times 2\right) = \left(0.1570\right) \times \left(2\right) = 0.3140. \] See Figure 2-8 for example.

\(d \) is recorded in box 23 and, as indicated on the form, is the value recorded in box 21 multiplied by the value in box 22.

1Alternatively, a calculator which gives "standard deviation" directly may be used to determine \(d \). Since commonly available hand calculators may not have enough storage capacity to calculate the standard deviation for large sample sizes, the average range method, described above, is acceptable. If a calculator that gives the standard deviation is being used, \(d = 2s/\sqrt{n} \), where \(s \) is the standard deviation and \(n \) is the number of packages comprising the sample. For convenience, Table 2-3, column 3 gives values of \(2s/\sqrt{n} \) to use in this calculation. Slightly different values for \(d \) will be obtained using the standard deviation rather than the average range. If the standard deviation is used in the calculation, the report form must be modified to indicate the Table 2-3, column 3, value in box 23.
<table>
<thead>
<tr>
<th>No.</th>
<th>Aggregate Weight</th>
<th>Total Weight</th>
<th>Average Error</th>
<th>Average Error</th>
<th>Total Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
</tbody>
</table>

Figure 2-8. Example of calculation of T.

(i) Calculate the percentage of the lot that the sample represents.

For example, if the lot consists of 50 packages (N) and a sample of 30 packages (n) is to be selected from the lot, the sample represents 30/50 x 100 = 60% of the lot. This value is recorded in box 24 on the report form. See Figure 2-8.

(ii) Look up "f" value in Table 2-4 on page B-4, based on the percentage of the lot that the sample represents (as recorded in box 24). The value of f from Table 2-4 is recorded in box 25 on the report form.

For the above example, the f value is 0.63. See Figure 2-8.

(iv) Calculate "T".

\[T = d \times f \]

Record T in box 26 on the report form (where it is indicated that T is the value in box 23 times the value in box 23). Following the above example, with \(d = 0.3140 \) and \(f = 0.63 \), \(T = d \times f = 0.20 \). See Figure 2-8.

(v) Compare the observed average error with T to determine lot conformance. If the average error recorded in box 18 (inspecting its minus sign) is larger than T, the lot does not conform with the package requirements. Record results in box 27.

2-16
In the above example, the average error is -0.30, hence the lot fails to comply with the package requirements since the value in box 18 (-0.30) disregarding its sign is larger than the value in box 26 (0.20). See Figure 2-8.

It should be remembered that the calculations in steps (i) through (v) above have to be made only when the average error is minus. See page H-3 for a complete example using a Category A sampling plan and filling out the report form.

2.8. Sampling Plans in Category B

Table 2-5 on page B-5 provides the two Category B sampling plans. Depending on the size of the lot, (N), shown in column 1, column 2 indicates the number of packages to be chosen at random from the lot (the "sample size", n) and column 3 shows the number of packages that must be opened to determine the average tare ("tare sample size"). Column 4 shows that no (zero) packages are permitted to exceed the MAV. On the report forms on pages A-1 or A-2, the lot size is recorded in box 5, the sample size in box 6 (check the box indicating that a Category B plan is being followed), and the tare sample size in box 7. A zero is recorded in box 8.

Obviously defective individual packages are not to be selected from the inspection lot to become part of the sample. [See Appendix E for guidance in this situation.] However, obviously defective packages should not be reintroduced into commerce.

After the quantity of contents in the sample packages is measured and recorded, it is then necessary to compare these measurements with the package requirements.

2.8.1. Decision Criterion: Individual Packages

Minus package errors that exceed the magnitude of the MAV (Section 2.12.) are called "UNREASONABLE ERRORS". Category B permits no unreasonable errors in the sample. [See Column 4 of Table 2-5.]

On the report forms on pages A-1 and A-2, the number of unreasonable errors found in the sample is recorded in box 15.

If there are any unreasonable errors in the sample, the lot fails to conform with the individual package requirement (see box 17 on the report forms). No further testing is necessary to determine lot conformance.

If there are no unreasonable errors in the sample, the total error and the average error must be calculated before making a final decision on the conformance of the lot.
2.8.3. Decision Criterion: The Average Error

The "average error" of the sample is calculated from the values obtained from individual package measurements. The average error obtained by dividing the sum of the individual package errors in the sample (called the "total error" and recorded in box 15 on the report form) by the number of packages in the sample (box 6).

If the total error (and consequently the average error) is zero or a positive number, the lot conforms with the package requirements. If the total error (and consequently the average error) is minus, the lot fails to conform with the package requirements.

The average error is recorded in boxes 18 and 19 on the report form. Whether the average error is a zero, plus, or minus value is recorded in box 20. See pages H-1 and H-2 for complete examples using a Category B sampling plan.

2.9. Individual Packages

In a lot complying with the package requirements as determined by either a Category A or B sampling plan, individual packages in the sample may be short weight or measure from the labeled quantity by more than the MAV. These are called "defective" packages. Enforcement action should be taken on the entire lot if the number of defective packages is greater than the allowed number in Category A (Table 2-2) or Category B (Table 2-5). No fines or other penalties should be levied for defective packages, if the number of such packages is less than the number that would require the lot to be rejected. For example, if column 4 in Table 2-2 permits 3 packages to exceed the MAV, and only 2 packages in the sample exceed the MAV, the lot would pass inspection. No fines should be levied for the two defective packages found, but those defective packages should be ordered off-sale. Defective packages should not be reintroduced into commerce.

Disposition of such packages may be recorded on the report forms on pages A-1 or A-2, under "Comments."

(Revised 1989)

2.10. The Criteria for Weighing Packages not Labeled by Weight

The preferred method for testing packages labeled in units other than weight is to weigh such packages. If the official can determine the weight of the labeled quantity of product, that weight plus the empty container weight can be used to compare with the weights of unopened packages. Otherwise, the official must open and measure the contents of every package in the sample—a time-consuming and costly alternative.

However, two criteria must be met before the official may use a weighing technique:

(i) The equipment used must be able to discriminate differences in package content weights corresponding to the MAV/6. [Most common liquid commodities will meet this criterion; see step 1, footnote, in Section 4A.1.]

If the equal-arm scales described in Section 2.1. are used, this criterion can be met if 1/2 the smallest scale division is equal to or smaller than MAV/6. If a digital-readout scale is used, the smallest increment in the readout must not be larger than the MAV/6.
(ii) The weight of a known quantity of product must not vary significantly from the specified weight or the weight of the package. [See Section 4.4. for liquid volume, 5.1.3. for count, and 5.3.2. for linear measure.]

Chapters 4 and 5 describe in detail the procedures necessary to determine whether weighting can be used to determine net contents conformance for packages labeled in units other than weight. Worksheets have been designed to take the inspector through all the steps necessary to convert to units of weight and back again. [See Chapter 4 for volume and Chapter 5 for length, area, and count.]

2.11. Tare

In compliance testing of packaged goods, the enforcement agency utilizes non-destructive tests as far as possible and opens the fewest packages needed for adequate testing. The net weight of a package may be determined by weighting the unopened package — called the "gross weight" — and subtracting from that weight the average weight of the packaging materials, called the "average tare weight," provided that the actual tare weights of individual packages do not vary too much (see Section 2.11A.). In more complicated situations, the official test determines whether the net-weight labeled unit of measure (e.g., volume) can be converted to a weight value (for example, by using the measured weight of a known volume). If this is possible, the net contents of a package can be determined by subtracting the tare weight from the gross weight, then converting the resultant value from units of weight to the units on the package label.

The packages that are used to determine the average tare weight constitute the "tare sample." At least two individual packages should be used to obtain an average tare weight value (that is, the tare sample size should be at least two). For larger package samples, the average tare value should be obtained from more than two determinations. [See Tables 2-2 and 2-5, pages B-3 and B-5, column 3, for tare sample sizes corresponding to various package sample sizes.]

The average tare is recorded in box 13 on the report forms on page A-1 and A-2.

Two tare definitions are used commonly for the inspection of packaged goods:

a. Unused tare (also known as "dry tare") comprises all packaging materials (including glue, labels, ties, etc.) that will contain or enclose a product; it includes prizes, gifts, coupons, or decorations that are not part of the product. Unused tare is weighed before the product is introduced into the container.

b. Used tare comprises all packaging materials that can be separated from the packaged product, either readily (e.g., by shaking) or by washing, scraping, ambient air drying, or other techniques involving more than "normal" household recovery procedures, but not including laboratory procedures. As in the definition of unused tare, prizes, decorations and such are also part of the used tare.

1In actual practice, a "nominal gross weight" value will be determined (and recorded in box 14 of the report forms shown on pages A-1 and A-2). The "nominal gross weight" is the sum of the average tare weight and the labeled weight. This weight value may then be easily compared with the actual gross weights of each unopened package remaining in the sample in order to arrive at the individual package errors. For example, see steps 5 and 6 of Section 3.5.

2-19
Chapter 2

There are two subcategories of "used tare."

- Wet tare. Used tare may also be called "wet tare" when no effort is made to reconstitute unused tare by drying out the absorbent portion of the tare. Free-flowing liquid is part of the wet tare for meat or poultry products from Federally-inspected plants. See Section 3.18.

- "Dried used tare" refers to used tare that has been air dried, or dried in some manner, to simulate the unused tare. See Section 3.18, for a further explanation of dried used tare.

In some cases (e.g., canned or glass- or plastic-packed goods), unused tare weights are equivalent to used tare (within the measurement precision of field test scales). However, the net contents value that is obtained when an unused tare weight is subtracted from the package's gross weight does not always represent the amount of product that can subsequently be recovered from the package. For example, oils or moisture from the product may be absorbed by the packaging material when in contact with the product, thereby increasing the weight of the packaging material and decreasing the weight of usable product after packaging.

Tare weight can vary considerably from package to package as compared with the variability of the package net contents, even for packages in the same production lot. Although this is not the situation for most packaged products, it is a major problem with glass or aerosol containers. Therefore, an "alternative tare determination" procedure is provided in Section 2.11.4. This procedure must be used for glass or aerosol containers and is optional for any other container. There are several instances in which this procedure will prove useful to the official; the method is so simple that it can be used routinely. For example, relatively heavy containers (e.g., plastic buckets or cans) can vary considerably in net weight, especially in a retail store inspection lot, which may be composed of packages from more than one production facility, and with containers made of different materials or made by different manufacturers. The procedure of Section 2.11.4. will indicate if this tare variability is stable in comparison with the net weight variability, and whether the official should open more packages to obtain the average tare weight.

Direct measurement of net contents is necessary when the product cannot be checked by weighing. For example, packaging materials and individual units in packages labeled by "cans" sometimes differ enough in weight from each other such that the gross weight of a package minus the tare weight may not adequately indicate the count of units inside the package.

The direct measurement of net contents is also necessary when the net content is defined as the "drained weight" of product inside the package. "Drained weight" is prescribed by regulatory agencies in those instances in which it has been concluded that the only usable or consumable material inside the package is the solid portion, whereas the liquid portion is dispersed of and therefore "drained away." Common examples are canned or bottled olives and mushrooms. The liquids in which they are packed are not considered part of the net contents. Drained weight procedures are provided in Sections 3.10. and 3.13.
2.11.1. Choosing Packages for Tare

The tare sample should be chosen randomly. Appendix E contains descriptions of how to select random samples and random tare samples. The random number selection process that determines the whole sample also indicates the packages to be opened for tare.

Some jurisdictions have traditionally taken the lightest and heaviest packages (with respect to their gross weight) as the tare sample. We recommend against this approach since variations in gross weight can be due to variations in tare weight, net weight, or both.

If unused tare is to be measured, Appendix E provides procedures to select the tare sample from the lot or lots of tare material.

Tare values are determined by weighing the empty package materials.

2.11.2. Cleaning Tare Materials

The methods for cleaning packaging material to determine tare weight depend on the tare material and the product it contains. In general, a common sense approach should be followed. A bread bag, for example, may be turned inside out to remove all crumbs.

See Section 3.18. for specific procedures on obtaining a "dried used tare" weight for meat or poultry from Federally-inspected plants.

In cleaning tare material such as metal cans with paper labels, care should be taken not to wet the labels with water or other solvent used to clean the container. The interior of the container should be thoroughly dried with a clean dry cloth or else air dried, whichever is more practicable. Butter or bacon wrappers should be scraped and wiped clean, but no effort should be made to extract product contents absorbed by the tare. Casings compound tubs should be cut open, scraped and wiped. Solvent may be used if the package is foil-lined, but precautions should be taken to avoid wetting the outside of the tube with solvent. Packages containing oil-based products may require several detergent washes to remove the product from the container.

The above are examples of a few of the approaches that may be used to clean packaging materials prior to determination of the tare weight.

2.11.3. Tare Neither Glass nor Aerosol

Table 2-2 and Table 2-5 (pages B-3 and B-5) indicate in column 3 how many packages to open or how many tare units to select at random in order to determine the average tare. The tare sample size is recorded in box 7 of the report forms on pages A-1 and A-2.
For packages labeled by weight, the weights of the individual tare units (after cleaning) are recorded on the report form on page A-2 in the spaces marked "b" (see Figure 2-2); they should be averaged and the result entered in box 13. This average tare weight plus the declared net weight (subtracting any corrections) is the "NOMINAL GROSS WEIGHT" (box 14). The gross weights of unopened packages in the sample are compared with the nominal gross weight to determine individual package errors.

2.11.4. Alternative Tare Procedure 2

The following procedure must be followed for glass or aerosol containers and is optional for all other packages. For example, it has been noted that the test variability is large for the metal cans and plastic overscaps for ground coffee and products in large cans or plastic buckets. "F-Style" rectangular cans, of the type in which turpentine, mineral spirits, and similar products are packaged, are also good candidates for this procedure.

It will often be necessary to follow the tare procedures below for checking random pack meat and poultry using wet tare determinations.

First, determine the total number of packages to be opened for tare by:

a. selecting the number of packages according to Table 2-6 (page B-6) for the "initial tare sample".
b. determining the tare weights and net contents of those packages,
c. obtaining the ratio of the range of net contents to the range of tare weights, and
d. referring to Table 2-7 (pages B-7 and B-8), to obtain the total number of containers to be opened.

It may or may not be necessary to open additional packages, depending on whether or not the total number of packages to be opened for tare is greater than the initial tare sample size. The report form on page A-2 may be used for recording measurements for standard pack packages labeled by weight (see Figure 2-2). 3 The detailed procedure is as follows:

(i) An "initial tare sample" (see Table 2-6, page B-6) is selected from the sample. [See Appendix E for a description of random sample selection.] The initial tare sample size is recorded in box 7 on the report form.

2For packages labeled in units other than weight, appropriate worksheets have space on them for recording the tare weights.

The report form on page A-1 plus the worksheet on pages A-5 and A-6 may be used for standard pack packages labeled by liquid volume. These products are often packaged in glass containers.

2-22
(ii) The packages chosen for tare are gross weighed, then emptied.1 Glass packages may be opened; aerosol packages must not be opened. [See Section 3.1.14. for instructions on opening aerosol packages.] Record gross weights in spaces beside "a" on the report form on page A-2.

(iii) The tare weight is determined and recorded for each package. Record tare weights in spaces beside "b".

(iv) The net weights for the initial tare sample are calculated and recorded.

\[\text{Net Weight} = \text{Gross Weight} - \text{Tare Weight} \]

Record tare weights in spaces beside "c".

(v) The "range of net weights" for the tare sample (\(R_t\)) is determined and recorded in box 9. [The range is the difference between the largest net weight value and the smallest. See Appendix G for more complete instructions on determining the range.]

(vi) The "range of tare weights" (called \(R_t\)) is determined and recorded in box 10.

(vii) The ratio \(R_t/R\) is computed and recorded in box 11. \(R_t\) and \(R\) must both be in the same unit of measure or both in dimensionless units.

(viii) The total number of packages to be emptied for the tare determination, \(n\), is read from Table 2-7 (pages B-7 and B-8) and recorded in box 12. In this look-up table, read down the first column (headed \(R_t/R\)) to find the range in which the computed \(R_t/R\) falls, then read across to the column headed with the appropriate sample size, \(n\). If the number of packages to open, \(n\), is equal to the number already opened, no additional packages need to be emptied.

(ix) If \(n\) is greater than the number of packages already opened, compute the number of additional packages, equal to \(n\) minus the initial tare sample size, which must be emptied.

For example, if \(R_t/R\) is 2.90 for a sample size of \(n = 30\), 10 package tare weights are necessary to determine the average tare.

1For packages labeled in units other than weight, the suitability of using a weight value in place of the labeled measure is determined. This is accomplished by using the contents of the first two packages chosen for tare determination, and is described in Section 4.4. for packages labeled by volume, in Section 5.1.3. for packages labeled by count, and in Section 5.3.2. for packages labeled by linear or area measure. The alternative tare procedure is then followed for those packages that can be checked by weight. For packages that cannot be checked by weight, net contents must be measured directly for all the sample packages; there is no tare determination.
In this example, if five packages have already been emptied, five more must be emptied to obtain an average tare value.

In another example, ten packages are randomly selected from an inspection lot of bottled herring labeled 4 oz. Their gross weights are:

<table>
<thead>
<tr>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.406</td>
</tr>
<tr>
<td>0.400</td>
</tr>
<tr>
<td>0.404</td>
</tr>
<tr>
<td>0.398</td>
</tr>
<tr>
<td>0.408</td>
</tr>
</tbody>
</table>

The tare values are for the packages that were chosen for tare determination. The tare weights are 0.146 lb for the first package and 0.150 lb for the second. See Figure 2-9.

The range of tare weights, is \(R_t = 0.150 - 0.146 = 0.004 \) lb.

The package net weights for the two packages chosen for tare determination are:

\[
\begin{align*}
0.406 \text{ lb} - 0.146 \text{ lb} & = 0.260 \text{ lb} \\
0.400 \text{ lb} - 0.150 \text{ lb} & = 0.250 \text{ lb}
\end{align*}
\]

The range of net weights, \(R_n = 0.260 - 0.250 = 0.010 \) lb.

\(R_t / R_n = 0.010 / 0.004 = 2.5 \). Consulting Table 2-7, for \(R_t / R_n = 2.5 \) and \(n = 10, n = 4 \); therefore, two more packages must be opened to determine the average tare.

![Table 2-9](image)

Figure 2-9. Example of alternative tare procedure.

(x) Steps (ii), (iii), and (iv) are repeated for these additional packages.

(xi) The average of all the tare weights is added to the labeled quantity (in terms of weight) to represent the "nominal gross weight"
(unless all the packages in the sample have been opened). The average tare weight is recorded in box 15 of the report form.

The actual gross weights of those packages that were opened for tare are compared with the nominal gross weight in box 14 to determine the package error for the tare packages (and recorded in the spaces beside "d" and "e"). The nominal gross weight in box 14 is also used to compare against the sample package not opened for tare. (See Chapters 3, 4, and 5.)

If the number of packages required to be opened for tare is more than half of the total sample, the official has the option of opening all the packages in the sample. The tare values are not averaged in such instances. Instead, each tare weight is subtracted from the corresponding package gross weight to obtain the individual package net weight.

It will be necessary to append worksheets to the report form if more than five packages must be opened.

Note. For foam product aerosols, a "net allowance" is applied to the tare determination to compensate for differences in product delivery between normal consumer usage and the test procedure. (See Section 3.11.6.) This net allowance (provided in Table 3-2, page B-17) is subtracted from the actual tare weight or the average tare weight. The net allowance is recorded in box 13a on page A-2. Also see Section 3.15, for corrections (box 13a) for canned coffee (vacuum pack). Moisture allowances can also be applied by means of a correction to the tare (and entered in box 13a).

2.12. MAV's

The limits of reasonable individual package variations are called "MAV's" in this handbook. The MAV applies only to individual packages subject to the average requirement. Pressed and blown glass tableware and stemware given an "allowable difference" (see Section 5.7.) are not compared with the MAV.

In the past, limits of reasonable variation have been described as values limiting both positive and negative deviations from the label. The present handbook provides MAV's that are used to compare with minus package errors only. Positive deviations will in general be controlled by the competitive marketplace; this handbook, therefore, indicates MAV values that are intended to limit only negative deviations from the labeled quantity.

Tables 2-8 through 2-12, on pages B-9 through B-15, are separated according to the labeled unit of measure, for example, weight, volume, etc.

1In addition, the average net contents of lots, shipments, or deliveries must equal or exceed the labeled net contents. The sampling plans of Category A or B are provided for testing packages subject to the average requirement.

2Note exception in Section 2.13 for textiles.
In each table, one column lists ranges of labeled quantities and another column lists the MAV for that range. For example, the MAV for a labeled weight of 5 lb can be found on page B-10. 5 lb is in the range "4.70- to 5.30"; the MAV in decimal pounds is 0.14 and in ounces is 2 1/4. Two entries for each range of labeled weights are provided in Table 2-8 up to 1.08 lb. This will facilitate looking up the MAV for standard or random-pack packages. Standard-pack commodities up to 1 lb must be labeled in ounces; random-pack commodities will be labeled in decimal pounds.

When a MAV is listed as a percentage of the label, make the calculation and round down to the lower figure equivalent to the unit of measure. For example, fertilizer in 72 lb bags would have a MAV of 0.02 x 72 lb = 1.44 lb. If the scale being used to test the product has 0.1 lb divisions, the MAV would be recording as 1.4 lb and in dimensionless units as 1.4 lb/72 lb = 1/44.

The MAV's for packages labeled by weight are limited to be applied to packages when the principal declaration on the label is in terms of net weight (e.g., soup) or drained weight (e.g., mushrooms). The MAV for packages labeled by weight do not apply to supplemental weight statements, such as "Net weight."

When checking standard pack packages, the official should complete box 3 of the report forms on pages A-1 or A-2 using that value from Table 2-8, 2-9, 2-10, 2-11, or 2-12 corresponding to the labeled quantity.

The special report form developed for random packages on pages A-3 and A-4 provides space for recording the MAV for random package weights in spaces below box 10 and 11. [See Section 3.8. for application of the MAV to random pack package lots.] Special worksheets provide space for calculating the MAV in units of weight and in dimensionless units for those instances in which weighing will be used to check packages labeled in units other than weight.

2.13. Exceptions to the MAV's

1 MAV's exceeding those listed in Tables 2-8 through 2-12 must be applied for the products listed below.

Specific Product Exceptions to the MAV:

2.13.1. Polyethylene sheeting and film

2.13.1.1. Thickness

a. When labeled thickness is less than 1 mil (0.001 in), any individual thickness measurement of polyethylene film may be as much as 35% below the labeled thickness (i.e., at least 65% of the labeled thickness). 2

(Added 1988)

In addition, the average net contents of lots, shipments, or deliveries must equal or exceed the labeled net contents. The sampling plans of Category A or B are provided for testing packages subject to the average requirement.

When the labeled thickness is 1 mil or greater, any individual thickness measurement of polyethylene sheeting may be as much as 20% below the labeled thickness (i.e., at least 80% of the labeled thickness). (Amended 1988)

The average thickness of a single package of polyethylene sheeting may be as much as -4% below the labeled thickness (i.e., at least 96% of the labeled thickness). [See Section 5.4.3.]

2.13.1.1. Weight

An individual package minus variation greater than 4% of the declared weight shall be considered unreasonable. 3

2.13.2. Textiles

The National Conference on Weights and Measures Uniform Packaging and Labeling Regulation lists the MAV's for textiles as the following:

a. For those packages with no declared dimension less than 24 inches (60 cm):
 A minus error may be no larger than -3% of a declared dimension.
 A plus error may be no greater than +6% of a declared dimension.

b. For packages with any declared dimension less than 24 inches (60 cm):
 A minus error may be no larger than -5% of a declared dimension.
 A plus error may be no greater than +12% of a declared dimension.

2.13.3. Mulch

The National Conference on Weights and Measures recommends the following MAV for mulch. 3

A minus error may be no larger than -5% of the declared volume. 3

2Section 10.12 (b) of the Uniform Packaging and Labeling Regulation, NIST Handbook 130, "Uniform Laws and Regulations."

3Section 10.13. of the Uniform Packaging and Labeling Regulation, NIST Handbook 130, "Uniform Laws and Regulations."

4Section 10.9.3. of the Uniform Packaging and Labeling Regulation, NIST Handbook 130, "Uniform Laws and Regulations."

5Section 10.11 of the Uniform Packaging and Labeling Regulation, NBS Handbook 130, "Uniform Laws and Regulations."

2-27
2.13.4. Meat or Poultry from Federally-Inspected Plants

The U.S. Department of Agriculture (USDA) sets the lower limit for individual packages for meat and poultry that are produced under official USDA inspection. These limits are defined according to the package's "group" and the scale division size being used by the package. Table 2-12 on page B-15 defines the groups and the lower limits for individual packages. See Section 3.18, on how to use these MAV's.

2.14. Moisture Allowance

When it is necessary to allow for moisture loss, one possible procedure is to subtract an allowance value (converted to units of weight if necessary) from the nominal gross weight (see Section 2.11, and Section 3.5) to obtain a "corrected nominal gross weight." The gross weight of each unopened package in the sample is then compared with the corrected nominal gross weight in order to determine individual package errors. The report form on page A-2 provides space in box 13a to record a moisture allowance in order to determine a corrected nominal gross weight (box 14). (See Figure 2-2.) This handbook does not provide specific allowance values to be used for moisture loss if box 13a is used.

See Section 3.17, (for flour) and Section 3.18, (for meat and poultry) for procedures using the "gray area" technique.

2-28
CHAPTER 3. METHODS OF TEST FOR PACKAGES LABELED BY WEIGHT

3.1. Weighing equipment
3.2. Preparation for testing
3.3. Recording package weights
3.4. Reading the mechanical package testing scale
3.5. Standard pack labeled by weight: CORE METHOD (unused tare)
3.6. Standard pack labeled by weight: used tare
3.7. Standard pack labeled by weight: alternative tare
3.8. Random pack labeled by weight
3.9. Large packages and the subtraction method
3.10. The determination of drained weight
3.11. Aerosol packages
3.12. Frozen food and other frozen products
3.13. Drained weight of frozen foods
3.14. Glazed raw seafood and fish
3.15. Canned coffee
3.16. Borax
3.17. Flour
3.18. Meat and poultry from Federally-inspected plants
CHAPTER 3. METHODS OF TEST FOR PACKAGES LABELED BY WEIGHT

This chapter describes weighing equipment and conventions in weighing. There follows a step-by-step description of the general method of test for packages labeled by weight (CORE METHOD) that will be referenced throughout the rest of the handbook. Variations on this core method are presented for used tare, alternative tare, and random pack.

Methods of test for packages with large net weights, for specific types of commodities labeled by weight (drained weight, net weight), and for other specific commodities (coffee, seafood) complete the chapter.

3.1. Weighing Equipment

Either mechanical or electronic digital scales may be used for checking packages labeled by weight. The mechanical equal-arm scales described below have been specially designed for package testing; available electronic equipment can equal or exceed the performance of these mechanical devices and is described in more general terms on page 3-3.

Equal-Arm Scale (for small weights in avoirdupois units) (Figure 3-1). - An equal-arm scale with approximately 5 pounds capacity and with center tower and poise beams in acceptable. The division size should not be greater than 1/16 oz on one face and 0.002 lb on the other face. There should be at least 10 divisions on each side of zero on both tower faces. The poise beams should have a zero notch in the center and notched divisions, equal in or less than the tower capacity, on each side of zero with a span of at least 4 oz or 0.24 lb. For example, a scale with 20 divisions (of 0.002 lb each) on the tower face should have notched divisions of 0.04 lb intervals on the poise beams. [See the close up of a typical tower face in Figure 3-2.] The scale should be fitted with a locking device to hold the lever during transit, have a carrying handle, and should be provided with a protective cover or box. The sensitivity of this scale must meet section T.N.6.1(b) of the Scale Code in NBC Handbook 44 (H-44). The accuracy should meet the acceptance tolerances given in H-44 Scale Code for Class II or Class III scales.

Equal-Arm Scale (for small weights in metric units) - Similar in design to the avoirdupois weight scale, except that the maximum size of each tower division should be 1 g and the poise beam should be provided with at least a 200-g span with notched divisions equal to or less than the lower capacity. The sensitivity of this scale must meet the requirements in T.N.6.1(b) of the Scale Code, H-44. The scale accuracy should meet the acceptance tolerances given in H-44 Scale Code for Class II or Class III scales.

The markings specified for the equivalent metric scale may be incorporated into the present avoirdupois weight scales to eliminate the need for two scales.

3-1
Chapter 3

Figure 3-1. Equal-arm package testing scale for small weights (avordupois units).

Figure 3-2. Mechanical package testing scale tower faces.

3-2
Equal-Arm Scale (for larger weights in avoirdupois units). - For checking relatively heavy packages, an equal-arm scale with center tower and pole beam and a capacity of approximately 20 pounds is acceptable. One face of the tower should have a maximum division size of 1/4 oz and the other face of the tower should show divisions not greater than 0.004 lb. There should be at least 10 divisions on each side of zero on both tower faces. The pole beams should have a zero mark in the center and notched divisions, each equal to or less than the tower capacity, on each side of zero. One beam should have at least a 12-oz span and the other side at least a 0.6-oz span. This scale, too, should be fitted with a locking device to hold the lever during weighing, a handle for carrying, and should have a protective cover or box. The sensitivity must meet H-44 requirements (Section T.N.S.1.(b) of the Scale Code). The accuracy should meet the acceptance tolerances for Class II or Class III scales.

Equal-Arm Scale (for larger weights in metric units). - Similar in design to the 20 pound scale, except that the tower should have maximum divisions of 2 g and the pole beam should be provided with at least a 400-g span with notched divisions each equal to or less than the tower capacity. The sensitivity of this scale must meet H-44 requirements (Section T.N.S.6.1.(b) of the Scale Code). The accuracy should meet the acceptance tolerances for a Class II or Class III scale.

Electronic Digital Scale. - Electronic digital scales appropriate for package testing are available with displays ranging from 0.0001 lb to 0.01 lb and capacities from 6 to 50 lb (or greater). The keys to selecting appropriate equipment for package testing purposes are:

(i) The scale should be selected such that the division size should be no greater than MAVS for the size package being weighed. See Table 3-1, page B-18, for recommended scale divisions for different sizes of packages.

(ii) The scale must meet all requirements of H-44 Scale Code.

- The scale must meet the acceptance tolerances given in the Handbook for its class.

- The scale must meet Section T.N.S.7.2, H-44, on discrimination.

(iii) The scale must be portable and rugged.

(iv) Slight out-of-level conditions should not introduce errors.

(v) For the convenience of the inspector (although not mandatory), the scale should be battery powered.

Commercial Scale - If packages are heavier than the capacity of the official's package checking scale, or if they cannot be accommodated on the platform, it may be necessary to use an on-site device. Care must be exercised to ensure that the device meets, and is used in accordance with the criteria listed under the “substitution” method, discussed in Section 3.9.

*The markings specified for the equivalent metric scale may be incorporated into the avoirdupois weight scales in order to eliminate the need for two scales.
Analytical Balance - Section 2.9.2, specifies the use of scales that can weigh accurately to 1/6 the MAV for an individual package. For example, the MAV for a 10-g package is 10% of 10 g or 1 g; therefore, the accuracy to be used in weighing is 1/6 g or 0.17 g, which cannot be attained by the small capacity equal-arm metric package scale. Electronic portable scales are capable of weighing to 0.1 g, but if they are not available to the inspector, very small packages must be weighed on an analytical balance. (This may require signing for and transporting packages to a laboratory.)

Field Standard Weights* (Figure 3-3) - Two kits in avoirdupois units are adequate for checking small packages labeled in inch-pound units. One is a collection of 51 pounds of standard weights from 2 lb to 1/16 oz denominations, the second kit's weights range from 0.3 lb to 0.001 lb. An additional 25-lb and two 50-lb standard weights will suffice to weigh most large packages.

For weighing packages labeled in metric units, weights should total 15 kg in standard weights of various denominations ranging down to 0.5 g for checking small packages. In addition, two 10-kg and two 20-kg standard weights will be sufficient to weigh most large metric packages.

*Tolerances for field standard weights (avoirdupois and metric) are given in Appendix I, Table I-1.
3.2. Preparation for Testing

The principal requirement for a testing location is convenience to both the official and store, warehouse, or plant personnel. Any checking in the customs area of the store should be so located that it does not interfere with normal customer traffic.

Once the test area has been selected, provision should be made for a stable and level table or work area for the test equipment. [A bubble level may be used to verify level working surface.] The scale should be placed on a firm support and leveled, if leveling is required. The official should:

- Check the scale accuracy and repeatability at zero-load indication and at 1/2 and full capacity;
- Test the scale with small loads at zero and full capacity to determine the sensitivity of the indications (tower face, pose beam) of discrimination of the digital readout;
- Perform a "shift test" at 1/2 capacity.

A commercial scale may be used only after determining that it has met B-44 requirement and is sufficiently sensitive to indicate changes in weight commensurate with MAVA (see Section 2.5.2.), If selected, the scale should not be released to commercial service until the testing has been completed.

3.3. Recording Package Weights

Table 3-1 (page B-16) lists the recommended maximum units of measure with which the official should record weights according to the labeled weight of the package. This table also gives guidance on appropriate equipment for different labeled weight declarations.

3.4 Reading the Mechanical Package Testing Scale

To obtain the greatest accuracy with an equal-arm package testing scale, rather than reading the tower face directly to determine the package errors, the scale should be used as a "null-indicator". In order to use the scale as a "null-indicator", field standard weights are placed on one weigh pan to exactly balance the other weigh pan supporting the item to be weighed. The package errors may then be determined exactly as the sum of the reference weights added or subtracted (rather than weight indications on the tower face).

If an exact balance cannot be achieved when determining the gross or net weights and using the package checking scale as a "null indicator", the index of the indicator should point away from the product being weighed and toward material being weighed for care.

*For a discussion of the shift test, see pages 103-105 of NBS Handbook 54.

*Conventionally, neither packagers nor testing officials make air buoyancy corrections in the determination of package weights. For reasons of practicality, this handbook does not recommend or include air buoyancy corrections.
Chapter 3

If the package checking scale is read directly, it will frequently be necessary to round off the indication shown on the tower face to the nearest division (or to the nearest division corresponding to the increments in Table 3-1). When the index of the package scale indicator is less than one-half the distance between two divisions, the official should record the value corresponding to the lower division. Similarly, when greater than one-half the distance, record the value corresponding to the next higher division. When the indicator is halfway between two divisions, the official should record the value corresponding to the next higher division when recording the gross package weight, but should record the value corresponding to the next lower division when recording the tare.

3.5 Standard Pack Labeled by Weight: Core Method (Unused Tare)

The description below references numbered boxes on the report form on page A-2. Other report forms and worksheets are provided in Appendix A for special and more complex procedures, to be discussed in later sections of this or other chapters, but are not mentioned in the description of the CORE METHOD.

An outline of the test procedure is provided in Figure 3-4.

The steps described in detail below should be followed when testing standard pack packages labeled by weight if unused tare is available:

1. Fill out the report form identifying the product, container description, location of test, and other pertinent data, including:
 - the labeled weight (box 1),
 - the unit of measure\(^1\) (box 2),
 - the MAV\(^2\) corresponding to the labeled weight (box 3), and
 - the MAV converted to dimensionless units\(^3\) (box 4). The value in box 4 is obtained by dividing the value in box 3 (the MAV in units of weight) by the value in box 2 (the unit of measure).\(^4\)

 Convert the labeled weight into the same units as the unit of measure, if necessary. For example, the labeled weight of 12 oz packages, to be weighed using a unit of measure of 0.002 lb, should be recorded as 0.75 lb.

 Determine the inspection lot size (box 5). Record the:
 - sample size (box 6),
 - tare sample size (box 7), and

\(^1\)The unit of measure most often chosen is the size of the scale division. See discussion in Sections 2.5.1, and 2.5.2, on the unit of measure and dimensionless units.

\(^2\)Look up the MAV corresponding to the labeled weight in Table 2-8, pages B-9 and B-10.

\(^3\)Round the resulting value to a whole number. Use the "odd and even rule" given in Handbook 44, Appendix A, Section 10.2. (When the digit to be deleted is a 5, round to an even number; 42.5 becomes 42; 43.5 becomes 44.)
the number of unreasonable errors (errors exceeding the MAV) allowed (box 8) following one of the sampling plans in Category A (page B-3) or Category B (page B-5).

FIGURE 3-4.
OUTLINE OF PACKAGE TEST
Standard Pack Packages Labeled by Weight

1. Fill in pertinent data on report form: what is being tested, UNIT OF MEASURE, MAV, INSPECTION LOT SIZE, SAMPLING PLAN information.

2. Select RANDOM SAMPLE and RANDOM TARE SAMPLE

3. Determine AVERAGE TARE WEIGHT

4. Determine NOMINAL GROSS WEIGHT (labeled weight + average tare weight)

5. Determine PACKAGE ERRORS by comparing sample packages with nominal gross weight

6. Determine UNREASONABLE ERRORS by comparing minus package errors with MAV

 If number of unreasonable errors is greater than allowed by sampling plan, inspection lot fails test. No further testing is necessary.

7. Determine AVERAGE PACKAGE ERROR.

 If average package error is zero or plus, inspection lot passes test. No further testing is necessary.

 If CATEGORY B plan is being used, and average package error is a minus value, inspection lot fails test. No further testing is necessary.

8. If a CATEGORY A plan is being used and average package error is minus, determine T.

 If average minus package error is larger in magnitude (disregarding the sign) than T, inspection lot fails test. If average error is smaller, inspection lot passes.
Chapter 3

2. Select a random sample from the inspection lot (see Appendix E). Select a random tare sample from the lot or loss of tare materials.

3. Determine tare weights for the tare sample and record these values on the report form in the spaces provided beside box b.

4. Average the tare weights determined from the tare sample and record in box 13. If moisture loss is a permitted variation for the particular packages under test and a moisture loss allowance is assigned, record the allowance in box 13a.

5. Determine and record the nominal gross weight in box 14.

Nominal gross weight = labeled weight (box 1) + average tare weight (box 13) - tare correction (box 13a)

See Figure 3-5.

<table>
<thead>
<tr>
<th>Location of Test (from, address)</th>
<th>Publication</th>
<th>Date of Expiration</th>
<th>Brand</th>
<th>Lot Code(s)</th>
<th>Container Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann's 15 2nd St Industrial Park B84224</td>
<td>Jan 1999</td>
<td>2006-04-08</td>
<td>Mann's</td>
<td>2337-Ap 8</td>
<td>Plastic tub</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label weight</td>
<td>0.208</td>
</tr>
<tr>
<td>Tare weight</td>
<td>0.208</td>
</tr>
<tr>
<td>Average tare weight</td>
<td>0.208</td>
</tr>
<tr>
<td>Tare correction</td>
<td>-0.18</td>
</tr>
<tr>
<td>Nominal gross weight</td>
<td>0.708</td>
</tr>
</tbody>
</table>

Figure 3-5. Steps 1 - 5 completed on a report form.

6. Compare the sample packages with the nominal gross weight.

- Equal-arm device: Put field standard test weights equal to the nominal gross weight on the left pan of the scale and put one sample package at a time on the right pan, recording each individual package error in the crosshatched area of report form. (See Section 2.5.3. on how to fill out this part of the report form.) Complete the first column with the first five

1 It may be necessary to round the nominal gross weight to a value comparable to the inspector's smallest field test weight. For example, 1.2123 lb should be rounded to 1.212 lb (using the odd and even rule of Handbook 44) so that the appropriate weights can be placed on the inspector's scale.

2 When no variability is observed between individual tare weights, it is acceptable to put field test weights equivalent to the labeled weight (minus any corrections) plus an actual tare on the balance.

3-8
package errors before proceeding with the next columns in sequence. [Do not fill out the form by going across the page.]

Electronic device: Put field standard test weights equal to the nominal gross weight on the scale and "tare out" the nominal gross weight so that the digital display is "0". Remove weights, place sample packages on the scale one at a time, and record package errors in crosshatched area of report form.

See page H-1 for a completed example of the crosshatched area of the report form.

7. Compare each minus package error to the MAV. Circle any minus package error that exceeds the MAV (i.e., an "unreasonable error"). Record the number of unreasonable errors in box 16.

8. Compare the number of unreasonable errors found in the sample (box 16) with the number of unreasonable errors allowed (recorded in box 8 according to the sampling plan being followed). If the number found is greater than the allowed number, the lot fails to comply with the test. No further testing is necessary. Record the results in box 17 (and box 28 if no further testing is performed).

9. If the number of unreasonable errors found is not greater than the allowed number, sum the individual package errors in the right hand portion of the crosshatched area, taking into account the plus errors and minus errors. Record the total error in box 15. If the total error (box 15) is zero or a positive number, the lot passes the test. Compute the average package error by dividing the total error in box 15 by the sample size recorded in box 6. Record the average package error in box 18. Compute the average error in terms of weight by multiplying the average error in dimensionless units (recorded in box 18) by the unit of measure (recorded in box 2). Record that value in box 19. When following a Category B sampling plan, if the total (and average) error are negative, the lot fails the test. Record results in box 20 and record the disposition of the lot in box 25. See page H-1 for an example.

10. When following a Category A sampling plan, if the total error is negative, "T" must be computed before a final decision on the lot can be made.

In order to compute "T":

- Record the range (R) of package errors of each group of five packages tested in the sample. Space is provided at the bottom of each column of five package errors to record the range. [See Figures 2-3 and 2-8.] See Appendix F on how to compute a "range".

- Average the group ranges and record the average range R in box 21.

(For a sample of 30, there will be 6 ranges to sum and divide by 6; for a sample of 50, sum 10 ranges and divide by 10.)

*When no variability is observed between individual tare weights, it is acceptable to put field test weights equivalent to the labeled weight (minus any correction) plus an actual tare on the balance.
Determine "d":

\[d = \text{Table 2-3, column 2 value multiplied by } R \]

Look up the value in Table 2-3, column 2 (page B-3) corresponding to the sample size (already recorded in box 6) and record this value in box 22. Multiply the value in box 22 by the average range R in box 21 and record d in box 23.

- Compute percentage of lot tested. This is equal to the value in box 6 divided by the value in box 5 and multiplied by 100. Record the value in box 24. [For a sample size of 30 and a lot size of 300, this value is 10%]

- Look up "t" in Table 2-4 (page B-4) corresponding to the percentage of lot sampled that was recorded in box 24. Record this value in box 25. [For 10% of the lot tested, \(t = .95 \)]

- Compute "T":

\[T = d \times t \times f = \text{the value in box 23 multiplied by the value in box 25.} \]

Record T in box 26.

11. Compare the magnitude of T (box 26) with the magnitude of the average error (box 18) (disregarding the fact that box 18 is a minus value.) If the average error is larger than T, the lot fails to conform to the package requirements. If the average error is smaller than T, the lot conforms. Record the results in box 27 and box 28. See page H-3 for a completed example.

3.6. Standard Pack Labeled by Weight: Used Tare

The CORE METHOD is followed except:

- The random tare sample is selected from the random sample (in step 2).
- Gross weights of tare sample packages are determined and recorded before opening (in step 3).
- Tare weights are determined by emptying, cleaning or wiping dry, then weighing all packaging materials from the tare sample (in step 3).
- Package errors are determined for the tare sample and for the rest of the sample by comparison with the nominal gross weight.

The procedure is as follows: Differences from the CORE METHOD are underlined. See pages H-1 and H-2 for completed examples.

1. Fill out the report form identifying the product, container description, location of test, and other pertinent data, including:
 - the labeled weight (box 1),
 - the unit of measure (box 2),
the MAV corresponding to the labeled weight (box 3), and

the MAV converted to dimensionless units (box 4). The value in box 4
is obtained by dividing the value in box 3 (the MAV in units of weight)
by the value in box 2 (the unit of measure).

Determine the inspection lot size (record in box 9). Record:

- the sample size (box 6),
- tare sample size (box 7), and
- the number of unreasonable errors allowed (box 8) following one of the
 sampling plans in Category A (page B-3) or Category B (page B-5).

2. From the inspection lot, select the random sample, and from it the random tare
 sample.1 (See Appendix E for sample selection techniques.)

3. Determine and record individual package gross weights for tare sample. (See
 Figure 3-6.) Record in boxes labeled a. Open, empty, and clean tare sample
 packaging materials, determine and record tare weights in boxes labeled b.

4. Average the tare weights determined from the tare sample and record in box 13.
 If moisture loss is a permitted variation for the particular packages under test and
 a moisture loss allowance is assigned, record the allowance in box 13a.

![Figure 3-6. The determination of the gross weight of a package.](image)

If the lot is large enough, the inspector will find it easier to select the tare sample, in addition to
the sample, from the lot. For example, select 19 packages for a Category B sample from a lot of
50 packages, and select two more packages for tare. Then a nominal gross weight can be com-
pared with all 10 unopened sample packages and step 6 can be skipped.

3-11
5. Determine and record the nominal gross weight in box 14.

Nominal gross weight =

labeled weight (box 1) +
average tare weight (box 13) - tare correction (box 13a)

6. Compute and record package errors for tare sample:

a. Package error in units of weight = Gross weight of package - nominal gross weight. This is the value in box 4 minus the value in box 14. Record the result in boxes labeled 4.

b. Convert package errors recorded in boxes 4 to dimensionless units (so that they can be recorded later in cross-hatched area). Do this by dividing the package errors in units of weight (box 4) by the unit of measure recorded in box 2. Record these values in the boxes labeled 5.

c. Transfer package errors for tare sample recorded in boxes 5 to the cross-hatched area of report form.

7. Compare unopened sample packages with nominal gross weight.

- Equal-arm device: Put field standard test weights equal to the nominal gross weight on the left pan of the scale and put one sample package at a time on the right pan, recording each individual package error in the cross-hatched area of report form. Fill in the first column with the first five package errors before proceeding with the next column in sequence. [Do not fill out the form by going across the page.]

- Electronic device: Put field standard test weights equal to the nominal gross weight on the scale and "tare out" the nominal gross weight so that digital display is "0". Remove weights, place sample packages on the scale one at a time, and record package errors in cross-hatched area of report form.

8. Compare each minus package error to the MAV. Circle any minus package error that exceeds the MAV (i.e., an "unreasonable error"). Record the number of unreasonable errors in box 16.

9. Compare the number of unreasonable errors found in the sample (box 16) with the number of unreasonable errors allowed (recorded in box 8 according to the sampling plan being followed). If the number of unreasonable errors found in the sample is greater than the allowed number, the lot fails to comply with the test. Further testing is necessary. Record the results in box 17 (and box 28 if no further testing is performed).

10. If the number of unreasonable errors found is not greater than the allowed number, sum the individual package errors in the right hand portion of the cross-hatched area, taking into account the plus errors and minus errors. Record total

1If no variability in the tare weights is observed in the tare sample, it is acceptable to put field test weights equivalent to the labeled weight (minus any corrections) plus an actual tare on the balance.
error in box 15. If the total error (box 15) is zero or a positive number, the lot passes the test. Compute the average package error by dividing the total error in box 15 by the sample size recorded in box 6. Record the average package error in box 18. Compute the average error in terms of weight by multiplying the average error in dimensionless units (recorded in box 18) by the unit of measure (recorded in box 2). Record that value in box 19. When following a Category B sampling plan, if the total (and average) error is negative, the lot fails the test. Record results in box 20 and the disposition of the lot in box 28.

11. When following a Category A sampling plan, if the total error is negative, "T" must be computed before a final decision on the lot can be made. See page B-3 for a completed example.

In order to compute "T":

- Record the range (R) of package errors of each group of five packages tested in the sample. Space is provided at the bottom of each column of five package errors to record the range.

- Average the group ranges and record the average range, \(\bar{R} \), in box 21. [For a sample of 50, there will be 6 ranges to sum and divide by 6; for a sample of 50, sum 10 ranges and divide by 10.]

- Determine "d":

\[d = \text{Table 2-3, column 2 value multiplied by } \bar{R} \]

Look up the value in Table 2-3, column 2 (page B-3) corresponding to the sample size (already recorded in box 6) and record this value in box 22. Multiply the value in box 22 by the average range in box 21 and record d in box 23.

- Compute the size of the sample as a percentage of the lot size. This is equal to the value in box 6 divided by the value in box 5 and multiplied by 100. Record the value in box 24. [For a sample size of 30 and a lot size of 300, this value is 10%.]

- Look up "T" in Table 2-4 (page B-4) corresponding to the percentage of lot sampled that was recorded in box 24. Record this value in box 25. [For 10% of the lot tested, \(f = .95 \).]

- Compute "T":

\[T = d \times f = \text{the value in box 23 multiplied by the value in box 25.} \]

Record T in box 26.

12. Compare the magnitude of T (box 26) with the magnitude of the average error (box 18) (disregarding the fact that box 18 is a minus value). If the average error is larger than T, the lot fails to conform to the package requirements. If the average error is smaller than T, the lot conforms. Record the results in box 27 and box 28.
3.7. **Standard Pack Labeled by Weight: Alternative Tare**

The **CORE METHOD** (Section 3.5) is followed except:

a. The sample packages are kept in the order in which their corresponding random numbers were obtained.

b. The random tare sample is the "initial tare sample" and is selected from the random sample.

c. Tare weights are determined by emptying, cleaning, and weighing all packaging materials.

d. The range of tare weights (R_t) and range of net weights (R_n) is determined for the initial tare sample.

e. R/R_t is computed and this value is used to look up how many more packages (if any) must be opened to determine tare. Additional tare packages are measured as necessary.

f. Package errors are determined for the tare sample and for the rest of the sample by comparison with the nominal gross weight.

The procedure is as follows. Differences from the **CORE METHOD** are underlined. See Figure 2-9 for an example of part of the completed report form.

1. Fill out the report form identifying the product, container description, location of test, and other pertinent data, including:
 - the labeled weight (box 1),
 - the unit of measure (box 2),
 - the MAV corresponding to the labeled weight (box 3) and
 - the MAV converted to dimensionless units (box 4).

 Determine the inspection lot size (record in box 5). Record:
 - sample size (box 6), and
 - allowed number of unreasonable errors (box 8).

 Determine and record initial tare sample size from Table 2-6 (page B-6) in box 7.

2. Select random sample from inspection lot keeping sample packages in the order in which their corresponding random numbers are obtained. This is the order in which packages will be opened for tare determination. (See Appendix E.6.1, for an example.)

3. Determine and record individual package gross weights (in boxes labeled a) for initial tare sample.

For Category A, see page B-3. For Category B, see page B-5.
4. Empty these packages, clean them, determine and record tare weights (in boxes labeled 1).

5. Determine the range of tare weights (R). Record R in box 10. [See Appendix F on determining a "range".]

6. Subtract each tare weight from the corresponding gross weight to obtain the net weights for the initial tare samples. Record the net weights in the spaces labeled 5.

7. Determine the range of net weights (R). Record in box 9.

8. Divide R (box 9) by R (box 10) and record in box 11.

9. Find the value recorded in box 11 for K/R, in the left column of Table 2-7 (pages 8-7 and 8-8). Then read across to the column headed with the appropriate sample size. This value, n, is the total number of packages to be emptied for tare determination. Record this value in box 12. If the number in box 12 is equal to or less than the initial sample size (recorded in box 6), there are enough packages to determine the average tare. However, if the number in box 12 is greater than the value in box 7, more packages must be opened to determine average tare. For example, if 7 packages were opened initially and using Table 2-7, n = 5 in box 12, then three more packages must be opened to obtain an average tare value. In some instances, all the packages in the sample must be opened—an average tare is not appropriate. If more than 7 packages must be opened, the official will have to record the measurements on a worksheet.

10. Unless all packages in the sample have been opened, average the tare weights and record in box 13.

 If all packages have been opened, each package error (in units of weight) =
 gross weight - tare weight - labeled weight

 Follow steps 12(b) and (c) and then skip to step 14.

11. Determine and record the nominal gross weight in box 14.

 Nominal gross weight =
 labeled weight (box 1) +
 average tare weight (box 13) - tare correction (box 13a)

12. Compute and record package errors for tare sample:

 a. Package error in units of weight = Gross weight of package - nominal gross weight. This is the value in box 5 minus the value in box 14. Record the result in boxes d to 15.

 b. Convert package errors recorded in boxes d to dimensionless units so that box can be recorded in crosshatched area. Do this by dividing the pack-

 'If all packages have been opened, each package error must be corrected for moisture loss (if a moisture loss applies) before going to step 14.

3-15
age errors in units of weight (box d) by the unit of measure recorded in box 2. Record these values in the boxes labeled e.

c. Transfer package errors for bare sample recorded in boxes e to the cross-hatched area of report form.

13. Compare unopened sample packages with nominal gross weight.

- Equal-arm device: Put field standard test weights equal to the nominal gross weight on the right pan of the scale and test one sample package at a time on the right pan, recording each individual package error in the cross-hatched area of report form.

- Electronic device: Put field standard test weights equal to the nominal gross weight on the scale and "zero out" the nominal gross weight so that the digital display is "0". Remove weights, place sample packages on the scale one at a time, record package errors in cross-hatched area of report form.

14. Compare each minus package error to the MAV. Circle any minus package error that exceeds the MAV and record the number of "unreasonable errors" in box 16.

15. Compare the number of unreasonable errors found in the sample (box 16) with the number of unreasonable errors allowed (recorded in box 8 according to the sampling plan being followed). If the number of unreasonable errors found is greater than the allowed number, the lot fails to comply with the test. No further testing is necessary. Record the results in box 17 (and box 28 if no further testing is necessary).

16. If the number of unreasonable errors found is not greater than the allowed number, sum the individual package errors in the right hand portion of the cross-hatched area, taking into account the plus errors and minus errors. Record total error in box 15. If the total error (box 15) is zero or a positive number, the lot passes the test. Compute the average package error by dividing the total error in box 15 by the sample size recorded in box 6. Record the average error in box 18. Compute the average error in terms of weight by multiplying the average error in dimensionless units (recorded in box 18) by the unit of moisture recorded in box 2). Record the value in box 19. When following a Category B sampling plan, if the total (and average) error is negative, the lot fails the test. Record results in box 20 and the final disposition of the lot in box 28.

17. When following a Category A sampling plan, if the total error is negative "T" must be computed before a final decision on the lot can be made.

In order to compute "T":

- Record the range (R) of package errors of each group of five packages tested in the sample. Space is provided at the bottom of each column of five package errors to record the range.

- Average the group ranges. Record the average range (R) in box 21. [For a sample of 30, there will be 6 ranges to sum and divide by 6; for a sample of 50, sum 10 ranges and divide by 10.]

3-16
- Determine "d":

\[d = \text{Table 2-3, column 2 value multiplied by } \bar{R} \]

Look up the value in Table 2-3, column 2 (page B-3) corresponding to the sample size (already recorded in box 6) and record this value in box 22. Multiply the value in box 22 by the average range in box 21 and record d in box 23.

- Compute the size of the sample as a percentage of the lot size. This is equal to the value in box 6 divided by the value in box 3 and multiplied by 100. Record the value in box 24. [For a sample size of 30 and a lot size of 300, this value is 10%.

- Look up "f" in Table 2-4 (page B-4) corresponding to the percentage of lot sampled that was recorded in box 24. Record this value in box 25. [For 10% of the lot tested, \(f = 95 \).]

- Compute "T":

\[T = d \times f = \text{the value in box 23 multiplied by the value in box 25}. \]

Record T in box 26.

18. Compare the magnitude of T (box 26) with the magnitude of the average error (box 18) (disregarding the fact that box 18 is a minus value). If the average error is larger than T, the lot fails to conform to the package requirements. If the average error is smaller than T, the lot conforms. Record the results in box 27 and box 28.

3.8 Random Pack Labeled by Weight

Random pack packages are those whose contents are measured, packaged, and labeled individually. These packages do not generally occur in fixed or patterned quantities. They occur most frequently labeled by weight. They are tested most frequently where packaged, usually at the retail store or wholesale warehouse.

See Section 2.3.2, for the definition of a lot for random pack commodities.

Special report forms, such as the ones on page A-3 and A-4, will simplify recording additional information (such as the product identity, unit price, and labeled weights) that many jurisdictions desire when testing random pack packages.

The methods for checking random pack packages are derived from the standard pack CROP METHOD for unused tare, used tare, or alternative tare.

Section 3.8.1, describes the most common test procedure for random pack, using unused tare and a Category B sampling plan. Section 3.8.2, describes variations using page 2" (see page A-4) of the report form for Category A plans, or used tare, or alternative tare.

These random pack methods will be described after discussing the choice of the MAV.

3-17
3.8.1. Selecting the MAV

Table 2-8, pages B-9 and B-10, lists MAV's that vary with the labeled weight. The MAV becomes larger as the labeled weight increases.

Because random pack packages are individually weighed and marked after packing, an additional element of control is possible that is not available with standard pack packages. Consequently, the amount of variability found in the package errors for random pack packages is frequently less than in standard pack.

Therefore, this handbook recommends for audit testing:

1. When testing inspection lots defined as a single size of tare (e.g., box size "25"), apply the MAV corresponding to the smallest labeled weight in the sample.

2. When testing inspection lots defined as the entire meat case, or entire store-packed produce counter, etc., apply the MAV corresponding to the average labeled weight in the sample.

In (1) above, if the individual package errors are all smaller than the MAV for the smallest package, then the lot will pass the individual requirements in an official test as well.

When official tests are performed, it may be necessary to identify the appropriate MAV for each package labeled weight. In (2), the labeled weights may range from very small to very heavy packages. Look up the MAV for the heaviest package. If all package errors are less than this MAV, it is not necessary to look up any other MAV. If any package error is larger than that MAV, look up the MAV corresponding to that package’s labeled weight. This lookup process can be continued in a step-wise fashion for the entire sample from lightest to heaviest package.

When using dry tare, it is convenient to reorder the sample from lightest to heaviest in labeled weight prior to testing. This facilitates selecting MAV’s according to labeled weight ranges.

3.8.2. Random Pack, Unused Tare, Category B Sampling Plans

The CORE METHOD should be followed, except:

a. Labeled weight and MAV cannot be recorded until the sample has been selected.

b. After the sample has been selected, reorder packages from lightest to heaviest to facilitate building the nominal gross weight from standard test weights (against which the packages will be compared).

c. Variability of tare weights should be tested. However, the unused tare weight of many random pack packages varies less than the detection capability of the official’s equipment. In these instances, a single unused tare, comprised of all the packaging materials (including the label), may be substituted for the field standard weights to represent the tare weight portion of the nominal gross weight.
Chapter 3

d. Report form box numbers on pages A-3 and A-4 differ from the standard pack form box numbers (page A-1).

The procedure is as follows. (Boxes on the report form, page A-3, are identified.) Differences from the CORE METHOD are undefined. See page H-7 for a completed example.

1. Begin to fill out the report form by identifying the location of test. Determine the size of the inspection lot to be tested (box 1). According to Table 2-5, page B-5, record the sample size (box 2), tare sample size (box 3) and number of unreasonable errors allowed (box 4). Record the unit of measure (box 5). Check the unused tare box under "Tare" on the right side of the report form.

2. Select random sample. (See Appendix E.) Have tare made up to represent test sample. Note that when the tare is comprised of a foam or plastic boat, a fixed number of sections pads, shrink wrap, and label, a single tare appropriate for each size of package can be the tare sample if no variation in tare weights is detected. If variability in tare weights is present, space is provided on the form for recording up to four different tare samples (corresponding, for example, to different tray sizes).

Record sample packages in the order of their labeled weights and record product identity, lot code, price per unit of weight, and labeled weight (boxes 7 and 8).

For audit tests, record MAV in box 10 corresponding to:
- Smallest labeled weight when lot is defined as a single product or consists of a single tray size for tare, or
- Average labeled weight when lot is defined as entire production of meat department, e.g., meat department or produce department.

For official tests, it may be necessary to record in box 10 the MAV corresponding to each package labeled weight.

Divide the MAV (box 10) by the unit of measure (box 5) to get the MAV in dimensionless units. Record this value in box 11.

3. Compare first sample package with its nominal gross weight. Nominal gross weight for each package is individual package labeled weight (which will vary from package to package) plus tare weight. If the tare is the same for all packages, the weight of the empty, unlabeled packages equals the weight of the empty tare. If weight varies, the individual tare weight must be determined by weighing the empty package.

For Tare Weight. Place empty unlabeled tare package1 plus field standard weights equal to the labeled weight packed on the first package on the left pan of the scale and place first sample package on the right pan. Record the package error (in dimensionless

1If variation in tare weights for a single tray size is noted, then nominal gross weight = (labeled weight) + (average tare weight).

3-19
units) in the space provided in box 9, minus errors in column headed (.) and zero or plus errors in column headed ±(±).

Electronic device: Place actual unused tare1 plus field standard weights equal to the labeled weight marked on the first package on the scale. "Tare out" this value so that the digital display is "0". Remove tare and weights. Place first sample package on the scale; record package error, as read, in space below box 9.

4. Compare remaining sample packages with their own nominal gross weights and record as described in step 3.

5. Circle minus package errors that are larger than the appropriate MAV recorded in box 11. Count circled (unreasonable) package errors. Record this number in box 13 at the bottom of the report form.

6. If the number in box 13 is larger than zero (the number in box 4), check in box 14 that the lot fails and enter the final disposition of lot in box 18. No further testing is necessary.

7. If the number in box 13 is zero, continue.

8. Taking account of plus and minus errors, sum package errors and record total error in box 12. Record average error in box 15.

9. If average error is zero or plus, check that the lot passes in box 17.

10. In box 18, record results from boxes 14 and 17, either lot approved or rejected.

3.8.3. Random Pack, Used Tare or Alternative Tare Methods, or Category A Sampling Plans

The second page of the Random Pack Report Form on page A-4 is provided for the several calculations that must be performed with these methods.

If the inspection lot is defined as the entire meat department, etc., the AVERAGE tare weight must be determined for each and every type and size of tare in the sample.

Unlike the procedure for random pack using unused tare, the official should not reorder the packages in the order of their labeled weights. This will preserve the random order for the tare sample and for the determination of the range of package errors.

When determining used tare weights for random pack packages of meat, poultry, fish and similar products, the official may note large variations in tare weights.

1If variation in tare weights for a single tray size is noted, then nominal gross weight = (labeled weight) + (average tare weight).

3-20
stemming from, for example, different numbers of sealer pads in packages, or different amounts of absorbed liquid in the packaging materials. In such case, the alternative tare procedure of Section 2.11.4, will be useful in the determination of the average tare weight. Use of the alternative tare procedure is described in the method below. See also Section 3.18, for special considerations for meat or poultry packaged at Federally-inspected plants.

a. Summary of Used Tare, Alternative Tare, and/or Category A Methods

Follow Section 3.6. (standard pack, used tare) or 3.7. (standard pack, alternative tare) except:

o Nominal gross weight for each package is the individual package labeled weight (which will vary from package to package) plus the average tare.

b. Procedure (Alternative Tare, Category A)

Although this procedure is based on the CORE METHOD, differences from the CORE METHOD are not underlined.

1. Select random sample and mark packages in the order in which the random manner were obtained. This is the order in which the packages will be opened for tare and the order in which the package errors will be recorded. Record the package descriptions and labeled weights in this order in boxes 7 and 8 on "page 1" of the report form (shown on page A-3). Record the MAV corresponding to each labeled weight in box 10.

2. Determine and record in boxes labeled a and b on "page 2" (shown on page A-4) gross weights and tare weights of packages in the initial tare sample. [See Table 2-6, page B-6.] (For example, when the initial tare sample size is 5, packages marked "1" through 5" are gross weighed.)

3. Subtract each tare weight from its corresponding package gross weight to determine the net weights of the packages in the initial tare sample. Record in boxes labeled c on "page 2".

4. Determine and record the range of tare weights, R, for the initial tare sample and record this value in box 6b on page 2 of the report form. Determine and record the range of net weights, R, in box 6a. Compute R/R; record in box 6c. Look up the value for n, the number of packages needed to determine the average tare, in Table 2-7, pages B-7 and B-8, and record in box 6d. Open additional packages (in the order marked), if necessary, and record their gross and tare weights.

5. Unless all packages in the sample have been opened, average the tare weights, and record average tare in box 6e. Compute package errors for the packages opened for tare and record these pack-
age errors in boxes labeled d and e. Transfer these package errors to page 1, box 9, of the report form. If at least half of the packages in the sample are needed to determine the tare, open and determine the net weight (gross weight minus tare weight) and package errors (net weight minus labeled weight) for all the packages in the sample. Additional worksheets will have to be appended to the report form to show all the calculations. When all packages have been opened, go to step 7 to complete the test.

6. Rearrange any remaining (unopened) packages in the sample from lightest to heaviest in order to facilitate subsequent measurements. Compare each unopened package with the nominal gross weight comprised of test weights representing the average tare weight plus the individual package labeled weight. Record the package errors in the spaces below box 9 on the first page of the report form corresponding to the package number marked on the package. [As an example, after five packages were opened for tare, the package with the lightest labeled weight may have been marked number 27. The package error is determined and recorded on the 27th line in box 9 of the report form beside the product description and labeled weight for this package, already recorded in boxes 7 and 8.]

7. Circle those minus package errors that exceed the MAV. Record the number of unreasonable errors in box 13. Record in box 19 (on the second page of the report form) whether the number of unreasonable errors (box 13) exceeds the allowed number (box 4). If so, the lot fails and no further testing is necessary.

8. If the number of unreasonable errors is less than or equal to the allowed number, compute the total package error and record this value in box 12 (on the first page of the report form). If the total error is a plus value, the lot complies with the requirements. Complete boxes 20 and 21 on "page 2" and check that the lot is accepted (box 18 on "page 1").

9. If the total error is a minus value, compute the range of package errors for each group of five packages and record this in the spaces provided in box 23, "page 2". Compute the average range in box 24. Look up the value corresponding to the lot size in Table 2-3, column 2 (page B-3) and record this value in box 25. Compute and record d in box 26. Compute the percentage of the lot that the sample represents in box 27. Look up f in Table 2-4 (page B-4) and record it in box 28. Compute and record T in box 29. Compare the average error in box 20 with T in box 29. Record the final disposition of the lot in box 18 on the first page of the report form.

3.9. Large Packages and the Substitution Method

The substitution method may be used with any commercial scale for the checking of large packages (random or standard pack) if the size and/or weight exceed the capacity of the equal-arm (or equivalent) package-checking scales. The commercial scale should be used only as a substitution weigher or as a null indicator, not as a "direct reading"
device, because possible scale error and between-division interpolation error contribute to the uncertainty of results. When using a commercial scale, each weighing, whether gross weight or tare weight, will require the following steps. See example in Figure 3-7.

Determining Gross Weight or Tare Weights

<table>
<thead>
<tr>
<th>Step</th>
<th>standard weights on pan (decimal pounds)</th>
<th>scale reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>After placing sample package on scale pan</td>
<td>101.1</td>
</tr>
<tr>
<td>2.</td>
<td>After placing standard weights on pan to give an exact reading equal to step 1 scale indication ± approximately 1 percent additional weight</td>
<td>101.94</td>
</tr>
<tr>
<td>3.</td>
<td>After removing standard weights and replacing sample package</td>
<td>101.1</td>
</tr>
<tr>
<td>4.</td>
<td>After adding standard weights to duplicate step 2 scale indication</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Gross weight = (standard weight, step 2 - step 4) = 101.01 lb

Determining Package Error when Tare Weight is Known

<table>
<thead>
<tr>
<th>Step</th>
<th>standard weights on pan (decimal pounds)</th>
<th>scale reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b.</td>
<td>Scale reading with package on pan</td>
<td>101.1 lb</td>
</tr>
<tr>
<td>2b.</td>
<td>After placing standard weights on pan to give an exact reading equal to tare wt + labeled wt ± approximately 3% labeled weight</td>
<td>104.46 lb</td>
</tr>
<tr>
<td>3b.</td>
<td>After removing standard weights equal to tare + labeled wt and adding sample package</td>
<td>3.11 lb</td>
</tr>
<tr>
<td>4b.</td>
<td>After adding or removing* standard weights to duplicate step 2b scale indication</td>
<td>3.43 lb</td>
</tr>
</tbody>
</table>

Package error = (standard weights, steps 3b - step 4b) = -0.32 lb

*With an electronic digital scale, see instructions in step 4.

Figure 3-7. Examples of substitution weighing.

3-23
1. Place package on commercial scale and record scale reading. Remove package.

2. Place standard weights equivalent to the scale indication in step 1 on the scale and add a small amount of additional weights (an additional 1 to 3%) to obtain an exact scale reading such that:

 o If an analogue scale, the index of the indicator is coincident with a scale division.

 o If a digital scale, a "break-point" is attained between two consecutive indications. Add a sufficient amount of small weights (in increments equal to 1/10 the value of the scale's minimum division) to reach break point.

 Record standard weights and scale reading on a worksheet.

3. Remove standard weights from the scale. Place the sample package on the commercial scale again.

4. Add or subtract weights until the scale reading recorded in step 2 is duplicated. With an electronic digital scale, if weights must be removed, remove enough weights so the readout of step 2 is duplicated by adding (rather than removing) weights in weight increments of 0.1 division. That is, always approach the break-point from the minus side of the weight indication. Record on the worksheet the standard weights on the scale. The gross weight of the package is equal to the total of standard weights recorded in step 2 minus the total of standard weights recorded in this step.

5. Repeat steps 1 through 4 to determine the tare weight of the package and to determine the gross weights and tare weights of the remaining tare sample packages.

In the second example (labeled b. in Figure 3-7), a sample package is compared to the nominal gross weight to determine the package error. If weights are added in step 4b, this indicates a minus package error; if weights are removed, this is a plus package error.

3.10. The Determination of Drained Weight

Since the weight per unit volume of a drained product is of the same order of magnitude as that of the packaging liquid which is drained off, an "estimated gross weight" cannot be used in checking packages of this type. The entire sample must be opened. The procedure is based upon a test method accepted by the Food and Drug Administration.

\[\text{For a discussion of error weights testing, see pages 120-122 of NBS Handbook 94.} \]

\[\text{If a moisture loss is to be applied, package error is equal to weights added or removed plus (+) moisture allowance (converted to units of weight). For example, if moisture allowance of 2 lb is applied to example b. a package error of 2.00 lb + 0.32 lb = +1.68 lb results.} \]

\[\text{See Method 32.002 of the Official Methods of Analysis of the Association of Official Analytical Chemists.} \]

3-24
A tare sample is not needed because all the packages in the sample will be opened and measured.

The weight of the container plus drained-away liquid is determined. This weight is then subtracted from the gross weight to determine the package error.

3.10.1 Equipment

Scales and weights recommended in Section 3.1. are suitable for determinations of drained weight.

Sieves

a. For drained weight of 3 lb (1.36 kg) or less, one 8-in (or 20-cm) No. 8 mesh U.S. Standard Sieve Series stainless steel sieve, receiving pan, and cover.

b. For drained weight greater than 3 lb (1.36 kg), one 12-in (or 30-cm) sieve, with same specification as above.

Stepwag - mechanical or electronic, with a maximum error of 2 seconds in a 3-hour period.

3.10.2 Procedure

1. Fill one box, 1 through 8 on the standard pack report form, page A-2. Select the random sample. Determine and record on a worksheet the weight of the receiving pan.

2. Determine and record on a worksheet the gross weight of each individual package comprising the sample.

3. Pour the contents of the first package into the dry sieve with the receiving pan beneath it, incline sieve to a 17-20° angle to facilitate drainage, and allow the liquid from the product to drain into receiving pan for 2 minutes. (Do not shake or stir material on the sieve.) Remove sieve and product.

4. Weigh the receiving pan, liquid, wet container, and any other tare material. (Do not include sieve and product.) [See Figure 3-8.] Record this weight as tare and receiving pan.

5. Subtract the weight of the receiving pan, determined in step 1, from the weight obtained in step 4 to obtain the tare weight (which includes the weight of the liquid).

6. Subtract the tare weight, found in step 5, from the appropriate package gross weight determined in step 2 to obtain the drained weight of that package. Determine the package error (drained weight - labeled weight).

7. Repeat step 3 through 6 for the remaining packages in the sample, cleaning and drying the sieve and receiving pan between measurements of individual packages.

8. Transfer the individual package errors to the standard pack report form, page A-2.
9. Continue with steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

![Image](image_url)
Figure 3-8. The determination of tare for packages labeled by drained weight (example: olives).

3.11. Aerosol Packages

The testing of aerosol packaged products is covered in the following sections. After a list of equipment (Section 3.11.1.) and a description of the assembly of a portable test stand used when emptying the containers (Section 3.11.2.), the details of the net contents determination are described in Sections 3.11.3. and 3.11.4. Methods for emptying the aerosol containers are given in Section 3.11.4. Test allowances to be applied to the average tare weight or individual tare weights of foam aerosols are given in Section 3.11.6.

3.11.1. Equipment

Scales and weights recommended in Section 3.1. are suitable for weight determinations.

The _portable test stand_ with adjustable valve depressor; assembled from components available from a scientific supply company or hardware store. The components are:

(i) **support stand.**

(ii) **utility clamp.**

(iii) **gasoline can.**
(iv) two dishpans, and
(v)
1/2-inch carriage bolt (either 2 to 3 in or 5 to 7 cm long) and nut.

3.11.2. Preparation for Test
Assemble the stand for foam and most other aerosol packages, thread the carriage bolt into the nut and use the jaws of the utility clamp to grip the nut tightly. Mount the clamp on the rod of the support stand. [See Figure 3-9.]

![Figure 3-9. Portable test stand for all aerosol products except paints and coatings.](image)

Adjust the height of the clamp to the height of the container under test and thread the carriage bolt to depress the aerosol valve until maximum flow of product is obtained.

Use the dishpans to collect the expelled product.

Add the support plate and gasoline can to the stand for aerosol products such as paints and coatings (as shown in Figure 3-10). Adjust the support plate so that the orifice of the spray can is lined up with the intake of the gasoline can. Leave the vent on the gasoline can open and clear. The clamp and valve-depression adjustment is made in the same manner as with the other aerosol products.

3-27
Unlike conventional standard-pack packages, aerosol packages must not be opened. Instructions on the container specifically state:

Caution: Contents under pressure—do not puncture.

WARNING: The containers of packaged aerosol products are under pressure and should not be punctured, broken, or subjected to temperatures in excess of 120 °F. The flames and suspension of finely divided product may be toxic, irritating, and flammable.

Therefore, the exhausting procedure described in Section 3.11.4, should be conducted in a well-ventilated area, in an exhaust hood, or outdoors, at least 50 feet from any source of open flame or spark. No smoking should be permitted in the test area.

Use the test stand equipped with the adjustable valve-button depressor for exhausting the container. Place the test stand in a plastic dishpan with another dishpan in an inverted position over the test stand to minimize pollution with the sprayed product during the exhausting procedure. Use the gasoline can as a receiving vessel for paint and coating products. See Figure 3-10.

3.11.3. The Determination of Net Contents: Part 1

All aerosol packaged products (except refrigerated products) should be checked at a product temperature of 68 °F (20 °C). All products that must be refrigerated to maintain quality should be checked at a product temperature of 40 °F (or 4 °C). Lower temperatures will require applications of a correction because less product will be expelled at lower temperatures. For practicality, testing at a 68 to 80 °F (or 20 to 27 °C) range is suggested for non-refrigerated products and 40 to 45 °F (or 4 to 7 °C) for refrigerated aerosols. These temperature ranges are representative of the temperatures at which the products are normally used.

Since it is not practicable to have a single test procedure covering every product or brand, the products are broken down into two general categories, each category having similar properties. The categories of aerosol packaged products are: (1) foam products and (2) other products. Examples of products in each of the two categories are listed in each section.

A test allowance is added to the delivered weight when testing products in the foam products category only. The allowance compensates for differences in delivery between normal consumer usage and the exhausting procedure for compliance testing. Within the foam category, however, some products will deliver more completely than others.

Thus, it is conceivable that a foam aerosol packaged product could deliver the stated quantity within the limits of the test allowance, and yet be short filled on a unused tare basis. It is emphasized that the test allowance should not be used by the packager as justification for packing less than the stated quantity on a unused tare basis.

\[1\] In the testing procedure, the test allowance is subtracted from the nominal gross weight, the effect of which is the same as adding the test allowance to the delivered weight.

3-28
Regulations under the Fair Packaging and Labeling Act require that, in the case of packages designed to deliver the product under pressure, "... the declaration shall state the net quantity of the contents that will be expelled when the instructions for use as shown on the container are followed."

Figure 3-10. Portable test stand for aerosol paints and coatings.

The procedure presented below may be used for checking aerosol net contents when labeled by weight.

1. Fill out the heading of the standard pack report form (page A-2) and select the random sample. As explained in Appendix E.6.1, the random sample should be arranged in the order in which the random numbers were selected. This will be the order in which the packages will be opened for tare. Consult Table 2-4, page B-6, for the size of the initial tare sample.

2. Gross weigh each package in the initial tare sample and record this weight on the report form in the boxes labeled a. Follow Section 3.114. to empty the initial tare sample aerosol containers.

After following Sections 3.114., go on to Section 3.115. for instructions on completing the procedure.

1Regulations under the Fair Packaging and Labeling Act (PL 89-755) include 16CFR 500.22(a), 21CFR 701.13(g)(1), 21CFR 201.62(d), and 21CFR 101.105(g). Also see parallel requirements recommended by the National Conference on Weights and Measures in its Uniform Packaging and Labeling Regulation (Section 105) in NBS Handbook 130. Quotations above from 21CFR 101.105(g).
Figure 3-11. Portable test stand showing aerosol foam product ready to expel to its upright position.

3.11.4. Exhausting the Aerosol Container

Follow the procedures below to empty aerosol containers and thereafter determine their tare.

Do not shake unless shaking is specified. If shaking is specified, shake according to directions on the container. If no directions are given as to how the can should be shaken, shake the container with a brisk wrist-twisting motion for one minute at the approximate rate of two wrist-twisting cycles per second. If the container has a ball agitator, continue shaking procedure for one minute after the ball has shaken loose.

a. Foam products: Shake container according to directions on the can, placing the selected container in the position specified in the instructions on the package, exhaust it by holding the valve wide open until visible spray is interrupted. Continue exhausting container for 30 seconds. If using portable test stand (see figures 3-11 and 3-12), exhaust container following the above procedures. However, hold valve wide open for 30 minutes.

(Revised 1990)

A foam product is defined as a product that forms a foam at the container valve or on impingement with a surface and the foam volume is not substantially reduced for at least 20 seconds. Examples of foam products: shave creams, hand creams, facial foams, shampoos, oven cleaners, upholstery cleaners, foam degreasers, whipped toppings, frosted whips.

3-30
b. Other products—If shaking is specified in the instructions, shake at periodic intervals (at least two or three times during expulsion of the product). With the container in the position specified on the package, exhaust the sample container by depressing the valve-actuator until visible spray is interrupted. As soon as spray is interrupted release the actuator. [A change in sound usually accompanies spray interruption.] Allow the container to warm to 68 to 80 °F (20 to 27 °C) before concluding the evaporation.

Figure 3-12. Portable test stand showing aerosol foam product ready to expel in inverted position.

Agitate the container with a swirling motion for 30 seconds. Hold the container at an angle of approximately 45 degrees from the upright position, with the valve-actuator depressed, and rotate the container to maintain a visible spray (again, note the sound change) as long as possible. (Rotating will ensure contact of the dip tube with any remaining product in the container.) Continue this procedure until no additional product or gas is expelled. Any undelivered product should be expelled.

Examples of other products: Frostings, syrups, cheese spread, hair sprays, colognes, window cleaners, starches and fabric finishers, insecticides, room deodorants, personal deodorants, waterproofer, antiseptics and medicaments, de-icers, ignition sprays, insect repellents, furniture polishes, dog and pet sprays, oil sprays, battery cleaners, shot polishes and leather conditioners, wall cleaners, suntan lotions, spray-on bandages, non-stoppers, pre-shave lotions, nasal relief sprays, external analgesics, charcoal lighters, fire extinguishers, anti-static sprays, carpet spot cleaners, plant foods, auto quick-start sprays, whitewall tire cleaners, paints, enamels, lacquers, acrylic coatings, varnishes, undercoatings.
peled as completely as possible by holding the container in the hand with the valve-actuator depressed and alternately inverting the container and then restoring to the original test position at approximately 10-second intervals until no additional product is delivered.

When exhausting containers with vapor tap valves (in which product continues to be expelled upon inversion of container), stop the exhausting procedure whenever the container becomes cold to the hand. Allow the container to return to test temperature of 68 to 80 °F (or 20 to 27 °C) before continuing the test.

A container with a metered valve cannot be emptied by holding the valve-actuator depressed since such a valve permits only a predetermined amount of product to be expelled each time the valve-actuator is depressed. Empty the container by alternately depressing and releasing the valve-actuator until no additional product or gas is expelled.

3.11.5. The Determination of Net Contents: Part 2

The following steps complete the procedures begun in 3.11.3:

3. Rinse the outside of the containers with a suitable solvent and dry the exteriors of the containers. If the valve-actuators are removable, remove for cleaning and drying, and then replace. Determine and record on the report form in the boxes labeled b the tare weights of the initial tare sample. Calculate the net weights for the initial tare sample and record in boxes labeled c. For foam product aerosols, each package net weight is equal to the package gross weight minus the individual tare weight plus the test allowance. [See Section 3.11.6.]

For other aerosols, an individual package net weight is equal to the package gross weight minus the package tare weight.

4. Determine and record in box 9 on the report form the range of net weights, \(R_n \).

5. Determine and record in box 10 the range of tare weights, \(R_t \).

6. Compute \(R/R_t \), and record in box 11. From Table 2-7, pages B-7 and B-8, look up the total number of packages necessary for determining the tare; record \(n \) in box 12.

7. If \(n \) is larger than the initial tare sample, select additional tare sample packages, as necessary, from remaining packages arranged in the order in which the random numbers were obtained. It may be necessary to empty all the packages in the sample.

8. Gross weigh, empty, and determine the tare\(^1\) for additional packages selected in step 7. Record these weights on a worksheet. If a foam product, record the test allowance in box 13a on the report form.

9. Follow steps 10-18 of Section 3.7. (page 3-16) to determine lot conformance.

\(^1\)Apply test allowance given in Section 3.11.6. if foam product aerosol is being tested.
3.11.6. Test Allowance for Foam Product Aerosols

Table 3-2 on page B-17 lists the test allowances to be subtracted from the average tare weight or individual package tare weight for foam product aerosols only. Record the test allowance in box 13a of the report form on page A-2. If all the sample packages have been exhausted for tare, note this on the report form and refer to a worksheet. When packages in the sample are exhausted for tare determination, the test allowance is subtracted from each individual tare before determination of the net weight of each package.

3.12. Frozen Food and Other Frozen Products

Complications arise in tare determination and, in some instances, in net weight determination of products that must be maintained at low temperature in order to keep them frozen. This is because of difficulties in separating, while still frozen, the contents from the package, and also because of the presence of superfluous ice and frost. The gross weight and tare weight of many products can be determined in a frozen state by simply brushing frost and ice from the exterior of the package. This suffices for most frozen prepared vegetables, fruits, and many convenience items. Although surface defrosting of poultry has been practiced in order to remove the bird from its wrapping, and thus measure part of the tare, this method should be used with great care since surface discoloration occurs upon refreezing. Therefore, such packaged choices for tare determination should be used or disposed of as other fresh or frozen food. (From the viewpoint of health, the surface defrosting method is acceptable.) However, a U.S. Department of Agriculture seal must be removed if an opened package is re-packaged.

First found inside frozen food packages is considered part of the net contents, not tare.

In general, procedures to be followed for frozen foods labeled by weight are those given in Sections 3.5. (standard pack, unused tare), 3.6. (used tare), 3.7. (alternative tare), or 3.8. (random pack).

A regulatory agency may define the labeled weight of a particular frozen product as the weight of that solid or semisolid material determined after defrosting; in such case, the procedures in Section 3.13. are followed.

3.13. Drained Weight of Frozen Foods

The following technique is based upon, but not identical with, Method 22.005 of the Official Methods of Analysis of the Association of Official Analytical Chemists.

It is a "drained weight" procedure and, as such, does not derive a package error from the package gross weight minus the nominal gross weight. The actual weight of defrosted product is measured. Therefore, the method requires the defrosting of all packages comprising the sample. Since loss of quality, texture, and moisture will result should the product be refrozen, the packages in the sample are not to be refrozen after the test.

Tare also includes inner wrappings, lug tags, pop-up thermometers, etc.
3.13.1. Equipment

Sieves

- For labeled weight of 3 lb (1.36 kg) or less, one 8-in (or 20-cm) No. 8 mesh U.S. Standard Sieve Series stainless steel sieve and receiving pan.
- For labeled weight greater than 3 lb (1.36 kg), one 12-in (or 30-cm) sieve, same specifications as above.

Stopwatch - mechanical or electronic, with a maximum error of 2 seconds in a 2-hour period.

4-gallon or larger container with bottom inlet for a hose attachment and either a screen-covered outlet on the upper part of the wall of the container or a wire mesh basket, which extends above the container.

Partial immersion thermometer with -30 to 120 °F (or -35 to +50 °C) range, 2 °C graduations, tolerance of ± 2 °F (or ± 1 °C).

3.13.2. Procedure

1. Fill out report form and select a random sample. A rare sample is not needed.

2. Weigh the sieve and receiving pan, recording weight on a worksheet as the "sieve weight".

3. If the sample packages are not water tight, the packages should each be placed in a plastic bag. Force excess air out of the bag by submerging it in water to a point above the location at which the bag is being tied off.

4. Submerge the bags completely in a container of water using clamps or weights to keep the bags submerged. Maintain the water at 68 ± 4 °F (or 20 ± 2 °C) by introducing water at this temperature at the bottom of the container at a flow rate of 1 to 3 gallons per minute. Avoid agitating the packages.

5. As soon as the product thaws, as determined by loss of rigidity, remove each bag from the bath and open it with a minimum of agitation. With screen tilted at about 20° from the horizontal and supported for drainage, distribute the package contents over the screen in one sweeping motion. Let the product drain into a waste receptacle or sink.

6. Two minutes from the time the product was placed on the sieve, place the product and sieve on receiving pan and weigh. Record this weight on the worksheet as the "sieve + product weight".

6. The weight determined in step 5 minus the "sieve weight" (step 2) is the drained weight of the product. The package error equals the drained weight.
minus the labeled weight. Record the package error on the worksheet and on the report form.

7. Clean and dry the sieve and receiving pan and repeat steps 4 through 6 for the remaining packages in the sample.

8. Follow steps 7-11 of Section 3.5. (COMEX METHOD) for the determination of lot conformance or non-conformance.

3.14. Glazed Raw Seafood and Fish

The National Marine Fisheries Service of the U.S. Department of Commerce recommends that Method 18.001 (x) of the Official Methods of Analysis of the Association of Official Analytical Chemists be used for glazed raw seafood and fish. This method requires removal of the glaze before the product is weighed.

The method may be used for any frozen glazed food product.

3.14.1. Equipment

For equipment requirements, see Section 3.13.1. except

- 8-in (or 20-cm) sieve is used for labeled weights of 2 lb (0.9 kg) or less.
- 12-in (or 30-cm) sieve is used for labeled weights greater than 2 lb (0.9 kg).

3.14.2. Procedure

1. Fill out a report form and select the random sample. A tare sample is not needed.

2. Weigh sieve and receiving pan. Record this weight on a worksheet as "sieve weight".

3. Remove each package from low temperature storage, open it immediately, and place the contents under a gentle spray of cold water. Agitate the product carefully so product is not broken. Continue the spray until all ice glaze that can be seen or felt is removed. In general, the product should remain rigid; however, the ice glaze on certain products such as small to medium-sized shrimp, sometimes cannot be removed without defrosting the product. Nonetheless, remove the glaze because glazing is a substantial part of the gross package weight.

4. Transfer the product to the weighed sieve. Without shifting product, incline the sieve so an angle of 17-20° to facilitate drainage and drain for exactly 2 minutes (into waste receptacle or sink).

5. Place the product and sieve on the receiving pan and weigh. Record this weight on a worksheet as the "sieve + product weight".

6. The net weight of product is equal to the weight of pan plus sieve plus product (recorded in step 5) minus the "sieve weight" (recorded in step 2). The product net weight should be recorded on the worksheet. The package error
is equal to the net weight of the product as measured minus the labeled weight. The package error should be recorded on the worksheet and transferred to the report form.

7. Repeat steps 3 through 6 for each package in the sample, cleaning and drying the sieve and receiving pan between package measurements.

8. Follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

3.15. Canned Coffee

The variation in weight of the metal can used to package ground coffee can be substantial in comparison with the weight variation of the coffee itself; therefore, the alternative tare procedure of Section 2.11.4. may be necessary.

The gross weight of vacuum packed coffee before breaking the vacuum seal will be less than the gross weight after the seal is broken and air enters the can. This difference in weight will be measurable using the recommended small capacity scale for 2- and 3-pound canned coffee. [The gross weight difference for 1 lb coffee is about 1/2 g.]

The checking procedure follows Section 3.7. (standard pack, alternative tare). In step 3 of Section 3.7, the official can correct the gross weight determined from unopened cans in the following way:

Using the initial tare sample packages, the official should weigh and record the gross weight of the product-filled cans before and after breaking the vacuum seal. Compute the average gross weight difference (open weight minus sealed weight) and record this in box 13a of report form on page A-2. The nominal gross weight is equal to: the average tare weight minus the average difference in gross weights plus the labeled weight = box 13 - box 13a + box 1.

For example:

(i) A sample of 10 packages of 3-lb cans of coffee is selected; two packages are selected as the initial tare sample. The gross weight of the first unopened 3-lb can of coffee is 3.719 lb.

(ii) The gross weight of this same 3-lb can of coffee when opened is 3.723 lb.

The difference between (i) and (ii) is 0.004 lb.

This difference and the determination of the gross weight difference for the second tare sample package are averaged; 0.004 lb is found as the average value.

Therefore, 0.004 lb is, in this example, recorded in box 13a.

Section 3.7., step 4 onward, is then followed.
3.16. Borax

This section describes a method for testing packaged commodities in powdered or granular form consisting predominantly (more than 50 percent) of borax.

Such commodities are labeled by weight, but borax can lose more than 23 percent of its weight due to moisture loss. However, it does not lose volume upon moisture loss, and this property makes possible a method of testing based on volume. The method may be used either to verify that the purchaser receives at least a declared minimum volume of commodity or, as a means of audit testing, to identify possible short-filling by weight at point of pack. Since the bulk density of these commodities can vary at point of pack, further investigation would be required to determine whether such short filling had occurred.

3.16.1. Equipment

- Equal-arm scale or balance having a sensitivity of 0.002 lb.
- Metal density cup having a capacity of 1 dry pint (550.6 mL) (such as O’Haas #104), with the dimensions shown in Figure 3-13.
- Metal density funnel with slide-gate and stand (such as Cox #29), with the dimensions shown in Figure 3-13. (Density cup and funnel available from Seedburo Equipment Co., Chicago.)
- Rigid straight edge or ruler.
- Pan (metal or plastic) suitable for containment of overflow of density cup.

3.16.2. Procedure

1. Follow the steps described in Section 3.6. If the lot does not comply by weight with the sampling plan requirements (either the average or individual package requirements), select the lightest package (noting the actual net weight for this package) and continue.

2. Determine the tare weight of the density cup.

3. Place the density cup in the pan, and the funnel on top of the density cup. Close the funnel slide-gate.

4. Pour sufficient commodity into the funnel so that the density cup can be filled to overflowing.

5. Quickly remove the slide-gate from the funnel, allowing the commodity to flow into the density cup.

6. Carefully, without agitation of the density cup, remove the funnel and level off the commodity with the ruler or straight edge. Hold the ruler or straight edge.

The use of trade or brand names does not imply that they are endorsed or recommended by the Department of Commerce over similar products commercially available from other manufacturers.
edge at right angles to the rim of the cup, and draw it back carefully across the top of the density cup so as to leave an even surface.

Figure 3-13. Density cup and funnel.

7. Weigh the filled density cup (in pounds). Subtract the tare weight of the cup from the gross weight of the commodity plus cup to obtain the net weight of commodity in the cup.

3.16.3. Determination of Volume

1. Multiply the actual net weight (in pounds) as found for the package under test (step 1 in Section 3.16.2.) by 350.6.

2. Divide the answer obtained above by the weight of the commodity in the density cup (step 7 in Section 3.16.2.). The result is the net volume of commodity in the package in mL.

3. Compare the net volume of commodity in the package with the volume declared on the package. The volume declaration will be found at a location other than the principal display panel. It will be in the following form (1 mL = 1 cc):

Vol. __ cc per NBS Handbook 133, Sec. 3.16.
3.16.4. Action

If the net volume of commodity in the lightest package is less than the declared volume on the package, the lot is out of compliance and enforcement action should be taken. If the net volume of commodity in the lightest package equals or exceeds the declared volume on the package, the official may treat the lot as being in compliance on the basis of volume and take no further action. Alternatively, the official may take further steps to determine whether the lot was in compliance with net weight requirements at point of pack or was short filled by weight. To determine this, the official may do one or more of the following:

- perform a laboratory moisture loss analysis to ascertain the weight of the original bulk product when it was fully hydrated;
- obtain additional data at the location of the packaging; and/or
- investigate the problem with the package of the commodity.

3.17. Flour and Dry Pet Foods

3.17.1. Background for Administrator and Inspector

The test procedure for these products is based on the concept of a "gray area" that extends down from the labeled weight to 97% of the labeled weight. It applies only to package lots checked at retail or wholesale, and not to those checked in the plant. The gray area does not represent a tolerance, nor do lots in the gray area automatically pass or fail. If the average weight of a package lot is in the gray area, the moisture content at time of testing at time of pack must be determined in order to judge whether the lot is in compliance.

a. Enforcement action, inside and outside the gray area. The overall objective is to test packages as routinely as possible. If package lots are short weight, but fall in the gray area, additional information must be obtained in order to decide whether or not the lots are in compliance. The usual enforcement action is to be taken on packages found short weight and outside the gray area. For package lots found short weight, but inside the gray area, a decision must be made as to what to do with the packages while additional information is being collected. It is recommended that a hold or stop sale order be put on these packages until their final status can be determined. If the product cannot be held and subsequent tests or information indicate that the lot is out of compliance, seek the strongest legal remedy.

b. Which packages to consider as part of the lot being tested. When taking a sample from retail, a inspector will ordinarily record lot codes, but will not select the lot for test by sorting the packages by lot code. The sample is selected from all packages of the same brand, style, and size on the shelf or in the stock room. If short weight is found and the results are in the gray area, a follow-up test will now require sorting out the lot codes in order to ascertain the moisture content at the time of pack (which varies from one lot code to another).

c. Package errors. The discussion below is based on recording the package weights as "package errors" - how much and in what direction the actual package weight differs from the labeled weight. Thus, if a package labeled 2 lb actually weighs 2.10 lb, it is assigned a package error of +0.10 lb. The same holds for average package weight. If the average of 10 package weights is 3.94 lb, the average package error is (3.94 lb - 3.99 lb) = -0.05 lb.

d. Package lots have to meet the average requirement and the individual requirement. Using F-123 Category B sampling plan for packages not subject to possible moisture loss, two requirements must be met:

1Procedure available upon request from the Office of Weights and Measures, National Institute of Standards and Technology.

2Dry Pet Foods is defined as pet food that is packaged in paperboard boxes and Kraft paper bags and has a moisture content of 15 percent or less at time of pack. Minimum information is declared on the package in the ingredient statement.

3For simplicity only, this background discussion presupposes a Category B sampling plan test.

3-39
Example: The Gray Area for 5 lb Flour Packages

Average package error

<table>
<thead>
<tr>
<th>Lot fails</th>
<th>Lot passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray area</td>
<td>In Compliance</td>
</tr>
</tbody>
</table>

Figure 3-14. An example of a gray area.

1. The average net weight of a sample of 10 or 30 packages must equal or exceed the labeled net weight. Thus, the average package error (for the 10 or 30 packages) must be zero or plus.

2. In addition, no single package among the 10 or 30 packages in the sample can be short weight by more than the MAV.

For flour and dry pet foods, these two requirements become the upper boundary for the gray area. Ninety-seven percent of the labeled net weight defines the lower boundary of the gray area. (See Figure 3-14.)

For example, for 5-lb packages of flour, 3% of the labeled weight is 0.15 lb. Therefore, if the average package error for a lot of 5-lb packages is minus but between zero and -0.15 lb, the lot is in the gray area. The lot should be neither passed nor failed. More information is needed to decide its disposition.

If the official is following a Category B sampling plan, a package that is short weight by more than the MAV may put the lot in the gray area. The official will have to add the 3% gray area to the MAV to find the limits of the gray area for an individual package. Table 3-3 is provided to help the inspector determine whether or not the lot is in the gray area for all the common sizes of flour and dry pet food. This table is in Appendix B.

c. How many lots will be in the gray area. - The flour survey conducted by the NCWM Task Force on Commodity Requirements, printed in the Report of the 71st National Conference on Weights and Measures, 1986, page 70, is the source from which the estimates are predicted. If all four samples are drawn from retail, an estimated 5 to 6 out of 10 lots will have a minus average error and will be in the gray area. This will vary according to the time of year of testing. Probably only one out of 30 lots found at retail would be rejected outright because of being outside the gray area. A survey on dry pet foods was conducted by the NCWM and the Pet Food Institute, it is printed in the Report of the 71st NCWM, 1992, page 130.

3.17.2. Field Equipment

Use Scales and Weights recommended in Section 3.1. (H-133) and glass sampling jars (1/2 pint or larger) and lids.

3.17.3. Procedure

a. Summary Sheet. - A Flow and Dry Pet Food Summary Sheet is provided on page A-15 for use with the standard pack report form, page A-2. The following information can be entered on the Summary Sheet when setting up a test:

<table>
<thead>
<tr>
<th>Type of</th>
<th>Item No. on</th>
<th>Information</th>
<th>Examples</th>
<th>Summary Sheet</th>
<th>Brands</th>
<th>Name of brand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Summary Sheet</td>
<td></td>
<td>Item 1</td>
</tr>
</tbody>
</table>

3-40
b. Selection of Lots. - When an inspection lot composed of packages bearing different lot codes is found in the gray area, sort the inspection lot by lot code. Redefine the inspection lot to be those packages bearing the same lot code. Record the lot code in item 5 on the Summary Sheet. The lot code is the packer's own identifying marks, not the universal product code (UPC). The size of the inspection lot, item 6 on the Summary Sheet and box 5 on the StandardPack Report Form, page A-2, is the number of packages with a single lot code available for inspection at one location.

Note on the summary sheet if there is no lot code. Contact the packer to determine if there is any identifying lot code information. (See Section 3.17.3j for how to contact the packer.)

d. Tare. - Open the number of packages indicated in the sampling plan to get the average tare weight of the bag or other packaging material. (These packages may be in addition to the sample selected for net weight determination, if you prefer.) Record the average tare weight in item 8 on the Summary Sheet and in box 13 on the Standard Pack Report Form.

e. What a Package Should Weigh. - Add the average tare weight to the labeled net weight to determine what the package is supposed to weigh, the "nominal gross weight."

average tare weight + labeled weight = nominal gross weight

f. Package Errors. - Use the package checking scale to compare the packages in the sample with the nominal gross weight. A package that weighs more than the nominal gross weight is overweight and has a "plus package error." A package that weighs less than the nominal gross weight is underweight and has a "minus package error."

package error = package gross weight - nominal gross weight

Record these values on the Standard Pack Report Form (page A-7).

g. The Average Requirement. - The explanation below follows a Category B sampling plan. (When following a Category A plan, compare T before determining whether the lot in question falls in the gray area.)

Compute the average error for the package lot under test. Sum all individual package errors and divide by the number of packages in the sample. Do not delete any individual package errors from the calculation. Record the average error on the Standard Pack Report Form in box 18, and in item 9 on the Summary Sheet.

If the average error is zero or plus, the lot passes the average requirement.

Consult Table 3.3 in Appendix B to find the limits of the gray area for the labeled net weight. (According to the labeled weight in column 1, look up the limits of the gray area in column 2.) If a package size is not included in the table apply 5 percent to the labeled net weight. Note that the gray area only applies if testing is at retail or wholesale. If the test is conducted at the packaging plant, there is no gray area.

If the average error is minus by more than 3% of the labeled weight (assuming a category B test), the lot does not comply; it fails the test. Reject the lot and take the usual enforcement action. (Circle "no" in item 11 on the summary sheet.)

If the average error is minus, but by less than 3% of the labeled weight, the lot is in the gray area. Go to that part of the procedure headed "What to do when the lot is in the gray area," Section 3.17.3j. (Circle "yes" in item 11 on the Summary Sheet.)

h. The individual package requirement. - Compare the largest individual minus package error on the standard pack report form with Table 3.3 (Columns 3 and 4) to
Chapter 3

3.1.7.4. Moisture Content Laboratory Test

a. Equipment

Forced-air (or equivalent) laboratory convection oven

ML = MCP - MCT

Record the moisture loss in Item 14 on the Summary Sheet.

For example, if the moisture content at time of pack was reported to be 14% and the moisture content at time of test was 11%, the moisture loss is 14% - 11%, or 3%. A moisture loss of 1% translates directly into a weight loss of 1%. If you are testing 2-lb packages of flour, a 3% moisture loss is a weight loss of 2 lb x 0.03, or 0.06 lb. Calculate the weight loss for the lot under test by multiplying the percentage moisture loss by 0.06 lb (to convert it to a decimal) and then by the labeled weight (to convert it to pounds). See Summary Sheet for calculation. Record the weight loss in Item 15 on the Summary Sheet.

For example, if a moisture loss of 3% is found for a 2-lb lot of flour, this is a weight loss of 0.06 lb (2 lb x 3 x 0.01).

If the moisture loss (in Item 15) is equal to or larger than the amount of shortage found for the average error (in Item 9), then the lot can be accepted. If the moisture loss is less than the average shortage, then the lot should be rejected and further enforcement action taken.

For example, assume the average package error for a 2-lb lot of packages is 0.03 lb. If a moisture loss of 3% is found, the weight loss of 0.03 lb (2 lb x 0.03) is more than the amount of shortage (0.05 lb), therefore, the lot would pass the average requirement. Record this in Item 16.

Similarly, if any individual moisture percentage errors exceed the MAV, placing the lot into the gray area, add the weight of test due to moisture loss (Item 15) to the largest individual moisture percentage error (recorded in Item 10). If the resulting package error is still larger than the MAV (see Table 3-2, third column), the lot should be rejected. If the resulting package error is smaller than the MAV, the lot should be accepted. Record this in Item 17.

For example, if the largest individual package error for a lot of 2-lb packages is 0.08 lb, this puts the lot into the gray area, so if the average package error is zero or plus. If a moisture loss of 3% is found, the weight loss of 0.06 lb added to the individual package error makes the package error -0.02 lb (-0.08 lb + 0.06 lb). The MAV for 2-lb package loss is -0.07 lb, so this lot passes if the average is zero or plus.
These two procedures are for meat and poultry coming from Federally inspected plants. If inspectors check packages at wholesale or retail, use Category A sampling plant from 11-135, and either unused or dried used tare (see Section 3.18.3.5 for definition), then there is no gray area, the used packages are either in or out of compliance. If a jurisdiction-lists wet tare (see Section 2.11. Tare, for definition), there is a "gray" or "no-decision" area. The gray area is not a tolerance. If packages are found in the gray or no-decision area, they neither automatically pass nor fail the test. If lots are tested and found inside the gray area, they are not necessarily in compliance. The jurisdiction will have to do more work to determine the final status of the lot.

Jurisdictions wishing to perform wet, tare tare upon products for which no gray area has yet been determined will need to permit "reasonable variations" until a gray area has been determined for that product. New gray area determinations will be prorated in this Handbook and in the Federal Register. Contact the USDA Regional Office for a listing of the products that have gray areas, as well as the size of their gray area percentages.

The size of the gray area is defined as a percentage of the labeled weight that extends downward from the labeled weight.

b. Enforcement action relative to the gray area. The overall objective is to test packages as closely as possible to a routine test. However, one difference will immediately be apparent.

Category A (Table 2-2) sampling procedures must be employed at retail or wholesale locations when testing packages put up in a Federally inspected plant (because a test similar to a Category B test has already been run on the packages at the plant level).

Category B (Table 2-5) sampling procedures may be used when testing at the packaging plant.

c. "Dry Tare" Jurisdictions. For jurisdictions that normally use unused tare to test meat and poultry packaged at a retail plant, it will be necessary to simulate unused tare for packages from Federally inspected plants by drying out absorbent materials (if any) comprising the used tare and to determine a "dried used tare." No additional information will be needed other than the results of a Category A test using "dried unused tare" before taking enforcement action on lots.
}

3.18. Me at and Poultry from Federally Inspected Plants

3.18.1. Background for Administrator and Inspector
weight with wet tare tests, but fall in the "gray area," it is necessary to collect additional information to determine whether or not the lot complies with net weight requirements.

If the package lots are found short weight using a Category A sampling plan and wet tare, it will first be necessary to determine whether the lot is inside or outside the gray area. If the lot falls in the gray area, additional information will have to be collected before reaching a feasible determination whether the lot is in or out of compliance. Of course, nothing additional will be needed for lots that fall outside the gray area. Appropriate enforcement should be taken on packages found short weight and outside the gray area.

A "hold" or a "stop sale" order should be put on packages found short weight, but inside the gray area, until their status can be determined. If this is not possible, the strongest legal remedy should be sought if the product cannot be held and subsequent tests or information indicates that the lot is out of compliance.

d. Which packages to consider as part of the lot being tested. Ordinarily, an inspector taking a sample from retail will record lot codes, but will not select the lot for test by sorting the packages by lot code. He or she will simply select a sample from all packages of the same brand and style and size on the shelf or in the stock room. If short weight is found and the results are in the gray area (wet tare only), follow-up investigation requires sorting the lot codes at this point.

e. Category A sampling plans must be used for all tests conducted outside the Federally inspected plant. See Section 3.18.3, for details. The discussion below is based on using these procedures and on recording the "package error"—how much and in what direction the actual package weight differs from the labeled weight.

Thus, if a package labeled 2 lb actually weighs 2.010 lb, its package error is +0.010 lb. Similarly, the "average package error" is the difference between the average weight of the sampled packages and the labeled package weight. If the average of 10 package weights is 1.906 lb, the average package error is (1.904 - 2.000 lb) = -0.096 lb.
f. Package lots must meet the average requirement and the individual requirement. When checking packages not subject to possible moisture loss and using Category A sampling plans, two requirements must be met:

(1) The average net weight of the sample must equal or exceed the labeled net weight minus an adjustment factor called T, (see general discussion of T in Chapter 2 and in NCWM Training Module 39) which represents the possible deviation between the sample average and the actual lot average.

If a jurisdiction applies either unused or used dried tare to meat and poultry packages, this is sufficient to determine whether the average requirement has been met. See Figure 3-15.

No Gray Area for Meat or Poultry from a Federally Inspected Plant
If Category A Sampling Plan (for 100% Test) and Used Dry Tare Are Employed

<table>
<thead>
<tr>
<th>Labeled Weight</th>
<th>Average Net Weight of the Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than the labeled weight</td>
<td>In Compliance</td>
</tr>
<tr>
<td>Greater than the labeled weight</td>
<td>Out of Compliance</td>
</tr>
</tbody>
</table>

* When following a Category A Sampling Plan, the sampling factor T must be computed and applied to the average error of the sample.

Figure 3-15

3-44
Gray Area for Poultry or Hot Dogs from a Federally Inspected Plant Using Wet Tare

<table>
<thead>
<tr>
<th>Average Net Weight of the Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of Compliance</td>
</tr>
<tr>
<td>Less than the labeled weight</td>
</tr>
<tr>
<td>Greater than the labeled weight</td>
</tr>
</tbody>
</table>

2 1/2% of labeled weight for hot dogs
3% of labeled weight for poultry

Figure 3-16

If a jurisdiction uses wet tare, an amount defined by the gray area must be considered before determining non-compliance of the lot under test without further information or data collection. See Figure 3-16.

The site of the gray area has been set at 3% of the average labeled weight for raw, fresh poultry, and 2 1/2% of the labeled weight for franks and hot dogs (whether made from meat or poultry).

(2) The number of packages that may fall below the MAV is specified in Category A sampling plans according to the sample size. Ordinarily, the inspector uses Table 2-8 to look up the MAV for packages labeled by weight.

USDA Meat and Poultry Inspection uses a set of MAVs for products under its supervision. These are given in Table 2-12. Use Table 2-12 for all products coming from a Federally inspected plant.

The site of the gray area must be added to the individual package limits specified in Table 2-12 when the jurisdiction uses wet tare.

g. What to do when the lot is in the gray area ("Wet Tare" Jurisdictions Only). - Contact the USDA Regional Director or the inspector-in-charge at the packaging plant (see Section 3.13.3.b.) to determine what information (either USDA's or the plant?) is available at the plant to clarify the status of the lot in question. General guidelines are given in Section 3.13.3.b.

The jurisdiction also has the option of visiting the plant to collect its own data or, if the plant is located in another jurisdiction, asking the weights and measures officials in that jurisdiction to collect the necessary data. (Permission must be requested to test at the plant.)

3.18.2. Types of Products and Size of Gray Areas

a. Bacon. - The gray area is zero for bacon if there is no free-flowing liquid or absorbent materials in contact with the product and the package is cleaned of clinging material prior to tare weight determination; when there is no free-flowing liquid or absorbent materials in packaged bacon, wet tare and dried used tare are equivalent. Whether you are following wet tare or dry tare procedures, wipe all packaging materials clean of fat and clinging moisture before weighing tare.

b. Fresh Sausage and Luncheon Meats. - Luncheon meats comprise any cooked sausage product, loaves, filled products, cured products, and any sliced meat styled for placing on bread or similar products. This category of product does not include whole hams, briskets, roasts, turkeys, or chickens requiring further preparation to be made into ready-to-eat sliced product. When there is no free-flowing liquid and no absorbent materials used in the package, there is zero gray area for fresh sausage or luncheon meats. Whether you are following wet tare or dry tare procedures, carefully clean and wipe all tare materials of fat and clinging moisture. Only when there is no free-flowing liquid inside the package and there are no absorbent materials in contact with the product, wet tare and dried used tare are equivalent.
c. Franks/Hot Dogs. - A gray area of 2-1/2% of the label or weight is to be applied when wet tare tests are conducted.

d. Fresh Poultry. - For net weight determinations only, fresh poultry is defined as poultry above 26 °F. This is a product that yields or gives when pushed with a person’s thumb. A gray area of 5 percent of the average labeled weight of the sample is to be applied to raw, fresh poultry in retail packages when wet tare tests are conducted.

3.18.3. Procedure

a. Field Equipment. - Use Scales and Weights recommended in Section 3.1.

b. Report Forms. - Use either the Standard Pack-Weight Only-Report Form (page A-2) or the Random Pack Report Form (pages A-3 and A-9). Record the official establishment number from the USDA logo in the space provided underneath name and address.

c. Selection of Lots. - Refer to Section 2.3, for defining and selecting the inspection lot.

The lot code is the packer’s own identifying mark, not the universal product code (UPC). In many instances, the lot code may be represented by a “pull” or “sell by” date. Record the lot code on the report form.

d. Sample Size. - Select the sample according to the size of the inspection lot following a Category A sampling plan (Table 2-2, page B-3). Do not sort random-pack packages from lightest to heaviest as recommended in Section 3.8.1, step 2.

e. Tare. - Select the tare sample as given in Table 2-2.

1. Unused or Dried Used Tare. - Unused tare material is rarely available at retail or wholesale locations for lots packaged at Federally inspected plants. The tare weights printed on the shipping containers may not be accurate. Therefore, it is necessary for the inspector to reconstruct an unused tare weight by drying the used tare and weighing it. If the tare is composed of nonabsorbent materials, it can be cleaned and wiped in order to obtain a “dried used tare.” The following technique should be followed to get “dried used tare” when absorbent materials are involved. Absorbed fats as well as absorbed water-based fluids must be dried out of these materials.

A fresh poultry package will be used as the example.

2. Shrink Wrap. - Open package shrink wrap, remove wrinkles from heat-seal area as much as possible, and wipe or pat dry with paper toweling or other suitable material. These procedures can be considered the model for how to clean any nonabsorbent tare materials.

Tray. - If tray is foam or plastic, rinse tray and wipe or pat dry. If tray is paper or cardboard, pat dry between sheets of toweling and lay tray on heating element of prepack scale or heat in microwave oven to dry.

Depending on the power of the oven, total times between 2 and 5 minutes may be necessary. Frequent short bursts of power (30-sec intervals), checking after each cycle, are better than a single 5-minute run. (The trays can burn if the drying cycle is too long.) The tray should be cool and dry to the touch before final weighing.

Soaker Pad. - Many soaker pads are composed of plastic sheets laminated with fibrous paper tissue. Peel the plastic sheeting away from the tissue (if possible), press the tissue between sheets of paper toweling, then dry the tissue on the heating element of the scale or in a microwave as described above for a paper tray. Wipe or pat the plastic sheeting dry and weigh it with the cooled tissue pad, tray, shrink wrap, and label. Do not attempt to rinse soaker pads—they will often disintegrate if loaded with water.

Depending on the surface area of the microwave oven tray and the size of the soaker pads, do not load more than two to five tare pads in a microwave at one time and do not stack them. Stacking or loading too many pads at one time will take more oven time and power, increasing the possibility of burning or charring the pads.

(a) What a package should weigh using unused or dried used tare. - Add the average “dried” tare weight (ADTW) to the labeled net weight (LNW) to determine what the package is supposed to weigh—the “nominal gross weight” (NGW):

$$\text{ADTW} + \text{LNW} = \text{NGW}$$

(b) Package errors using unused or dried used tare. - Use the package checking scale to compare the gross weight of the packages in the sample (GWW) with the nominal gross weight (NGW). A package that weighs more than the nominal gross weight is overweight and has a “plus” package error (PE); a package that weighs less than this is underweight and has a “minus” package error.

$$\text{PE} = \text{GWW} - \text{NGW}$$

Go to Section 3.8.3.6. on the average requirement.

(c) Packages opened for tare determination may be rewrapped by the supermarket provided that the USDA
logo does not appear on the package. The supermarket should contact the original packager if it intends to leave the brand name on the product when repackaging.

(2) We Tare.

(a) When there is no free-flowing liquid or absorbent materials in contact with the product, clean the tare materials of all clinging product and wipe dry. Weigh the weighted tare materials for the number of packages indicated in the sampling plan. Average the tare weights. Add the average tare weight (ATW) to the labeled net weight (LNW) to obtain the nominal gross weight (NGW):

\[\text{ATW} + \text{LNW} = \text{NGW} \]

Use the nominal gross weight (NGW) to compare with the gross weights of all the packages in the sample (PGW) to determine their package errors (PE):

\[\text{PGW} - \text{NGW} = \text{PE} \]

(b) Determining the net weight when there is free flowing liquid or absorbent packaging materials in contact with the product. All free liquid is part of the wet tare. To avoid destroying too many packages:

(i) gross weigh two packages to be opened for tare, then

(ii) weigh solids inside;

(iii) get wet tare by subtracting solids weight from gross weight.

(iv) \[\text{AWTW} + \text{LNW} = \text{NGW} \]

where: \(\text{AWTW} = \text{Average wet tare weight} \)

\(\text{LNW} = \text{labeled net weight} \)

\(\text{NGW} = \text{Nominal gross weight} \)

Use the alternative tare procedure (Section 2.11.4) to determine whether to open more packages (i.e., whether the tare is too variable).

Packages opened for a wet tare test may be rewrapped by the supermarket provided that the USDA logo does not go on the package. The supermarket should contact the original packager if it intends to leave the brand name on the product when repackaging.

(c) Determining Package Errors. If individual package net weights are measured:

\[\text{PE} = \text{PNW} - \text{LNW} \]

where:

\(\text{PE} = \text{Package error} \)

\(\text{PNW} = \text{Package net weight} \)

\(\text{LNW} = \text{Labeled net weight} \)

A package that weighs more than the labeled weight is overweight and has a "plus package error." A package that weighs less than the labeled weight is underweight and has a "minus package error."

If an average tare weight and nominal gross weight are determined:

\[\text{PE} = \text{PGW} - \text{NGW} \]

where:

\(\text{PE} = \text{Package error} \)

\(\text{PGW} = \text{Package gross weight} \)

\(\text{NGW} = \text{Nominal gross weight} \)

The Average Requirement. Compute the average error for the sample. Sum all individual package errors and divide by the number of packages in the sample. Record the average package error in box 18 on the standard pack report form or box 20 on page 2 of the random pack report form.

If the average error is zero or plus, the lot complies with the average requirement. If the average error is minus, first compute \(T \). (See Section 2.7, in this handbook and Chapter 6 of the Inspector's Manual in Module 16 for further instructions if this procedure is unfamiliar to you.) Record \(T \) on the report form, and continue with subsections (1), (2), or (3) below as appropriate.

(1) Unused or Dried Used Tare for Bacon, Sausage, Luncheon Meats with No Free-Flowing Liquid or

1Entire the lot is so small that the inspector is testing all packages in the lot (100% test). If this is the case, and the average error is minus, the lot fails if it is a dried used tare test; the lot may be in the gray area if it is a wet tare test.
Absorbent Materials. - If the average minus error is larger than T, the lot does not comply with the average requirement; enforcement action should be taken. Also, follow the process outlined in Section 3.183.g.

(2) Wet Tare - Fresh Poultry.
(a) Compute 3% of the average labeled weight.

\[
\text{average labeled weight} \times 0.03 = \text{gray area}
\]

There is space below column 8 of the Random Pack Report Form to compute the average labeled weight of the sample.
(b) Record this in the comments section as "gray area."
(c) If T was computed, add the gray area to T, calculated and recorded on page 2 of the random pack report form. Record in remarks section as "gray area + T."
(d) Compare value in box 20 with "gray area + T."
(e) If the value in box 20 is larger than the "gray area + T," the lot fails to comply. (Since box 20 will always have a minus value—or else you would not have calculated T—disregard the sign when comparing with gray area + T.) If the value in box 20 is between T and the gray area + T, go to Section 3.183.h. If the value in box 20 is less than T, the lot complies.

(3) Wet Tare - Hot Dogs or Franks.
(a) Compute 2-1/2% of the labeled net weight recorded in box 1 of the standard pack report form.

\[
\text{value in box 1} \times 0.025 = \text{gray area (lb or oz)}
\]

(b) Convert to dimensionless units by dividing by the unit of measure in box 2.

\[
\text{gray area (lb or oz) / box 2 = gray area (dimensionless units)}
\]

Record this in comments section as "gray area."
(c) Continue with (e), (d), and (c) as for Subsection (2), Wet Tare - Fresh Poultry.

g. The Individual Package Requirement. - Table 2-12 gives the limits for individual package errors for packages produced at Federally inspected plants. Use this table instead of Table 2-4 for looking up the MAV. The number of individual minus package errors permitted to be larger than the "lower limit for individual weights" (see the right-hand column of this table) is given in Table 2-2 (page 8-3). Convert this value (or values if a random pack lot falls between groups) to dimensionless units and record on the report form.

(1) Dried Used Tare or No Free-Flowing Liquid. When conducting a dried used tare test or testing bacon, sausage, or ham/door meats with no free-flowing liquid or absorbent tare materials, compare the value(s) from Table 2-12 (converted to dimensionless units) with the minus package errors. If the number of minus package errors that exceed the limits of Table 2-12 is more than allowed by the Category A plan being followed, the lot does not comply.

Wet Tare. - When conducting a wet tare test on hot dogs or fresh poultry, the size of the gray area must be added to Table 2-12 value(s) before counting the number of package that exceed the MAV. In Section 3.183.f.t, the size of the gray area (in dimensionless units) was recorded in the comments area of the report form. The values from Table 2-12 are recorded in boxes 10 and 11 on the random pack report form and box 4 on the standard pack report form. Add the size of the gray area to the value(s) from Table 2-12 (converted to dimensionless units) before comparing with the minus package errors.

If the number of minus package errors that are greater than (Table 2-12 + the gray area) exceeds the number permitted in Category A plans, the lot does not comply. If minus package errors fall between the Table 2-12 value and (Table 2-12 + the gray area), they place the lot in the gray area if the number of these types of minus package errors exceeds the number permitted in Category A plans.

h. What to Do When the Lot Is in the Gray Area. - Although the following discussion is intended primarily for those jurisdictions using wet tare for meat and poultry, any jurisdiction is encouraged to follow these procedures when product from Federally-inspected plants fails to comply with net weight tests.

The "Meat and Poultry Inspection Directory" is available from the USDA Regional Offices listed on the next page.

Meat and poultry packaging plants are listed by "establishment number." Use the establishment number on the package to look up the location and telephone number of the plant. A separate number is sometimes provided for the USDA Inspector-in-charge. If the establishment number is not listed in this directory (since new businesses, established after the directory was published, may not be listed in the directory), call the Regional Office to get the telephone number(s) of the plant and the appropriate USDA official for the plant in question.
<table>
<thead>
<tr>
<th>USDA Regional Offices</th>
<th>States or Territories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Regional Office</td>
<td>Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, Oregon, Utah, Washington, Wyoming, North Dakota, South Dakota, Samoa, and Guam</td>
</tr>
<tr>
<td>620 Central Avenue, Bldg. 2C</td>
<td></td>
</tr>
<tr>
<td>Alameda, CA 94501</td>
<td></td>
</tr>
<tr>
<td>415/273-7798</td>
<td></td>
</tr>
<tr>
<td>Southwestern Regional Office</td>
<td>Arkansas, Kansas, Louisiana, Missouri, New Mexico, Texas, and Oklahoma</td>
</tr>
<tr>
<td>1380 Commerce Street</td>
<td></td>
</tr>
<tr>
<td>Dallas, TX 75242</td>
<td></td>
</tr>
<tr>
<td>214/767-4508</td>
<td></td>
</tr>
<tr>
<td>North Central Regional Office</td>
<td>Illinois, Indiana, Iowa, Michigan, Minnesota, Nebraska, Wisconsin, and Ohio</td>
</tr>
<tr>
<td>1338 Aurora Ave</td>
<td></td>
</tr>
<tr>
<td>Des Moines, IA 50322</td>
<td></td>
</tr>
<tr>
<td>515/284-6539</td>
<td></td>
</tr>
<tr>
<td>Southeastern Regional Office</td>
<td>Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee, West Virginia, Puerto Rico, and the Virgin Islands</td>
</tr>
<tr>
<td>1718 Peachtree Street, NW</td>
<td></td>
</tr>
<tr>
<td>Atlanta, GA 30309</td>
<td></td>
</tr>
<tr>
<td>404/347-2506</td>
<td></td>
</tr>
<tr>
<td>Northeastern Regional Office</td>
<td>Connecticut, Maine, Maryland, Massachusetts, Delaware, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, Virginia, and the District of Columbia</td>
</tr>
<tr>
<td>701 Market St., Ste 2B South</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, PA 19106</td>
<td></td>
</tr>
<tr>
<td>215-597-8706</td>
<td></td>
</tr>
</tbody>
</table>

Contact the appropriate USDA official to determine what information is available on the lot in question (see subsection (1) below). If a lot of hot dogs or fresh poultry has been tested using wet tests, any average package error that is minus and larger than .5 may place the lot in the gray area.

(1) Further Information. - Ask the USDA official:

(a) Whether the plant is operating under a "Total or Partial Quality Control Program" (TQC or PQC).

Some plants operate under a Federally approved "Total or Partial Quality Control Program." If such a program is in place, records on the lot in question will be maintained by the establishment, not by USDA. If the establishment is not operating under a TQC or PQC Program, USDA may or may not have tested the lot in question. The USDA official will be able to tell you what information he has, as compared with information that may be available from the plant personnel.

(b) What information is available from USDA concerning the particular lot in question.

- How many packages are tested at what time intervals?
- How many packages are produced in that time interval?
- What criteria are employed to decide when adjustments to the net weight are required?
- What were the net weight checks on the lot in question?
- What adjustments were made to the target weight?

If USDA has data on the specific lot in question or if there is an approved TQC or PQC program producing data on the lot, these data may serve to substantiate that the lot complied with net weight requirements when it left the plant. If data on the specific lot in question were not collected by USDA or under an approved QC program, the weights and measures test results are the only regulatory agency data on the lot. In this instance, the weights and measures authority would take whatever action it deemed appropriate; USDA has no data to dispute the weights and measures findings.

(c) What scale maintenance and testing program is in place in the plant.

3-49
Chapter 3

(d) What is the verification system in place in the plant, including how the tare is determined, how often it is monitored, how it is verified when new tare materials are delivered?

(e) What kind of net weight verification or testing (and how often) does the USDA conduct?

(f) Who are the establishment personnel to contact to review establishment-maintained records on the lot in question?

(g) Test Packages and Scales at the Packaging Plant. - Optionally, make arrangements to visit the plant or call the weights and measures jurisdiction where the plant is located. Discuss the net weight control program with plant quality control personnel, check their scales (if possible), and test packages. Even though it is not possible to test the lot in question at the plant, it may be possible to establish confidence in plant process and weight control procedures.

Note the type of scales used to monitor the fill weights of the packages. Ask to test the scales. (This may be disruptive during a production run.)

Test a sample of packages from the line or storage area using H-133 Category B sampling procedures plus the Table 2-12 values for individual packages. Since you are at the packaging plant and no distribution has occurred, there is no gray area to consider at this point. Due to the large number of packages in the lot when testing at the plant, the sample size will usually be 50 packages. Ask the USDA inspector if he or she will conduct a test using his procedures and equipment on the same lot.

(3) Other Optional Information That May Be Available from the Packer. - When testing at the packaging plant, this is the appropriate time (or it may be necessary to explore the issue by telephone) to get some optional information. The information below may be proprietary and not available to the inspector.

- How many packages are produced in a single production run? How much of the plant's production does each lot code represent (a single line's run, 8 hours/24 hours production, etc.)?

- What is the target weight for each label? How is this value set? (This will be considered confidential information.)

- What scales or other measuring equipment and procedures are used to measure or control the package net weights (checkweighing, line supervisor weighs a package every hour, etc.)?

- How quickly can adjustments be made to package fill targets that are out of bounds?

- How often are the scales tested; who does the testing (yearly service call; quality control supervisor on a daily basis, etc.)?

- How does the plant determine the tare weight, how often does the plant change the tare weight, what does the plant do with tare information?

- (For example: actual tare unit used and changed whenever new shipment of tares sent; average weight to closest 0.1 lb is added to target weight; etc.)

- Does the package report different tare weights to different areas of his market? (For example: wet tare values, unused tare values, something in between?) How are these determined?

- What variation in package weights from the labeled declaration does the line or plant normally encounter? (Ask them to show you or send copies of their records. These records are proprietary and may be available only for viewing.)
CHAPTER 4. METHODS OF TEST FOR PACKAGES LABELED BY VOLUME

4.1. Measuring liquid volumes
4.2. Equipment for liquid volume determinations
4.3. Using liquid volumetric measures
4.4. Standard pack liquids labeled by liquid volume: General method, part 1, measuring the weight of a known volume
4.5. Standard pack liquids labeled by liquid volume: General method, part 2, using the weight of the labeled volume
4.6. Other methods of liquid volume measurement
4.7. Milk
4.8. Mayonnaise and salad dressing
4.9. Paint, varnish, and lacquers - nonerosol
4.10. Very viscous materials
4.11. Paste mass
4.12. Maltch
4.13. Solids or semisolids
4.15. Ice cream novelties
CHAPTER 4. METHODS OF TEST FOR PACKAGES LABELED BY VOLUME

This chapter first presents information on general problems and practices in measuring liquid volumes. Section 4.4 describes tests to check the suitability of weighing the net content of packages labeled by volume. Section 4.5 describes a weighing method that references techniques already covered in Section 3.5. (CORE METHOD). Section 4.6 describes methods for use when weighing cannot be employed to check packages labeled by volume. Finally, methods for specific types of commodities are described in the remainder of the chapter. Packages labeled by dry volume or cubic measures are included in this category.

The procedures in this chapter return to the CORE METHOD of Section 3.5 for determination of lot conformance.

Determining the inspection lot, selecting the random sample and test sample, and filling out the standard pack report form (page A-1) are not described in any detail in this chapter. The testing official is referred to Chapter 8, Appendix E, and Sections 3.5. through 3.7. for a more complete description of these procedures.

It should be noted that some packages labeled by volume utilize containers that are required by law or regulation to hold specified quantities (liquid or dry volume). These containers include jerry cans, large milk containers, and certain types of juice containers. These containers are specified by the laws and regulations of the states in which they are used. The laws of the United States do not specify the labeling or testing of these containers.

4.1. Measuring Liquid Volumes

The volume that is occupied by any kind of packaged product varies with the temperature of the product. This must be kept in mind when checking products labeled by liquid volume but can be ignored when checking products labeled by dry volume. For example, the volume of a liquid cosmetic product is 500 mL at 20 °C (68 °F) and 503 mL at 25 °C (77 °F). Therefore, a reference temperature is usually specified in regulations for products sold by liquid volume. The labeled volume is required to comply with the regulations at the reference temperature.
Chapter 4

In general, the reference temperature is the temperature at which the product is customarily sold. For frozen foods labeled by liquid volume (e.g., fruit juices, bananas, etc.), packagers routinely recommend a maximum storage temperature of 0 °F (-17.8 °C). For foods that must be refrigerated to maintain quality, the reference temperature is 40 °F (4.4 °C). The reference temperature for all petroleum products is 60 °F (15 °C). For products sold unrefrigerated, the reference temperature is generally accepted as 68 °F (20 °C). The reference temperature for beer is 39.1 °F. The reference temperature for distilled spirits is 60 °F, and for wine is 66 °F (20 °C).

The following discussion applies to packaged products that are liquids at their reference temperature.

Whenever the liquid volume of a product is measured, the product temperature must be controlled and measured. This does not mean that the inspection official must equilibrate the entire sample at the reference temperature. It does mean that the official should be aware of the effects of temperature on volume and minimize these effects. The following discussion describes the magnitude of these effects.

Since many liquid products have a high water content, the following information on water will guide the testing official as to the approximate errors that can arise from variations in temperature, and the effect of temperature on volume or on the weight of a known volume. For example,

1 gallon of water at 40 °F (4.4 °C) occupies:

\[1 \text{ gal} + 0.28 \text{ fl dr at 50 °F (10 °C)},\]

\[1 \text{ gal} + 0.59 \text{ fl dr at 60 °F (15.6 °C)};\]

\[1 \text{ gal} + 1.25 \text{ fl dr at 70 °F (21.1 °C)}.\]

Frozen products labeled by liquid volume should be checked at the packaging plant. Those products with a high water content have a minimum volume at about 40 °F (4 °C) and a larger volume at 0 °F (-18 °C) than their volume at 40 °F (4 °C).

21 CFR §101.105(b)(ii).

16 CFR §560.8(b); 21 CFR §101.105(b)(ii); 40 CFR §162.10(2); 21 CFR §201.62(b); 21 CFR §761.13(b)

27 CFR §7.10

27 CFR §5.11

28 CFR §4.10

4-2
In the same way, 1 gallon of water would weigh about:

- 8.336 lb at 40 °F (4.4 °C),
- 8.354 lb at 50 °F (10 °C),
- 8.388 lb at 60 °F (15.6 °C), and
- 8.320 lb at 70 °F (21.1 °C).

These variations, although small, are detectable with the equipment recommended in this handbook.

It is only important to maintain the packaged goods that will be opened for volumetric measurements at the same temperature. As will be described in Section 4.4, the testing official will deliver a known volume of product from one package and weight it. Having repeated this procedure on a second package, the official will compare the weight of the two volumes in order to determine whether the rest of the packages in the sample can be weighed without opening these packages. Since the weight of a fixed volume of liquid will vary with the temperature, the official must determine the weights of the two volumes at the same temperature.¹

Using the example of water, 1 gallon of water at 68 °F weighs 8.322 lb, but weighs 8.326 lb at 70 °F. As described in Section 4.4, if a difference of more than 0.004 lb is found between the weights of a known volume from two packages (using the equal-arm scale for larger weights), weighing cannot be used to check the package net contents. For the example of water, the 0.002 lb difference in product temperature is enough to account for a 0.002 lb difference in the weight of one gallon.

a. Preparation of Flasks

In order to make package volume measurements on a refrigerated product without the product rapidly warming, it is good practice to equilibrate the volumetric glassware to the same temperature as the liquid product. For example, the official may pet the flask to be used for checking milk in the cooler with the milk for about a half hour before checking the packages.

b. Product Does Not Need to Be at the Reference Temperature

If volumes are determined on products at temperatures higher than their reference temperature of 60 or 68 °F, the measured volumes will be greater than the reference temperature. By testing such products at or above the reference temperature, the official will always give the benefit of temperature errors to the package.

Measurements of product volumes at lower than the reference temperatures of 60 or 68 °F normally will not require the application of a density correction. Volumes of refrigerated food products determined at temperatures higher or lower than the

¹Weighed in air.

²Alternatively, an agency may develop (or obtain from the package) tables or formulae of volume/temperature variation which can be used to correct individual measurements to volume at the same temperature.

4-3
40°F reference temperature will be larger than the volume determined at 40 °F because the maximum density of water (a principal component of most foods) occurs at 40 °F.1

4.2. Equipment for Liquid Volume Determinations

Scales and weights recommended in Section 3.1. are suitable for the determination of the weight of a known volume.

Volumetric Measures - Measures specifically designed for package checking purposes may be used in making fluid volumetric determinations. [See Figure 4-1.] Standard measuring flasks and graduates recommended for use with packages labeled in inch-pound units are the gill, half pint, pint, quart, half gallon, and gallon. In addition, a 2-fluid-ounce cylindrical graduate, graduated to 1/2 fluid-drum is recommended. When checking packages labeled in metric units, flask sizes of 100 milliliters, 200 milliliters, 500 milliliters, 1000 milliliters, 2000 milliliters, and 5000 milliliters, and a 50-milliliter cylindrical graduate graduated to 1 milliliter, should be used.

Tolerances for inch-pound and metric field standard flasks and cylinders are given in Appendix L.2

A separate set of volumetric measures should be clearly marked and reserved for any testing of pesticides, herbicides, or similar products. Detergent washing of each set of volumetric measures between tests will then be adequate for field care and use. Volumetric measures suspected of contamination can be cleaned with a solution of potassium dichromate and sulfuric acid in a laboratory not in the field.

Partial immersion thermometers with a range of -30 to 120 °F (-35 to +50 °C), at least 1 °F (1 °C) graduations, and with a tolerance of ±2 °F (±1 °C).

Defoaming agents may be necessary for checking liquid commodities that effervesce or are carbonated, such as beer and soft drinks. Three such products are:

- Hexanol
- Octanol (Capryl Alcohol), purified

1 This is also true for malt beverages (e.g. beer).

2 250-milliliter may be used also.

3 Flask manufacturers can supply standard measuring flasks with extended graduations on their necks (rather than those listed in Appendix L, Table L-2). These graduations can extend to the MAV for packages labeled by volume (e.g., for the half pint, graduations down to 3 drams below the half-pint mark may be specified for purchase).
Amifosan B\(^1\)
Dow Corning Corporation
Midland, Michigan

The use of these defoaming agents renders the liquid commodities unfit for human consumption.

*Bubble level

![Image of a standard measuring flask and graduate](image)

Figure 4-1. Standard measuring flask and graduate for test packages labeled in metric units of volume.

4.3. Using Liquid Volumetric Measures

Volumetric flasks are used in two ways for testing liquid products.

(i) **Volumetric measurement.** An amount of product (not necessarily the entire package contents) is poured into a flask exactly to a specified mark on the neck of the flask and weighed. For example, the weight of the contents of a package

\(^1\)The use of trade or brand names does not imply that they are endorsed or recommended by the Department of Commerce over similar products commercially available from other manufacturers.
labeled as 32 fluid ounces may be determined by weighing the contents of a pint flask filled with liquid product, then multiplying the result by two.

(ii) Volumetric measurement. The entire package contents are poured into one or more flasks. The liquid volume is determined by comparing the liquid level with the graduations on the neck.

a. Selecting the Flask

For fluid volume measurements, the choice of the volumetric flask to be used in any determination will depend on the labeled volume of the package. Even though packages may be labeled with a volume identical to the testing official’s flask capacity, the amount contained in or delivered from any individual package may be less than the minimum mark inscribed on the inspector’s flask. The lot codes on packaged liquids do not always correspond to single homogeneous batches of the liquid when being filled. Therefore, it is important to never mix liquids from two different packages (except for milk—see Section 4.7). For this reason, the official should use the flask sized closest to, but smaller than, the labeled volume for the determination of the weight of a known volume.1

b. Preparing the Flask

Because flasks are ordinarily calibrated on a “to deliver” basis, they must be “wet down” before using. Immediately prior to use, the volumetric flask(s) or graduate should be filled with water to a point slightly below the top graduation on the neck. The flask should be emptied in 30 seconds (±5 seconds), tilting the flask gradually so that the flask walls are splashed as little as possible. When the man fluid has ceased, the flask should be nearly inverted. Hold the flask in this position 10 seconds more and touch off the drop of water that adheres to the tip. The flask or graduate is then ready to accept product liquid from a package. This is called the “wet down” condition.

c. Reading the Liquid Level

When reading or setting the liquid level in a flask or graduate, the official’s eye should be at the same level as the liquid surface.

Due to surface tension, the liquid surface is curved near the junction of glass and liquid. Therefore, when reading or setting the liquid level, the center of the liquid level is to be compared with the graduation marks. For clear liquids, the bottom of the liquid surface (which will appear to have some thickness) is matched to or compared with a graduation mark; for opaque liquids, the center of the top rim of the liquid surface is the point to be set or to which comparison is

1The minimum mark on the graduated neck of standard flasks currently in use for package checking does not extend to the MAV limits described in Table 2-9. Therefore, it may be necessary for the official to use smaller flasks in combination with a cylinder to determine a package volume directly, that is, by delivering the contents into volumetric containers (method 2 of this section).

2The water should be at the temperature of the product.

4-6
made. [See Figure 4-2.] Of course, the flasks should be read on a level surface. [A bubble level may be used to ascertain the level condition.]

d. Using the Flask and Thermometer

Normal expansion or contraction of the glassware is relatively small and may be ignored. However, the testing official must never expose the glassware to a direct source of heat, such as a flame.

The flask should be washed (with detergent if necessary) and rinsed with water between deliveries of liquid product from different packages. The flask must be wet with water (not with liquid from the package) and drained as described for a "wet-down" each time it is to be used.

Immerse the thermometer (see equipment section) only 76 mm (or 3 in) into the liquid product. Measure the product temperature immediately after weighing the flask and product.

Figure 4-2. Reading the liquid level on the neck of a flask.

In order to avoid opening all of the packages comprising the sample and because measurements of volume are generally less precise than measurements of weight, the preferred method (described in this section and in 4.5) is to determine the weight of the labeled volume. The weight of the labeled volume plus the net weight is the nominal gross weight, to be used when comparing the gross weight of each unopened package.

The procedure is divided into two sections. This section describes a check for the variability of the weight of a known volume to decide whether a weighing procedure is suitable. If a weighing procedure can be used, consult the next section (4.5) for a description of the use of a weight value for a known volume of product to determine package errors.

4-7
Section 2.10, gave the criteria for weighing packages not labeled by weight. Most common consumer products labeled by liquid volume (food, cosmetics, cleaning fluids, and over-the-counter drugs) weigh from about 0.05 lb per fl oz (0.8 g per mL) to about 0.07 lb per fl oz (1.1 g per mL). This permits the testing official to refer to a list of appropriate weighing devices to use to check these products and to skip the test that determines whether the scale can detect weights equivalent to MAV/6.

The measurement of the weight of a known volume can be combined with the determination of tare and, therefore, will not require more packages to be opened than the number designated in column 3 of Tables 2-2, page B-3, or 2-3, page B-5.

If the inspection lot is composed of packages from different production lots, they will have different lot symbols or codes on the package: it is extremely important to check the weight of a known volume from each production lot included in the sample. The official may find that inspection lots of packages labeled by liquid volume must be sorted according to the manufacturer’s lot code before sampling in order to check such packages by weighing.

Since many products labeled by liquid volume are packaged in glass containers, the official should become familiar with the alternative tare procedures of Section 2.11.4, as applied to liquids.

The general report form on page A-1 is designed for packages labeled by volume, length, count, etc. In addition, a two-page worksheet has been designed to lead the official through the entire procedure. The worksheets on pages A-5 and A-6 are referenced in the method below.

To minimize round-off error, carry along at least two extra decimal places in any calculation until the final weight of the labeled volume is obtained. See pages H-4, H-5, and H-6 for a completed example.

The general method for checking packages labeled by liquid volume starts with measuring the weight of a known volume of the product.

1. Fill out the report form heading (page A-1) and select the random sample and random tare sample according to the lot size and sampling plan. [See Table 2-5, page B-5 for Category B plans and Table 2-2, page B-3 for Category A plans.] Record the labeled volume in box 1 in terms of fluid ounces if labeled in inch-pound units.
Chapter 4

Refer to Table 4-1, page B-18, for the appropriate weighing device and Table 4-2, page B-19, for maximum units of measure. Record the unit of measure in box 2 on the report form.

2. Cross weigh individual packages in the tare sample. Record these weights on the worksheet (page A-3) in item 1. Select a flask one size smaller than the labeled volume and weigh the flask in the "set down" condition described in Section 4.3. Record in item 4 on the worksheet.

If the liquid product requires mixing for uniformity, this should be done before opening each package. If the product is of a type that effervesces or foams when opened or poured (such as beer or carbonated beverages), add two drops of a defoaming agent to the bottom of the weighed flask before pouring.

Open the first package selected for tare and fill the flask to the volume indication line.

3. Weigh the flask filled with product (recording this weight in item 3 on the worksheet). [See Figures 4-3.] Then, subtract the weight of the flask to obtain the weight of the product (item 5). Record the flask volume and product temperature for the first package in items 6 and 7 on the worksheet.

4. Empty, clean, and dry the package container. Weigh the package container and record this weight in item 2 of the worksheet.

If the weight of a given volume of liquid product is less than 0.05 lb per fl oz (0.1 g per mL) or if recommended weighing equipment is not available, the following procedure should be used in order to determine whether the scale is sensitive enough to detect individual package errors.

Calculate the weight of the volume that corresponds to MAV/6.

See worksheet for packages labeled by count (pages A-9 and A-10) for details in performing this calculation.

The weight of MAV/6 must be at least as large as 1/2 the size of the smallest division on any mechanical scale used to weigh the product (or as large as the smallest increment in the readout if a digital scale is being used).

If the weight difference is less than 1/2 the smallest scale division, all the packages will have to be opened and volumetric method A employed. [See Section 4.3.]

For example, packages labeled "1 quart" have a MAV of 8 fl dr (1 fl oz). The weight of the liquid is determined to be 0.770 lb for 16 fl oz, thus MAV/6 in weight units is:

\[
1 \text{ fl oz} \times 0.770 \text{ lb} = 0.008 \text{ lb}
\]

6
16 fl oz

In this example, assuming that the official has used a small-capacity equal-arm mechanical scale, MAV/6 is larger than the smallest scale division, so that the next step in the gravimetric procedure may be followed.

4-9
5. Clean the flask and repeat steps 2, 3, and 4 on the second package chosen for tare determination. Only two packages are used to determine the weight of the known volume. (Even if more than 2 packages are required to determine tare, do not weigh their liquid contents.) Record the weight of the liquid volume from the second package, the flask volume, and the product temperature in items 5, 6, and 7 on the worksheet.

6. Determine tare for the rest of the tare sample. [There are spaces provided on the worksheet for five packages.]

7. When using any given scale to weigh packages labeled by volume, the two values for the weight of a known volume should not differ by more than the amount given in Table 4-3 (page B-20).

If the weights of the two packages meet the above criterion, then the average of the weights of the labeled volume may be used in testing the packages comprising the sample and Section 4.5, may be followed. Fill in item 8 of the worksheet. Go on to step 8.

If the weights differ by more than the value given in Table 4-3, page B-20, then volumetric measurements must be made on all the packages in the sample following one of the procedures given in Section 4.6.

Example: Two packages are chosen from a sample of ten packages labeled "1/2 gallon" for determination of the tare and of the weight of a known volume. The weight of a 1-quart flask plus 32 fl oz of the packaged liquid from the first package is 3.050 lb. After subtracting the weight of the empty flask, the weight of 32 fl oz of the liquid is found to be 2.048 lb. If using a small capacity package testing scale, the weight of 32 fl oz of the liquid from the second package...
may not differ from 2.048 lb by more than 0.002 lb (that is, it may weigh from 2.046 to 2.050 lb) if a weighing procedure is to be employed.

After confirming that packages labeled by volume can be checked by weighing (as described in the previous section), the official should complete the checking procedure on the sample as described below. The following steps are intended to lead into Section 3.5., the CORE METHOD for packages labeled by weight.

8. Compute the average weight of the labeled volume of the product.

The average weight of the labeled volume =

\[
\text{average weight of labeled volume} = \frac{\text{average weight of known volume} \times \text{labeled volume}}{\text{known volume}}
\]

The average weight of the labeled volume may be obtained by first determining the average of the two values in item 5 on the worksheet. Record in item 9 on the worksheet. Then follow the instructions in item 10 on the worksheet.

9. In steps 4 and 6 of Section 4.4., the tare weights of the individual packages in the tare sample were determined. If additional tare sample packages are indicated (using the method of Section 2.11.4.), select, gross weight, open, clean, and weigh the containers. Average the tare weights determined from all opened containers (unless the entire sample has been opened). Record average tare weight in item 12 on the worksheet and box 13 on the report form. See a completed example on pages H-10, H-11, and H-12.

10. The average tare plus the weight of the labeled volume of the product is the "nominal gross weight". Record nominal gross weight in step 13 of the worksheet and in box 14 of the report form.

Items 14 and 15 of the worksheet provide space for recording package errors for the first five packages opened for tare. (Remember that a separate tare sample may be selected from the lot if there are enough packages. For example, if the sample size is 10 and tare sample is 2, 12 packages may be selected from the lot. Then, the package errors for the two packages opened for tare do not have to be compared. The nominal gross weight can be used to compare with the tare opened packages selected as the sample. This will save calculation time.)

11. Look up the MAV for the labeled volume in Table 2-9, pages B-11 and B-12 and record it in box 3 on the report form and item 16 on the worksheet. Convert the MAV in units of volume to units of weight:

\[
\text{MAV (weight)} = \text{MAV (volume)} \times \frac{\text{average weight of labeled volume}}{\text{labeled volume}}
\]

To convert, multiply the value recorded in item 16 on the worksheet by the value recorded in item 10 and divide by the labeled volume recorded in box 1 on the report form. Record this value in item 17 on the worksheet.

4-11
Convert the MAV to dimensionless units as described in item 18 on the worksheet and transfer this value to box 4 on the report form. With all measurements converted to weight and dimensionless units, determine package errors and lot conformance for unopened packages by following the CORE METHOD in Section 3.5., step 6 onward.

Convert the average error back to units of volume following the arithmetic in item 19 on the worksheet when completing the report form.

4.6. Other Methods of Liquid Volume Measurement

If the packaged product fails either criterion in Section 4.4. (step 1 footnote or step 7), the official should use one of the methods of liquid volume measurement described in this section.

All three of these methods of determining an individual package error require opening all sample packages. After the errors have been determined for all packages, the CORE METHOD in Section 3.5. (step 7 onward) is followed to determine conformance of the lot with the package requirements.

Method A is used if the scale cannot detect differences in weight equivalent to MAV/6 and may be used as an alternative to any other fluid measurement given here.

Method B is suitable for liquids that are homogeneous.

Method C is suitable for liquids that are not homogeneous, but may also be used for homogeneous liquids.

4.6.1. Method A: Determining the Volume at the Liquid Level of Fill (Depth Gage Method)

When the test in step 1, footnote, Section 4.4., indicates that the scale is not sensitive enough to detect individual package errors, the following method must be used. It is a laboratory procedure.

In order to determine the volume of liquid in each package in the sample, the level of fill of each package is duplicated with water (from pipets and a buret).

a. Equipment

- Micrometer depth gage (ends of rods fully rounded) 0.9 in or 0.225 mm.
- Bubble level at least 10 in or 25 cm in length.
- Laboratory pipets and/or buret.
- Burets meeting type 1, style 1, class A, Fed Spec N9N-B-782.

The rods will have to be custom ground.
b. Procedure

1. If following this section after Section 4.4, select one or more packages to replace the package(s) opened in Section 4.4. If this is the method of choice, select a random sample. Fill out the report form heading (page A-1).

2. Open the first package in the sample on a level surface. Use the depth gage to determine the level of fill of the package before product is removed.

 Record the depth gage reading on a worksheet.

3. Empty, clean, and dry the package container.

4. Duplicate the level of fill determined in step 2 above with distilled water delivered from pipets or buret. Record the resulting water volume as the packaged goods volume on the worksheet.

5. Subtract the labeled volume from the actual package volume (recorded in step 4) to arrive at the individual package error. Record the package error on the worksheet and convert it to dimensionless units in order to transfer to the report form.

6. Repeat steps 2 through 5 for each package in the sample. Follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

4.6.2. Method B: Measuring the Weight of a Known Volume for Every Package

The following method is suitable for liquids that are homogeneous (or can be mixed until they are homogeneous) and do not separate quickly. Taking advantage of product homogeneity within the container, this method uses the weight of a known volume to calculate the weight of the labeled volume for each package. Since weighing is used to determine errors in volume, the scale must be capable of distinguishing volumes equivalent to MAV/6. [See Section 4.4., step 1, footnote.]

Equipment is the same as that listed in Section 4.2.

a. Summary

Section 4.4. describes the determination of the weight of a known volume of product from two packages. When the range of weights from two packages exceeds the Table 4-3 value, the method of Sections 4.4. and 4.5. may still be used as long as the weight of a known volume is determined for each and every package in the sample.

4-13
The net weight of each container is measured. The weight per unit volume of each container is measured, as well. The net weight of each container is multiplied by its weight per unit volume to calculate the contained volume.

b. Procedure

The numbered steps follow step 7 in Section 4.4.

8. Compute the weight of the labeled volume for the first package opened from the tare sample.

The weight of the labeled volume for package 1 =

\[
\text{weight of known volume (from package 1) x labeled volume}
\]

\[
\text{known volume}
\]

Record this weight on a worksheet. Repeat this calculation to obtain the weight of the labeled volume for the second package from the tare sample. Record this weight on the worksheet. Do not average the weights of the labeled volumes for the two packages.

9. Subtract the sum of the actual tare weight plus the weight of the labeled volume computed in step 8 (above) from the package gross weight to arrive at the individual package errors (in terms of weight) for the first two packages opened for tare in Section 4.4.

Package error (in units of weight) =

(gross weight) - (tare weight + weight of labeled volume)

The package error in units of weight should be recorded on a worksheet.

Calculate the package error in units of volume:

Package error (in units of volume) =

\[
\text{package error (in units of weight) x labeled volume}
\]

\[
\text{weight of labeled volume}
\]

For example, the tare weight of package 1 is 0.075 lb and the weight of the labeled volume (32 fl oz) for package 1 is 2.156 lb. The gross weight of package 1 is 2.245 lb. The package error in units of weight is therefore: (2.245 lb) - (0.075 lb + 2.156 lb) = +0.014 lb. In units of volume, the package error is (+0.014 lb) x (32 fl oz)/2.156 lb = +0.21 0 oz.

10. Gross weight the remaining packages in the sample. [Only the tare sample packages were weighed in Section 4.4.]
11. Determine the weight of a known volume for each package in the sample. [See steps 2 and 3 of Section 4.4.]

12. Clean, dry, and weigh each package container (to determine each tare weight).

13. Repeat steps 8 and 9 above for each package in the sample.

14. Transfer package errors to the standard pack report form on page A-1 (using an appropriate unit of measure in terms of volume). Follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

4.6.3, Method C: Measuring the Volume Delivered from the Package

The product does not have to be homogeneous to use this method, but the product should be mixed before opening even if its components separate quickly. Oil and vinegar salad dressings are good examples of the type of product for which this method can be used. Unlike Method B, this method uses the weight of a known volume only to calculate the volume remaining in an emptied container so that any inhomogeneity of the product will not greatly affect the calculated net contents.

In steps 3 and 5 of Section 4.4., the weight of a known volume of liquid is determined for each of two packages in the sample. When it is found in step 7 that these weights differ too much from each other, the following method may be followed to determine package errors.

It is possible to use an average weight of a known volume to determine the amount of liquid remaining in a package after delivery of the main body of liquid to a volumetric flask(s) as long as the two weights determined in steps 3 and 5 of Section 4.4. do not differ by more than 5%. [See calculation in step 8 below.] For example, if the weights of 8 fl oz of product were determined to be 0.409 lb for the first package and 0.484 lb for the second package, the difference, 0.072 lb, is less than 5% of the average weight, 0.493 lb. Therefore, 0.493 lb for 8 fl oz may be used to calculate the liquid volume remaining in the packages.

If the weights determined in steps 3 and 5 of Section 4.4. differ by more than 5%, a method such as 4.6.2., Method B must be used. This method will require both the determination of the weight of a known volume and a direct measurement of product volume delivered from the package for every package. [In this instance, the results of steps 3 and 5 of Section 4.4. may be used only for the weights of a known volume for the first two packages opened for tare. The weight of a known volume will have to be determined for each package in the sample.]

The equipment is the same as that listed in Section 4.2.
a. Summary

The contents are emptied into a flask and measured volumetrically. The volume of product remaining in the emptied container is obtained by determining the weight difference between the wet container and the container after drying. This weight is converted to volume:

\[\frac{\text{wet container} - \text{dried container weight}}{\text{weight of known volume}} \times \text{known volume} \]

This resultant volume is then added to the volume of product delivered from the package to obtain the total product volume.

b. Procedure

The numbered steps below follow step 7 in Section 4.4.

8. Calculate the average weight of the labeled volume as described in step 8 of Section 4.5. Divide the difference in weights for the first two package volumes by the average weight of the labeled volume. If this ratio is 0.05 or smaller, use the average weight of the labeled volume to compute the amount of liquid remaining in the package in step 13. If the ratio is greater than 0.05, separate values for the weight of a given volume must be determined for each package in the sample to be used in step 13.

9. Returning to the first package opened in step 2, Section 4.4, deliver the rest of the package contents into graduated flask(s) and/or a graduate and record the total delivered volume on a worksheet.

The volume of product still left in the package must now be determined.

10. Weigh the empty (but wet) package container.

11. Clean, dry, and weigh the package container.

12. Record the difference in weight between wet and dried tare on the worksheet.

13. Calculate the volume of liquid left in the package. If the ratio calculated in step 8 above is 0.05 or smaller, the remaining volume of liquid in the package is calculated to be:

\[\frac{\text{weight difference (step 12)} \times \text{labeled volume}}{\text{average weight of labeled volume (step 8)}} \]
If the ratio is greater than 0.05 in step 8, the remaining volume of liquid is:

\[
\text{weight difference (step 12) x labeled volume} \quad \text{weight of labeled volume for each package}
\]

(Or Method B, Section 4.6.2., may be followed.)

Record remaining volume in the package on the worksheet.

14. Add the volume remaining in the package as determined in step 13 to the volume poured from the package (determined in step 9 and recorded on the worksheet) to arrive at the total volume.

\[
\text{Total product volume} = \text{volume delivered into flasks or graduates} + \text{volume remaining in package}
\]

15. Subtract the labeled volume from the total package volume determined in step 14 to arrive at the individual package error.

\[
\text{Package error (units of volume)} = (\text{total product volume}) - (\text{labeled volume}).
\]

Record package error on the worksheet and in the crosshatched area of the report form (identifying an appropriate unit of measure in box 2).

16. Repeat steps 9 through 15 above for the second package opened. If the ratio calculated in step 8 is 0.05 or smaller, the average weight of the labeled volume may be used (already calculated in step 8).

If the ratio calculated in step 8 is greater than 0.05, the weight of a known volume of product from this package would already have been determined in Step 5 of Section 4.4. This weight of a known volume can be used in step 13 above for this package only.

17. If the ratio calculated in step 8 is 0.05 or smaller, open each package in the sample, deliver its contents into flask(s) and a graduate as described in step 9 above, and repeat steps 10 through 15 using the average weight of the labeled volume already determined in step 8. Repeat for every package in the sample.

If the ratio calculated in step 8 above is greater than 0.05, determine the weight of a known volume as described in Section 4.4, for each of the remaining packages in the sample following each determination with steps 9 through 15 above.

4-17
After package errors for sample have been determined, follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

c. **Example**

From a sample labeled "40 fl oz" the first package was opened and part of the product was poured into a 1 qt flask to the 1 qt mark.

The remaining product was then poured into a 1/2 pt flask and was found to fill the flask to 1/2 fl dr below the 8 fl oz mark.

Therefore, the volume delivered from the package is:

\[
\begin{align*}
&= 32 \text{ fl oz} + 8 \text{ fl oz} - 1/16 \text{ fl oz} \\
&= 39.9375 \text{ fl oz} \text{ delivered.}
\end{align*}
\]

The weight of the wet package container is 1.012 lb and after air drying, 1.000 lb. According to procedures followed in steps 3 and 5 of Section 4.4, it was found for the two tare sample packages that 32 fl oz weighs 2.123 lb (average weight).

Thus,

\[
(1.012 \text{ lb} - 1.000 \text{ lb}) \times 32 \text{ fl oz} = 0.18 \text{ fl oz.}
\]

\[
2.123 \text{ lb}
\]

This is the volume of product remaining in the package.

Therefore, the total product volume is:

\[
39.94 \text{ fl oz} + 0.18 \text{ fl oz} = 40.12 \text{ fl oz.}
\]

The package error is:

\[
40.12 \text{ fl oz} - 40.00 \text{ fl oz} = +0.12 \text{ fl oz.}
\]

4.6.4. Method D: Determining the Net Contents of Compressed Gas in Cylinders

See page 4-46.

4.7. Milk

Because of the homogeneity of milk within a production lot, some steps in Section 4.4, are eliminated if the inspector is careful to define the inspection lot as that product from a single production lot code.

Equipment is the same as described in Section 4.2, except that the selected flask may be equal in volume to that declared on the milk container.
4.7.1. Summary

Sections 4.4. and 4.5. are followed except:

a. In step 2 of Section 4.4., if product delivered from the first container does not fill the flask to a graduation line, milk from a second package may be added to bring the liquid level up to the graduation.

b. Steps 5, 6, and 7 of Section 4.4. may be skipped. As a result, only one package is used to determine the weight of the labeled volume of the product in step 8 of Section 4.5.

4.7.2. Procedure

The method is as follows. Deviations from Sections 4.4. and 4.5. are underlined.

1. Fill out report form heading (page A-1) and define the inspection lot as packages with a single lot code. Record the labeled net contents (box 1), unit of measure (box 2), the lot size (box 5), sample size (box 6), tare sample size (box 7), and allowed number of unreasonable errors (box 8). (For Category A, see page B-5; Category B, page B-5.) Select the random sample and random tare sample.

2. Keep temperature of tare sample and flasks as close as possible to 40 °F. Gross weigh tare sample packages and record on worksheet in item 1 (page A-5). Select flask of same size as labeled volume. Wet down flask. Weigh flask and record weight on worksheet (item 4).

Open first tare sample package and fill flask to the flask volume indicator line. Open second package and add milk if there is insufficient milk in the flask to fill to the line.

3. Weigh flask and milk and record weight in item 3 of worksheet. Subtract flask weight to determine the weight of the milk; record in item 5 of the worksheet. Take temperature of milk in flask. Record flask volume and temperature in items 6 and 7 on worksheet.

4. Empty tare sample packages, clean and dry the containers. Weigh containers and record in item 2 of worksheet.

5. Skip item 8 on the worksheet. Items 9 and 10 (assuming that the flask volume equals package labeled volume) are the same value as recorded in item 5. Compute the average tare weight for the tare sample (individual weights recorded in item 2) and record in item 12 on the worksheet and in box 13 on the report form.

6. Compute the nominal gross weight by adding the average tare weight (item 12) to the weight of the labeled volume (item 5). Record in item 13 on the worksheet.
7. Compute the package errors for the tare sample packages.
 Package error = gross weight for each package - nominal gross weight
 On the worksheet: item 14 = item 1 - item 13

8. Convert package errors to weight units to dimensionless units.
 On the worksheet:
 item 15 = item 14 / unit of measure (box 2 of report form)
 Record package errors in tare sample on report form.

9. Find the MAV in Table 2-5, page B-11 or B-12 and record it in box 3 on
 the report form. Convert MAV from units of volume to units of weight
 as described on the worksheet in item 17.

10. Convert the MAV to dimensionless units as described on the worksheet in
 item 18.

11. Compare unopened sample packages with the nominal gross weight as
 described in the CORUS METHOD, Section 3.5., step 6 onward, and
 determine lot conformance.

12. Convert average package errors back to units of volume as described in
 item 19 on the worksheet.
 Record this value in box 19 of the report form.

4.8. Mayonnaise and Salad Dressing

 The following method is also suitable for other water-immiscible products without a level
 liquid surface. This method is provided for mayonnaise and salad dressing because the
 volume of such products is changed by scooping or stirring the product.

 The method determines the amount of airspace above the product in the package, and
 then the total container volume. Subtracting the airspace volume from the total container
 volume gives the product volume. Every package in the sample must be opened.

4.8.1. Equipment

 Volumetric measures recommended in Section 4.2.

 Plastic disks (to be used with the procedure of fill described in Section 4.14.)

4.8.2. Procedure

1. Fill out the report form heading and select a random sample. A random
 tare sample is not needed.

2. Open the first package and place a disk larger than the package container
 opening over the opening. Deliver water from a graduate through the
central hole in the disk onto the top of the product until the container is filled (as described in step 3 of Section 4.14.2. on the use of the plastic disks). Record the volume of water as “headspace” on a worksheet.

3. Empty, clean, and dry the package container.

4. With the disk over the opening, fill the package container with water from flask(s) and graduate(s). Record the amount of water as “container volume” on the worksheet.

5. Subtract the volume recorded in step 2 from the volume recorded in step 4. This is the volume of product in this individual package.

6. Subtract the labeled volume from the package volume determined in step 5 to arrive at the individual package error in units of volume. Record package error in the crosshatched area of the report form using an appropriate unit of measure in box 2.

7. Repeat steps 2 through 6 for the remaining packages in the sample.

Follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

4.9. Paint, Varnish, and Lacquers - Nonaerosol

This section describes three different test methods that may be employed depending upon the required degree of accuracy and the location of the check. The procedures are: a field auditing method, usually conducted on the premises of the retailer; an in-plant auditing method; and a “possible violation” method which is designed for laboratory or in-plant use because of clean-up and product collection requirements.

Although the procedures are suitable for use with products labeled by volume and packaged in cylindrical containers with separate lids which can be resealed, the various steps have been set forth using paint as the example. A worksheet for audit of possible violation (page A-7) is also included.

4.9.1. Equipment

Scales and weights recommended in Section 3.1.

Volumetric measures recommended in Section 4.2.

Micrometer depth gage (ends of rods fully rounded), 0 to 9 in (0 to 225 mm).

Diameter tape measure, 2 to 12 in or 5 to 30 cm.

Spanning bar, 1 by 1 by 12 in or 2.5 by 2.5 by 30 cm.

Paint solvent or other solvent suitable for the product being tested.

Rule, 12 in or 30 cm.

Cloth, 12 in or 25 cm square.
Wood, 1 in or 25 cm long, 2- by 6-in.
Rubber mallet.
Circular metal disc, 1/4 in or 0.65 cm thick and slightly smaller than the diameter of package container bottom.
Rubber spatula.
Bubble level.
Optional: Micrometer.

4.9.2. Field Auditing Procedure

The following procedure is suitable only for use in checking products put up in cylindrical containers up to 1 gal or 4 L in capacity. Step 3a can be used with any sized containers and 2b with 1-gallon or 4-L containers only. The method determines by calculation the volume of a single can in the sample, selected as most likely to contain the smallest volume of product. It does not require emptying any containers, only measuring critical dimensions of the container.

The configuration of the bottom of the can, pair clinging to the lid, and slight variations in the wall and label thicknesses of the paint container may produce an uncertainty estimated to be at least ±0.6 percent in this auditing procedure. This method is therefore recommended solely to eliminate from more rigorous testing those packaged products that appear to be full measure. Section 4.9.4. is recommended when the volume determined in step 9 of this section is less than the labeled volume or in any case where short measure is suspected.

1. Fill out the report form heading and select a random sample. A true sample is not needed.
2. a. Any container up to 1 gal or 4 L:

 Measure the outside diameter of each container near its middle (as shown in Figure 4-4) to the closest 0.001 in. (or 0.02 mm), using a direct reading diameter tape measure. Record readings in column 3 of the Worksheet for Checking Paint (page A-7) in the audit section.

 Set the containers on a level surface and record their height on the worksheet under column 1 in the audit section. If the range of outside diameters exceeds 0.005 in. (or 0.125 mm) or the range in heights exceeds 0.060 in. (or 1.58 mm), this procedure cannot be used. If the ranges are within the specified limits, open all cans in the sample and select the container with the greatest headspace as determined by visual inspection or with the use of the micrometer depth gage. Replace all lids except that of the selected container and remove the lid by placing a cloth and then a section of wood on lid and hammering on the wood with a rubber mallet. Tip the case upside down momentarily to complete the resealing operation. Continue with step 3 below.
2. b. 1-gal or 4-L cans:

This test is appropriate when the weight of the paint is much greater than the weight of the can and, therefore, is applicable for 1-gal or 4-L sizes only.

Gross weigh each package in the sample. Select the package from the sample with the lightest gross weight. Carefully remove the lid of this can.

3. Measure the outside diameter of the selected container near its top, middle (already measured if step 2a was followed), and bottom, to the closest 0.001 in (or 0.02 mm), using a direct reading diameter tape measure. Record these measurements in columns 2, 3, and 4 on the paint worksheet in the audit section.

Sum the three diameter values and divide by three to obtain the average diameter. Record the average diameter in column 5 of the paint worksheet.

4. If a micrometer is available, measure the wall and the paper label thickness of the container; otherwise, assume the wall and label thicknesses given in Table 4-4, page B-21.

Subtract twice the wall and paper label (if any) thickness from the average can diameter (step 3) to obtain the average liquid diameter. Record the liquid diameter in column 6 of the paint worksheet.

5. On a level working surface, place the container of paint on the circular metal disc slightly smaller in diameter than the bottom rim of the can so
the bottom of the container rests on the disc as shown in Figure 4-5. This eliminates the "sag" in the base of the paint container.

6. Place the spanning bar and depth gage across the top of the paint can as shown in Figure 4-5.

```
DEPTH GAGE
SPANNING BAR
LIQUID LEVEL
PAINT CAN
BOTTOM DISC
```

Figure 4-5. Measuring the distance to the liquid level.

Mark the location of spanning bar on rim of paint container. Measure the distance to the liquid level to the nearest 0.001 in (or 0.02 mm) at three points in a straight line, at points approximately 3/8 in from the inner rim for cans 5 in dia. diameter or less (1/2 in from the rim for can diameters exceeding 5 in), and at the center of the can as shown in Figure 4-6. If working in metric units, measure at 1 cm from the rim for cans with diameters of 15 cm or less and 1.5 cm from the rim for can diameters exceeding 15 cm. Sum the three readings and divide by three to obtain the average distance to the liquid level in the container. Record the average distance to the liquid level in column 7 of the audit section on the paint worksheet.

7. Measure the distance to the bottom of the container (Figure 4-7) at three points in a straight line in the same manner as outlined in step 6. Sum the three readings and divide by three to obtain the average height of the container and record 2 in column 8 of the paint worksheet in the audit section.

4-24
8. Subtract the average distance to the liquid level (column 7 of the worksheet) from the average height of the container (column 8) to obtain the average height of the liquid column and record it in column 9 of the paint worksheet.

9. Determine the volume of paint in the container by using the following formula:

\[
\text{Volume} = 0.7854 \times D^2 H
\]

Where \(D \) = average liquid diameter (column 6 of the worksheet) and \(H \) = average liquid height (column 9)

Record this volume in column 10 of the paint worksheet.

If this calculated volume is less than the labeled volume, go on to Section 4.9.4.

4.9.3 In-Plant Auditing Procedure

This method is applied to a container that is likely to contain the smallest volume of product. The level of fill is duplicated with water in a can of the same dimensions as the one under test. The method can be used to check any size of package provided that the liquid level is within 9 inches of the top of the container.
Follow steps 1 through 5 of Section 4.9.2. If any paint is found clinging to the side walls or lid, carefully scrape the paint into the container with a rubber spatula.

Figure 4-7. Measuring the distance to the bottom of a container.

6. Place the spanning bar and depth gage across the top of the paint can. Measure the liquid level at the center of the surface and record the level in the audit section of the paint worksheet in column 7. [See page A-6.]

7. Select an empty can with the same bottom configuration as, and with diameter and height within ±0.001 in (or ±0.025 mm) for 1-pt (or 500 mL) cans, ±0.002 in (or ±0.05 mm) for 1-qt (or 1-L) cans, ±0.003 in (or ±0.075 mm) for 1/2-gal (or 2-L) cans, and ±0.004 in (or ±0.1 mm) for 1-gal (or 4-L) cans, of the container under test. Set the empty can on a level work surface with a circular metal disc slightly smaller in diameter than the bottom can rim underneath the can to eliminate sag. [See Figure 4-5.] Set up spanning bar and depth gage as in step 6 above. Fill the container with water from a volumetric measure of the same volume as the labeled volume. Measure the distance to the liquid level at the center of the container and record this level in column 7 below the reading recorded in step 6. If this distance is equal to or greater than the distance determined in step 6, assume that the package is satisfactory. If the distance is less than the distance determined in step 6, short measure may be suspected. Use the possible violation procedure given in the next section when short measure is suspected.

4-26
4.9.4. Possible Violation Procedure

The following method may be used provided that the liquid level is within 9 inches of the top of the container. The steps noted with an (a) are required if paint is found adhering to the lid and cannot be removed by scraping into the can.

It may be necessary to use the alternative procedure of Section 2.114., although the following steps do not specifically include that technique.

1. Fill out the standard pack report form (page A-1), select the random sample and random tare sample.

2. Do not shake or invert the container selected as the sample. Determine the gross weight of these packages and record in the lower section of the paint worksheet headed "Possible Violation" (page A-7). Also record the labeled volume in column 1 of this worksheet. Select first tare sample package. Use circular metal disc to eliminate any sag as shown in Figure 4-3 and described in step 5, Section 4.9.2. Remove the lid. If paint is clinging to the side walls, scrape it down into the can with the spatula.

2a. If paint adhering to the lid cannot be removed completely by scraping the paint into the can, determine the weight of the lid plus any adhering paint. Clean the lid of paint with solvent and weigh again. Subtract the clean lid weight from the lid weight with paint to determine the weight of the paint adhering to the lid. Record this weight in column 3 of the paint worksheet.

3. Place the spanning bar and depth gage across the top of the paint can. Mark the location of the spanning bar on the rim of the paint container. Measure the distance to the liquid level at the center of the container to the nearest 0.001 in (0.02 mm). Record the distance in column 4 of the paint worksheet.

4. Empty and clean the sample container and lid with a suitable solvent; dry and weigh the container and lid. Record the tare weight in column 5.

5. Set up the container in the same manner as in step 2 above.

6. Place the spanning bar at the same location on the rim of the paint container as marked in step 3. With the depth gage set as described in step 3, deliver water into the container in known amounts until the water reaches the same level occupied by the paint as indicated by the depth gage. Record this volume of water (in fl oz or mL) in column 6 of the paint worksheet. This is the volume occupied by the paint in the container. Follow steps 7a, 8a, and 9a if paint could not be removed from the lid by scraping. In order to determine whether weighing can be used to test the other packages in the sample, follow only steps 7, 8, and 9 when no paint adheres to the lid.

7. Subtract the weight of the container (column 5) from the gross weight (column 2) to arrive at the net weight of paint in the selected container. Record the net weight in column 7 on the paint worksheet.

4-27
7a. Subtract the weight of the container (column 5) and the weight of product on the lid (column 3) from the gross weight (column 2) to arrive at the net weight of paint in the container. Record in column 7.

8. Calculate the weight of the labeled volume of paint (for the first package opened for tare) =
\[
\text{net weight (col. 7) x labeled volume (col. 1)} \\
\text{volume of paint in can (col. 6)}
\]
Record this value in column 8 of the worksheet.

8a. Calculate the package volume =
\[
\text{volume in can (col. 6)} + \\
\text{lid paint weight (col. 3) x can volume (col. 6)} \\
\text{net weight (col. 7)}
\]
Record it in column 9 of the worksheet.

9. Calculate the package error.

\[
\text{Package error - (column 6 value) - (labeled volume)}
\]

9a. Package error = (column 9 value) - (labeled volume)

10. Repeat steps 2 through 9a (above) for the second package chosen for tare.

In order to use weighing to check the sample, the weights of the labeled volume for the first two packages (recorded in column 8) should not differ from each other by more than the value given in Table 4-3 (page B-20). If this criterion is met, the rest of the sample may be checked by weighing. The nominal gross weight is equal to the sum of the average weight of the labeled volume (average of values recorded in column 8) plus the average tare (average of values recorded in column 3). Go to step 6 of the CORE METHOD described in Section 3.5, to complete the test.

It should be noted that the weight of a given volume of paint often varies considerably from container to container; therefore, volumetric measurements may prove necessary for the entire sample. In such instances, the criterion of Table 4-3 will not be met and every package in the sample must be opened. Follow steps 2 through 9a but skip steps 7, 8, and 9, if paint is adhering to the lid. Follow steps 2 through 6, and then step 9, if paint is not adhering to the lid.

When package errors have been determined in this manner, go to Steps 7-11 of Section 3.5, (CORE METHOD) to determine lot conformance.
4.10. Very Viscous Materials

The following method can be used for any package labeled by volume, but is especially suitable for very viscous materials such as cartridge-packed caulking compounds, glues, pastes, and the like, often packed in tubes. This is most suitable as a laboratory procedure using a hood to ventilate solvent fumes, if necessary. If used in the field, a well-ventilated area should be chosen to conduct the test if solvents other than soap and water must be used.

Except for the special measurement procedures to determine the weight of the labeled volume, this procedure follows Sections 4.4. and 4.5. for standard pack liquids labeled by volume. For each weight of a known volume determination, a portion of the packaged product is packed into a preweighed cup of known volume (called a density cup or pycnometer) and weighed. From the weight of the known volume, the weight of the labeled volume can be determined. This weight (plus the tare) can then be compared with the actual net weight to determine the package error.

4.10.1. Equipment

Small-capacity scale and weights recommended in Section 3.1.

Pycnometer, a vessel of known volume for weighing semifluids. The pycnometer can be purchased or constructed. If constructed, it will be referred to as a "density cup".

![Figure 4-8. Empty density cup and slicker plate.](image)

To make a 150-ml or 5-fl oz density cup, cut off the lip of a 150-ml beaker with an abrasive saw and grind the lip flat on a lap wheel. [See Figure 4-8.] The slicker plate can be purchased commercially.

1Based on a method devised by Mr. James Little, NBS.

4-29
Appropriate solvents (water, Stoddard solvent, kerosene, alcohol, etc.).
Caulking gun (for cartridge-packed products).

4.10.2. Preparation for Test

Weigh and calibrate pycnometer or the complete density cup unit (cup and slicker plate) with respect to volume (mL or fl oz) prior to use. Calibrate the density cup gravimetrically with respect to the contained volume using the procedure given in NBS IR 74-461, "The Calibration of Small Volumetric Glassware". Special instructions furnished by the manufacturer may be necessary in order to calibrate a pycnometer not already calibrated. It is not necessary to reweigh or recalibrate for each test; however, the pieces of each unit should be marked to prevent interchange of cups and slicker plates.

4.10.3. Procedure

1. Determine inspection lot, fill out the report form heading (page A-1) and select the random sample and tare sample.
2. Weigh a calibrated pycnometer or density cup and slicker plate and record on the worksheet on pages A-5 and A-6 as "pycnometer weight" or "cup and plate weight" in place of "flask weight" in item 4. Also record the pycnometer or cup volume (item 6 on this worksheet).
3. Gross weigh and then open the first package in the sample. Record the package gross weight on the worksheet in item 1. Transfer the product to the pycnometer or density cup, filling the pycnometer or cup to excess. Use a caulking gun for transferring product from caulking cartridges. Remove the product as completely as possible from the package container, clean package container with solvent, dry and weigh it. [Record this weight as "tare weight" in item 2 on the worksheet.]
4. If pycnometer is used, cover with lid and screw cap down tightly. Excess material will be forced out through hole in lid. Clean exterior surfaces.

If using density cup, place the slicker plate over 3/4 of the cup mouth (see Figure 4-9), press down, and slowly move the plate across the remainder of the opening. With the slicker plate kept in place, clean all exterior surfaces with solvent and dry them.
5. Weigh filled pycnometer or filled density cup with slicker plate to at least the nearest 0.002 pound or nearest gram. Record this weight in item 3 on the worksheet. Subtract the weight of the empty pycnometer or cup and plate (item 4 on worksheet) from the filled weight to arrive at the weight of the product contained in the pycnometer or density cup. Record this weight on the worksheet in item 5.
6. Clean the pycnometer or density cup and repeat steps 3, 4, and 5 for the second package in the tare sample.

If the weights recorded in item 5 on the worksheet differ from each other by more than the value in Table 4-3, page B-20, then all the packages
will have to be opened to determine their package errors. Go to step 8 in this event.

![Figure 4-9. Density cup filled with product.](image)

7. Calculate the weight of product corresponding to the labeled volume of product =

\[
\text{Product weight in cup} \times \text{labeled volume} \div \text{density cup volume}
\]

If using pycnometer, substitute product weight in pycnometer and pycnometer volume in above equation. [See items 9 and 10 on the worksheet.] Continue to follow the instructions on the worksheet to determine lot conformance.

8. If an average weight of the labeled volume cannot be used to determine the nominal gross weight, that is, if the "yes" box is checked in item 8 on the worksheet, the gross weight of each package minus its tare weight is the actual weight of product in each individual package being measured. Record this as the "net weight" on another worksheet. Subtract the weight of the labeled volume (determined for each package as given in Step 7) from the net weight of product to arrive at each individual package error in units of weight.

Convert the package errors to units of volume.

Package error (volume) =

\[
\text{Package error (weight) \times cup volume} \div \text{weight of product in cup}
\]

[If using pycnometer, substitute pycnometer volume for cup volume and weight of product in pycnometer for weight of product in cup in above equation.]

Record the package errors on the standard pack report form on page A-1 using an appropriate unit of measure.
Follow Steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

4.11. Peat Moss

Peat and peat moss are labeled by weight, by "compressed volume," and by volume.

4.11.1. Compressed Volume

Compressed volume can be estimated by measuring the dimensions of the compressed material or can be determined by submerging the package in water. The latter method will require:

1. sealing the package to make it watertight;
2. building a container with overflow spout large enough to contain the package. (See Section 4.15. for a small-volume displacement container.)

4.11.2. Volume After Sieving

The following method is for use in testing the volume declaration, including the volume that can be recovered from the compressed state. ASTM D 2978-71, "Standard Method of Test for Volume of Peat Materials," is the reference standard for the procedure.

Every package in the sample is opened.

This method is suitable for particulate solids (such as soils or other garden materials) labeled in cubic dimensions or dry volume. Some materials may not pass through the sieve specified below for peat moss; in these instances, separate the materials by hand (to compensate for packing and settling of the product after packaging) before filling the test measure (see step 2 below).

4.11.3. Equipment

12.5-mm (or 1/2-in) sieve.

Wooden or metal container, with inside dimensions of 12 by 12 by 12 in marked off in 1-in horizontal lines on the inside (1-cu ft container) or of 50 by 50 by 40 cm marked off in 5-cm horizontal lines (0.1-m) container. This container is not commercially available, but has to be constructed.

Straight edge, 20 in (50 cm) in length.

Sheet for catching overflow of material.

Bubble level.

4.11.4. Procedure

1. Determine inspection lot, fill out the report form heading, and select the random sample. No tare sample is needed.
2. Open each package in turn, removing the contents and passing them through the sieve directly into the measuring container (overfilling it). Shake the measuring container with a rotary motion at one rotation per second for 5 seconds. Do not lift the measuring container when rotating it. If package contents are greater than the measuring container capacity, level the measuring container with a straight edge using a zig-zag motion across the lip of the container. Empty the container. Repeat the filling operation as many times as necessary, noting the partial fill of the container for the last quantity delivered using the interior horizontal markings as a guide. Record the amount of material on a worksheet.1

3. Compute each package error (= actual measurement minus the labeled measurement) and record it on the worksheet. Transfer the package errors to the report form using an appropriate unit of measure in box 2 of the report form. Follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

4.12. Mulch

Mulch is defined in the Uniform Regulation for the Method of Sale of Commodities2 as Any product or material except peat or peat moss [see Section 2.4.] that is advertised, offered for sale, or sold for primary use as a horticultural, above-ground dressing; for decoration, moisture control, weed control, erosion control, temperature control, or other similar purposes.3

4.12.1. Equipment

Construct a test measure using materials (for example, 1/2-inch plywood) that will not bulge when filled with mulch. Interior dimensions should be 9 inches by 16 inches by 48 inches high, with 2 opposite inside walls of the measure scribed or scribed at 1/2-inch intervals. Other interior dimensions are acceptable as long as the test measure approximates the configuration of the package under test (e.g., 12- by 12-inch cross section). Test measure height may also be reduced from 48 inches, but this will restrict the maximum size of package that can be tested. A lexan or plexiglass side wall is useful for determining the level of fill, but may need to be reinforced.

Each half inch of depth of the test measure is equivalent to 72 cubic inches of volume in the 9- by 16-in or 12- by 12-in configurations.

1Use conversion factors (such as "Factors for High Precision Conversion", NBS Letter Circular 1071, July 1976) to convert from cubic measure to dry volume, if necessary.

2NBS Handbook 130, "Uniform Laws and Regulations," revised and printed each year by the U.S. government Printing Office.

3The use of brand names does not constitute an endorsement of the product.

4-33
4.12.2. Procedure

1. Determine inspection lot, fill out report form heading, and select the random sample. No tare sample is needed. A special MAV of 5% of the declared volume is applied for salvage.

2. Open each package in turn. Empty contents of package into test measure and level the contents by hand. Do not rock, shake, drop, or tamp the test measure. Read the horizontal marks to determine package net volume.

Record each package error.

\[\text{Package error} = (\text{package net volume}) - (\text{labeled volume}) \]

3. After package errors for the entire sample have been recorded, follow steps 7-11 of the CORE METHOD in Section 3.5. to determine lot conformance.

NOTE: Some types of mulch are susceptible to clumping and compaction. Steps should be taken to ensure that the material is loose and free flowing when poured into the test measure. Gently rolling the bag before opening may reduce the compaction of material; using your hands to sift the material as it pours into the measure may also reduce clumping.

4.13. Solids or Semisolids

The following procedure can only be used to test packaged products that are solid or semisolid and that will not dissolve in, mix with, absorb, or be absorbed by the fluid into which the product will be immersed. For example, frozen desserts labeled by liquid volume may be tested using kerosene or ice water as the immersion fluid.

Every package must be opened. The product is removed from its package and completely submerged in water or other fluid in a container. The volume of the product may be determined either (a) by noting the difference in volume registered by comparison with graduated markings on the container or (b) by measuring the volume of water or fluid overflowing from a container previously filled to overflow capacity.

4.13.1. Equipment

Either of the following:

- Graduate or volumetric flask of capacity larger than the labeled volume of package being tested.

- Container with overflow spout of physical dimensions large enough to contain commodity, plus graduate or volumetric flask equivalent to labeled volume.

Thin wire.
Water or other fluid that will not dissolve or mix with package contents.

Bubble level.

4.13.2. Procedure

1. Determine inspection lot, fill out the standard pack report form heading, page A-1, and select the random sample. A tare sample is not needed.

2. On a level surface, follow either (a) or (b) below:

 a. Select a graduate of larger capacity than the labeled volume of the package. Partially fill it with water or other liquid to a volume which will still allow the packaged product to be added to the graduate without exceeding the graduated portion of the graduate. Record this volume on a worksheet.

 Operate the first package and submerge the product by pushing the product into the liquid with the wire. Record the resulting volume as "fluid and product" on the worksheet.

 The volume of the product is the difference between liquid levels, "after" minus "before" adding the product to the graduate. Record it as "net volume of product" on the worksheet.

 b. Select container with overflow spout and fill it to overflowing with water or other liquid; allow to sit until dripping stops. Place a graduate or other volumetric container of a capacity large enough to contain the package volume at the spout. Open the first package and carefully submerge the product using the thin wire to push the entire product below the liquid level. The volume of liquid displaced by the product (including the final dripping of liquid into the container or graduate) is the volume of the product. Record this volume as the "net volume of product" on a worksheet.

3. The volume of the product (as determined by 2a or 2b above), minus the labeled volume is the individual package error. Record the package error on the worksheet and transfer to the report form using an appropriate unit of measure. Repeat steps 2 and 3 (as appropriate) with the remainder of the packages in the sample. Follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

The capacity of packaged products such as bowls, pots, glasses, cups, etc., is labeled in terms of liquid volume and is defined as the brim-full or level-full capacity unless there are markings of capacity on a side wall of the product, or a ridge capable of accepting a lid. In the former instance, the capacity is defined as the capacity at the designated mark. In the latter instance, the capacity is defined as the capacity at the level of the
ridge or "seat". The procedures presented below are for determining the brim-full, marked or seated capacity of a container.

4.14.1. Equipment

Volumetric Flasks and graduate as described in Section 4.2.

500-milliliter buret meeting Type 1, Style 1, Class A requirements of Fed Spec NNN-B-782.

Rubber bulb syringe.

Plastic Disks. 1/8-in or 3-mm thick disks with diameters to correspond to seat diameter or larger than brim diameter of each container tested. Diameter tolerance is ±0.002 in or ±0.05 mm. The outer edge should be beveled at a 30-degree angle with the horizontal to 1/32 in or 0.8 mm thick at the edge. There should be a 3/4-in or 20-mm diameter hole through the center of the disk and a series of 1/16-in or 1.5-mm diameter holes 1 in or 25 mm apart around the periphery of the disk and 1/8 in or 3 mm in from the outer edge. All edges should be smooth. (See Figure 4-10.)

Bubble level.

![Figure 4-10. Plastic disk (beveled edge upward) inserted in the seat of a container to be tested.](image)

4.14.2. Procedure

The following procedures are divided into (a) determination of flush fill to brim or (b) determination of capacity to seat. The working surface must be level for all test procedures. After describing the procedure, information is presented on testing a container to a marked capacity not using the plastic disks.

1Plastic disk procedure provided by the American Can Co., Neenah, Wisconsin.
1. Determine inspection lot, fill out the standard pack report form heading (page A-1), and select the random sample. A rare sample is not needed.

2. a. Select a plastic disk with a diameter larger than the outside trim diameter of the container to be tested. Place the disk with the beveled edge upward on the container. Center the disk on the container. [See Figure 4-11.]

![Figure 4-11](image)

Figure 4-11. Disk in place for flush fill (or trim-full) capacity determination.

2. b. Select a disk with a diameter equal to the seat diameter of the container being tested. Insert the plastic disk on the seat of the container with the beveled edge upward. [See Figure 4-11.]

3. Add water to the container using flask (or flasks), graduated, or buret corresponding to labeled capacity of the container. If it appears that the contents of the flask may overfill the container, do not empty the flask. Add water until all of the air in the container has been displaced and the water begins to rise in the center hole of the disk. Stop the filling procedure when the water fills the center disk hole and domes up slightly due to the surface tension.

If the water dome breaks on the surface of the disk, the container has been overfilled and the test is void; dry the container and start over.

Do not add additional water after the level of the water dome has dropped.

4. Record on a worksheet the amount of water used to fill container and subtract 0.03 fl oz (1 mL) (corresponding to the amount of water in the disk hole) to obtain the container capacity. Record the container capacity as "net capacity" on the worksheet.
5. Compute the package error (net capacity minus the labeled capacity), record it on the worksheet, and transfer it to the report form using an appropriate unit of measure. Repeat this procedure on the remaining packages in the sample. Follow steps 7-11 of Section 3.5. (CORE METHOD) to determine lot conformance.

When testing containers with markings of capacity on the side wall of the container, water from a buret, flask, or graduate should be added to each container to obtain a level of fill corresponding to the markings. The official should record the amount of water used to reach the mark (similar to filling a volumetric flask to a mark if the container walls are transparent) as the container capacity. Then follow step 5 above to complete the test.

4.15. Ice Cream Novelties

The following procedure is a volume displacement method derived from Section 4.13., using a displacement vessel specifically designed for ice cream novelties such as ice cream bars, ice pops, sandwiches or cones. The method measures the volume of the novelty by measuring the amount of water displaced when the novelty is submerged in a displacement vessel. Two displacements per package will be required if the volume of sticks or cups must be subtracted.

In addition, two novelty packages under test are weighed to determine if the densities of the novelties are the same from package to package (in the same lot) in order to use a net weight check to determine if the labeled volumes are correct. If weighing can be used (see the worksheet on page A-13 and A-14 and the procedure in Section 4.15.2.), an average weight for the declared volume is compared from two packages, checking is completed by weighing. If weighing cannot be used to determine the volume, the displacement method must be followed for all packages in the sample.

4.15.1. Equipment

- Scales and weights recommended in Section 3.1.
- Displacement vessel of physical dimensions large enough to contain the commodity. One design that can be constructed of clear plastic is shown in Figure 4-12. Its advantages are that the interior baffle reduces wave action when the novelty is inserted into the vessel, and the downward angle of the overflow spout reduces dripping. Other designs may be used.
- Graduate larger than the labeled volume.

(This displacement vessel can be constructed or obtained from Custom Design Products, 6527 Dickens Place, Richmond, VA 23230. The use of firm names does not imply that they are endorsed or recommended by the Department of Commerce over similar products commercially available from other manufacturers.)
Thin wire, clamp, or tongs
Ice water maintained at 33 °F or below.
Freezer or ice chest and dry ice. Product must be maintained at 0 °F or lower.
Indelible marker (for ice pops only).
Single-edged razor or sharp knife (for sandwiches only).
Thermometer

![Diagram of displacement vessel for ice cream novelties]

Figure 4.12. Displacement vessel for ice cream novelties

4.15.2. Procedure

1. Determine inspection lot, fill out the standard pack report form heading, page A-1, and select the random sample and tare sample. Place the sample in the freezer or ice chest until ready to test. Remove packages from the freezer one at a time.

2. Fill the displacement vessel with ice water until the water overflows the spout. Allow to sit until dripping stops. Place the graduate underneath the spout. Raise the displacement vessel as necessary so that the graduate fits beneath the spout.

4-39
3. Remove the first package from the freezer and gross weigh it. Record this weight on the Worksheet on page A-13 in item 1.

4. According to the type of novelty, prepare the product as follows:

Ice pop. Mark on the stick(s) with the indelible marker the point to which the pop will be submerged in the ice water.

Cone. Poke a small hole in the cone side wall below the ice cream portion.

Sandwich. Determine whether the declared volume is (a) the total volume of the novelty (that is, including the cookie portion) or (b) the volume of the ice-cream-like portion only. If the declared volume is the volume of the ice-cream-like portion only, shave off the cookie with a razor or knife, leaving some remnants of cookie to ensure that no ice cream is accidentally shaved off. Work quickly, and return the novelty to the freezer before any softening begins.

Cup. Remove the cap from the cup. (After the cup and novelty contents have been submerged, the novelty will be removed from the cup to determine the volume of the cup alone.)

5. Carefully submerge each novelty until it is completely below the liquid level of the ice water in the displacement vessel.

Ice pop. Use a clamp, tongs, or your fingers to hold the stick(s) and submerge the pop to the level marked in step 4.

Cone. Shape the wire into a loop, and use it to push the cone head-first (ice cream portion first) into the ice water. Do not completely submerge the cone immediately; let water fill the cone through the hole made in step 4 before completely submerging the novelty. (See Figure 4-13.)

Sandwich or cup. Skewer the novelty with the thin wire or form a loop on the end of the wire to push the sandwich or ice-cream-portion or cup completely below the liquid level.

6. Record the volume of water in the graduate on the worksheet in the space beside item 4 labeled "Total water volume". For a cone or sandwich, this volume is the net volume of the package contents. Record the net volume for a cone or sandwich contents. Record the net volume for a cone or sandwich in item 6 on the worksheet. For pops or cups, the volume of the stick(s) or cup must be subtracted to determine the net contents. See a. and b. below for pops, a. and c. below for cups.

- **a.** Refill the displacement vessel with water to overflowing. Empty the graduate and place it under the overflow spout.
- **b.** **Ice pop.** Melt the ice pop off the stick or sticks. Submerge the stick or sticks to the line marked in step 4. Record the volume of water displaced into the graduate on the worksheet in the space beside item 5 labeled "Volume of tare materials". This is the volume of the stick. The net volume for the ice pop is the volume recorded in step 6 minus (-) the volume in 6.b. Record
Chapter 4

c. **Cup.** Remove the novelty from the cup. Rinse the cup, then carefully submerge it. (Making small pinholes in the base of the cup makes submersion easier.) Record the volume of water displaced into the graduated on the worksheet in item 5. This is the volume of the cup. The net volume for the novelty is the volume in step 6 minus (-) the volume in 6.c. Record this volume on the worksheet in the space beside item 6.

![Diagram of a cup submerged in water with a cone floating on the surface](image)

Figure 4-13. Using a looped-end wire to submerge a cone.

7. Clean and air dry the tare materials (sticks, wrappers, cup, lid, etc.). Weight and record the weight of these materials for the first package on the worksheet beside item 2.

8. Subtract the tare weight from the gross weight and record on the worksheet in item 5.

9. Compute the weight of the labeled volume for the first package and record the result in item 7:

\[
\text{weight of labeled volume} = \frac{\text{labeled weight in item 3}}{\text{volume in item 6}}
\]

10. Repeat steps 3 through 9 for a second package.

4-41
11. Net weights and the weights of the labeled volume are computed in order to decide whether the novelties can be weighed to determine compliance with the volume declaration.

Determine whether the two weights recorded in item 7 differ from each other by more than the value in Table 4-1 (page B-20). (See item 8 on the worksheet.) If you check “no”, go on to step 12. If you check “yes”, compute the package error for each of the two packages by subtracting the labeled volume from the net volume for each package. Repeat steps 4 through 6 for each of the remaining packages in the sample to determine their net volumes and package errors. (No further weighing is required since package errors cannot be determined by weighing.)

12. Average the weights of the labeled volume for the first two packages (see item 8 on the worksheet.)

13. Determine the tare for the rest of the tare sample, if any additional tare sample packages remain. Record the tare weights on the worksheet. Average the tare weights and record the average tare on the worksheet in item 9 and on the report form.

14. Complete the package checking test by computing the “nominal gross weight”, looking up the MAV, and converting the MAV to dimensionless units. Follow the worksheet, filling in items 10 through 12. (See steps 10 and 11 in Section 4.5., page 4-12, in which the procedure is described for standard pack packages labeled by liquid volume.)

15. Compare the weight of the unopened packages in the sample with the nominal gross weight, recording the package errors directly on the report form in the crosshatched area. Compare the minus package errors with the MAV. Average the package errors, and convert final results to units of volume as given on the worksheet in item 14. (See steps 7 through 12 in Section 3.6., the CORE METHOD, in which it is described for standard pack packages.)
4.16. Fresh Oysters Labeled by Volume

Packaged fresh oysters removed from the shell are required to be labeled by volume, for example, "8 fl oz" or "1 gallon." In addition, the maximum amount of permitted free liquid is 15% by weight. Testing the quantity of contents of fresh oysters therefore requires a determination of total volume, total weight of solids and liquid, and the weight of the free liquid only.

Ordinarily, the contents of a package labeled by fluid volume can be poured into an inspector's field flask to determine the fluid volume (with an appropriate correction given for clamping remaining in the package). This can be done when testing gallon-size containers or larger. However, oysters will not fit through necks of the smaller field flasks. Therefore, the procedure below determines the package net volume by measuring the volume of water delivered to the package container when filled to the same level as the original oyster contents. Determining the amount of free liquid requires draining the oysters and weighing the free liquid drained away. Worksheets are provided with the following method.

4.16.1. Equipment

- Small capacity package testing scale
- Depth gauge
- Bubble level
- Field flasks and graduate
- No. 8, 8-inch U.S. Standard sieve and receiving pan for small packages; 12-inch sieve for 1-gallon containers
- Rubber spatula, rubber gloves, (mask, hair net, hard hat, as required under health and safety codes.)
- Stopwatch

4.16.2. Procedure

Every package in the sample must be opened. The following steps apply to each package:

1. Gross weigh the package. Record the weight on a worksheet.
2. Set the package container on a level surface. Open container. Use depth gauge to determine the level of fill. Lock depth gauge. Mark location of gauge on the package.
3. Weigh a dry 8-inch or 12-inch receiving pan. Record the weight in box c or the worksheet. Set sieve over receiving pan.
4. Empty contents from package container onto sieve. Do not shake. Tip the sieve slightly to help it drain. Time drain for 2 minutes. Remove sieve with oysters. A mucous is often associated with the oysters and will not go through the sieve. This is natural. Do not force the mucous through the sieve.

5. Weigh the receiving pan and liquid. Record the weight in box d. Subtract the weight of the dry receiving pan from the weight of pan and liquid to obtain the weight of free liquid. Record the weight in box f.

6. Wash and wipe the package container (as necessary) and weigh it dry. Record the weight in box b. This is the tare weight of the package. Subtract the tare weight recorded in box b from the gross weight recorded in box a to obtain the total weight of the oysters and liquid. Record this total weight in box c.

7. Determine percent of free liquid by weight as follows:

\[
\text{Percent of free liquid by weight} = \frac{\text{weight of free liquid}}{\text{weight of oysters + liquid}} \times 100.
\]

Record percentage in box g.

8. Set up depth gauge on dry package container exactly as in step 2.

9. Deliver water from flasks and graduates as needed to re-establish the level of fill in step 2. Record all volumes in part II of the worksheet in boxes h through k. Sum all volumes. This is the actual net volume for that package.

Some containers will hold the declared volume only when filled trim full; they may have been designed for ice-cream or similar product, rather than for oysters. If a shortage is found in the net volume (per step 9), determine whether the container used to package the product will contain the volume only if filled to the trim. Under such circumstance, the package net volumes will all be short measure because the container cannot be filled to the trim with a solid and liquid mixture such as oysters. A minimum head space is needed (space between the liquid level and the lid) in order to get the lid onto the container without losing any liquid.

4-44
Worksheet for Determining Net Volume of Oysters and Percent of Free Liquid

I. Amount of Free Liquid

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Package gross weight</td>
</tr>
<tr>
<td>b.</td>
<td>Package tare weight</td>
</tr>
<tr>
<td>c.</td>
<td>Weight of receiving pan and liquid = (a - b)</td>
</tr>
<tr>
<td>d.</td>
<td>Weight of receiving pan and drained liquid</td>
</tr>
<tr>
<td>e.</td>
<td>Weight of dry receiving pan</td>
</tr>
<tr>
<td>f.</td>
<td>Weight of free liquid = (d - e)</td>
</tr>
<tr>
<td>g.</td>
<td>Percentage of free liquid = (\frac{f}{c} \times 100)</td>
</tr>
</tbody>
</table>

II. Net Volume

Establish the level of fill of package containing oysters using depth gauge. Re-establish the level of fill using water and depth gage set to same depth as oyster liquid level. Record below the amount(s) of water needed to re-establish liquid level.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h.</td>
<td>Flask size</td>
</tr>
<tr>
<td>i.</td>
<td>Flash size</td>
</tr>
<tr>
<td>j.</td>
<td>Graduate</td>
</tr>
<tr>
<td>k.</td>
<td>Graduate</td>
</tr>
<tr>
<td>l.</td>
<td>TOTAL VOLUME = Sum all volumes recorded above =</td>
</tr>
</tbody>
</table>
4.6.4. Method D: Determining the Net Contents of Compressed Gas in Cylinders

These procedures are for industrial compressed gas.

Compressed gas may be labeled by weight (for example, LF gas or carbon dioxide) or by volume. Acetylene, liquid oxygen, nitrogen, nitrous oxide, and argon are all filled by weight, but acetylene is sold by cubic feet or by liters and the other products listed are sold by liters. Helium, gaseous oxygen, nitrogen, air, and argon are filled following pressure and temperature tables. Checking the net contents of compressed gas cylinders depends on the method of fill: those filled by weight may be checked by weight. It is unnecessary to connect the cylinder to anything, but if it may be necessary to move the cylinder to weigh it. In addition, it may be necessary to schedule testing over a 3-day period if acetylene is to be checked: it takes from 10 to 12 hours to fill acetylene cylinders. Once the tare weight has been determined, it will require another day to test filled cylinders for which the tare weight is known.

Those cylinders filled by using pressure and temperature charts must be tested by connecting a pressure gauge to the cylinder and determining the pressure and temperature.

Safety is a primary concern with all testing procedures.

a. Safety

Anyone handling a compressed gas cylinder must be made aware of the hazards of high pressures found with any compressed gas. Untrained or partially trained individuals should not be allowed to handle compressed gas.

It is essential that anyone handling a cylinder of gas or cryogenic liquid be certain of the contents before connecting the cylinder to anything. Discharging a gas or cryogenic liquid through a system for which the material is not intended could result in damage due to the incompatibility of the system and the product. A fire and/or explosion could result from such a mistake.

Before connecting a cylinder to anything, be certain of the following:

1. The cylinder is clearly marked or labeled with the name of the contents and that there are no conflicting marks or labels. Do not rely on the color of the cylinder to identify the contents of a cylinder.
2. The marked or labeled contents are all correct.
3. The cylinder is provided with the correct Compressed Gas Association (CGA) connection(s) for the product.
4. The connection(s) on the cylinder properly fit the system. A proper connection will go together smoothly. Do not use excessive force. Do not use an adapter to connect oxygen to non-oxygen cleaned equipment.
5. Personnel moving or using cylinders are trained and knowledgeable regarding the product, cylinder, fittings, and proper procedures. See CGA pamphlet P-1 "Safe Handling of Compressed Gases in Containers," for additional information.

Warning! Failure to observe the precautions above is reported to have caused fatalities.

b. Additional Safety Warnings

1. The inspector must have a thorough knowledge of the procedure, with emphasis on safety precautions, before attempting any tests. Charts referred to in the procedure should not be furnished to inspectors until the necessary training has been completed.

2. The inspector must be extremely careful with all gases since some react violently when mixed or when coming in contact with other substances. For example, oxygen reacts violently when it comes in contact with hydrocarbons.

3. Always wear safety glasses when testing cylinders by the temperature-pressure method.

4. When moving a cylinder, always place the protective cap on the cylinder. Do not leave spaces between cylinders when moving them. This can lead to a "domino" effect if one cylinder is pushed over.

5. When a cylinder valve is opened to measure the internal pressure, position your body away from the pressure gauge blowout plug or in front of the gauge if the gauge has a solid cast front case. If the bourdon tube should rupture, you do not want to be in a position to receive serious injuries from gas pressure or fragments of metal.

6. Open all valves slowly. A failure of the gauge or other ancillary equipment can result in injuries to nearby persons. Remember: high gas pressure can propel objects with great force. Gas ejected under pressure can also cause serious bodily injuries if someone is too close during release of pressure.

7. One of the gauges shall be reserved for testing oxygen only and shall be prominently labeled "For Oxygen Use Only." See 4.6.4. (c) 2. This gauge must be cleaned for oxygen service and maintained in that "clean" condition.

8. The other gauge(s) may be used for testing a variety of gases if they are compatible with one another.

9. Special precautions must be observed with flammable gas in cylinders, in addition to the several precautions necessary for the safe handling of any compressed gas in cylinders.

 Contrary to general practice with other gas cylinders, do not "crack" cylinder valves of flammable gas before connecting them to a regulator or test gauge. This is extremely important for hydrogen or acetylene.

10. Additional precautions necessary for personal safety are described in the CGA Handbook of Compressed Gases. All personnel testing compressed gases should have this manual for reference and be familiar with its contents.

4-47
c. Equipment

1. Scale, calibrated weights, and ramp.

2. Two (2) calibrated precision bourdon tube gauges or any other approved laboratory-type pressure-measuring device that can be accurately read within plus or minus 5 psi. A gauge having scale increments of 25 psi or smaller shall be considered as satisfactory for reading within plus or minus 5 psi. The range of both gauges shall be a minimum of 0 to 5000 pounds per square inch when testing cylinders with standard industrial cylinder valve connections. Standard industrial cylinder connections are those connections listed in CGA Standard V-1, Standard for Compressed Gas Cylinder Valve Outlet and Inlet Connections," for use with gas pressures up to 3000 psig (20 680 k Pa). For testing cylinders with cylinder valve connections rated for over 3000 psig, the test gauge and its inlet connection must be rated at 5000 psig over the maximum pressure that the connection is rated for in CGA V-1. (Note that there are standard high pressure industrial connections on the market that are being used up to their maximum pressure of 7500 psig.)

Any gauge or connectors used with oxygen cylinders must be cleaned for oxygen service, transported in a manner which will keep them clean and never used for any other gas including air or oxygen mixtures. Oxygen will react with hydrocarbons and many foreign materials and can result in fire or explosion.

3. An approved and calibrated electronic temperature measuring device or three calibrated mercury-in-glass thermometers having either a digital readout or scale division of no more than 1 degree. The electronic device equipped with a surface temperature sensor is preferred over a mercury-in-glass thermometer because of its shorter response time.

4. Safety glasses.

5. Two wrenches. Box wrenches of 1 1/8 inch for oxygen, nitrogen, carbon dioxide, argon, helium, and hydrogen and 7/8 inch for some sizes of propane. All industrial CGA connections are limited to these two hex sizes. Use of an adjustable wrench should be avoided because of the tendency to round the edges of the fittings which can lead to connections not being tightened properly.

6. It is best to use a separate gauge and fitting for each gas to be tested. If adapters must be used, be sure that they are never used on oxygen systems.

d. Procedure

Containers must be labeled in compliance with NIST Handbook 130 requirements. Containers which do not bear a labeled statement of identity, responsibility, and net quantity should be marked "off sale" until the containers are brought into compliance.

4-48
1. Testing by Weight

(a) The cylinder is stamped or stenciled with a tare weight. This is a safety feature that assures the filling plant in many of its filling operations. It may or may not be the weight used by the filling plant when determining the net weight of those cylinders sold or filled by weight. If there is a tare weight marked on the net contents tag or directly on the cylinder, then an actual tare weight was determined at the time of fill. If there is no tare weight marked on a tag or on the cylinder, then the stamped or stenciled tare weight was used to determine the net contents. When the stamped or stenciled tare weight is used in net contents determinations, the inspector should check the accuracy of the stamped tare weights. The actual tare weight must be within

(1) 1/2 percent of the stamped tare weight for 20 lb tare weights or less,

or

(2) 1/4 percent of the stamped tare weight for greater than 20 lb tare weights.

(b) Place cylinder on scale.

(c) Remove protective cap. The cap is not included in the tare weight. The tare does include acetone when acetylene cylinders are tested.

(d) Weight the cylinder and determine net weight. Compare actual net weight with labeled net weight or use the actual net weight to look up the correct volume declaration and compare that with the labeled volume.

(e) The acetone in acetylene cylinders is included in the tare weight of the cylinder. Therefore, as acetone is withdrawn from the cylinder, some acetone will also be withdrawn, changing the tare weight. Most producers will replace acetone in the cylinder before the cylinder is refilled, filling the cylinder with acetone to the stamped tare weight. Other producers, although not following recommended procedures, do not replace the acetone until it drops to a specified weight. In the latter situation, the refilling plant must note the actual tare weight of the cylinder and show it on the tag containing the net content statement or on the cylinder itself.

(f) Refer to tables for acetylene gas if necessary (that is, if the acetylene is billed by the cubic foot). See (d) above.

2. Volumetric Testing

(a) Thermometers or temperature sensors used for measuring temperatures during testing of cylinder gases shall be in contact with the outside surface of the cylinder approximately at the midpoint of the longitudinal axis.

(b) The cylinders to be tested for quantity shall be taken from a lot that has had time to stabilize at the ambient temperature. Normally, the outside row of cylinders should not be selected for testing since they may be of a different temperature. The temperature used shall be an average taken from three cylinders selected at random. Cylinders that are exposed to heat or sunlight shall not be chosen for test unless an electronic heat sensor is used to measure the temperature of each cylinder. This is the preferred method of measuring the cylinder temperature because there can be differences in temperature from
cylinder to cylinder, and the electronic sensors will stabilize within a few seconds. It is not practical to measure the temperature of each cylinder with a mercury-in-glass thermometer due to the time required for the thermometer to stabilize.

(c) Measure the pressure of each cylinder in the sample selected.

(d) Determine the temperature of the cylinders in the sample selected.

(e) Determine the cylinder nominal capacity from cylinder data table or from cylinder manufacturer.

(f) Refer to NIST Tech Note 1079 and compute the actual net content.

"NBS Technical Note 1079," U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD 20899.
CHAPTER 5. METHODS OF TEST FOR PACKAGES LABELED
BY COUNT, LINEAR MEASURE, AREA, THICKNESS,
OR COMBINATIONS OF QUANTITIES

5.1. Packages labeled by count when the labeled count is 51 or more units per package
5.2. Packages labeled by count when the labeled count is 50 or fewer units per package
5.3. Packages labeled by linear or square (area) measure
5.4. Polyethylene sheeting
5.5. Paper plates
5.6. Sanitary paper products
5.7. Pressed and blown glass tumblers and stemware
5.8. Baler Twine
CHAPTER 5. METHODS OF TEST FOR PACKAGES LABELED BY COUNT, LINEAR MEASURE, AREA, THICKNESS, OR COMBINATIONS OF QUANTITIES

Many commodities and manufactured products are sold in units of quantity other than weight or liquid or dry volume. For example, food wrap is sold by length, width, and area. Polyethylene sheeting is sold by length, width, area and thickness. Disposable paper plates are sold by the number in the package and by their diameter.

This chapter provides general procedures for packages labeled by count or length and procedures for specific commodities such as polyethylene sheeting.

When packaged goods are labeled by two or more units (for example, count and dimension, or capacity, etc.), each label's quantity must meet the average requirements unless other requirements pertain.

The National Conference on Weights and Measures (NCWM) Uniform Method of Sale of Commodities Regulation (MoS)\(^3\) has provided an exception to the average requirements: pressed and blown glass tumblers and stemware are given tolerances; the average requirement does not apply. A special sampling plan and test procedure are provided for pressed and blown tumblers and stemware (Section 5.7.).

For statistical reasons, an exception to the average requirement applies to packages labeled by low count (less than 51 units per package). This chapter provides a set of sampling plans to be used in such instances (Section 5.2.).

5.1. Packages Labeled by Count When the Labeled Count Is 51 or More Units per Package

Two methods are presented here for determining count without opening all packages in the sample. Both use the weight of a counted number of packaged units or items. One of these methods is intended as an audit procedure only. Of course, if the weight of discrete units or numbers of units is found to be too variable, the official must count packaged units rather than weigh them.

5.1.1. Equipment

Scales and weights recommended in Section 3.1.

5.1.2. Audit Procedure

Since the precision of the method is only \(\pm 1\) percent, determination of lot conformance and further action based on shortages of count must rely either on actual count or Section 5.1.3.. However, this method is useful for auditing packages labeled by high unit counts (in excess of 100).

\(^3\)The NCWM MoS appears in NBS Handbook 130, "Uniform Laws and Regulations" and is printed annually by the U.S. Government Printing Office.
1. Determine inspection lot, fill out the standard pack report form heading (page A-1), and select the random sample and random tare sample.

2. Gross weigh the first package in the tare sample. Record this weight on a worksheet.

3. Select the number of items, either (a) or (b), from the first tare package that weighs the greater:
 a. 10 percent of the labeled count, or
 b. A quantity sufficient to indicate at least 50 minimum divisions on the package checking scale. For example, using the package checking scale with 1/16-oz divisions, the selected count must weigh at least 3 1/6 oz. For the package checking scale with 1-g divisions, the selected count must weigh at least 50 g. Record the count and weight on the worksheet.

4. Calculate the weight of the labeled count

 \[\text{Weight} = \frac{\text{labeled count \times weight (step 3)}}{\text{count (step 3)}} \]

 Record the result on the worksheet as "labeled count weight".

5. Gross weigh the rest of the tare sample and keep contents of opened packages separated in case Section 5.1.3. must be followed. Determine the tare weights of the tare sample and record these on the worksheet.

6. The weight of the labeled count plus the tare weight represents the "nominal gross weight".

 Package error (weight) = (actual package gross weight) - (nominal gross weight)

 Compare the unopened packages with the nominal gross weight and record the package errors on the worksheet.

7. Convert the package errors in units of weight to count:

 Package error (count) = \(\frac{\text{Package error (weight) \times labeled count}}{\text{labeled count weight (step 4)}} \)

 Round any fractional counts computed in this manner to whole units in favor of the packages. Record the package error in units of count in the crosstatched area of the report form. Compute the average error. If the average error is minus, follow Section 5.1.3. to determine lot conformance. If the average error is equal to zero or positive, the lot is presumed to conform to the package requirements.
5.1.3. Possible-Violation Procedure

Special work sheets have been developed to accompany the report form. The work sheets on pages A-9 and A-10 guide the inspector through the procedure. See pages H-14, H-15, and H-16 for a completed example.

The measurement of the weight of the number of units in the package is combined with the determination of tare and, therefore, will not require opening more packages than the tare sample.

If the procedure in Section 5.1.2 has been used, procedure 5.1.3, can be followed with the same sample if package contents have been kept separate and can still be counted.

1. Determine inspection lot, fill out the report form heading (page A-1), and select the random sample and random tare sample. Record the labeled count in box 1 on the report form.

2. Gross weigh the packages selected for tare determination and record their gross weights in item 1 of the worksheet. Open these packages.

3. Determine and record the net package contents weight and the exact number of items in the first opened package.

 Record the weight in item 4 and the count in item 3 on the worksheet.

4. Record the MAV from Table 2-10 (page B-13) in units of count in box 3 on the report form and in item 6 on the worksheet.

 In order to determine whether the scale used to weigh the packages is able to discriminate differences in count, calculate the weight equivalent to MAV/6. MAV/6 must be at least as large as 1/2 the size of the smallest scale division (or at least as large as the smallest increment in the read-out on a digital scale). [See items 7 and 8 on worksheet.]

 For example, from Table 2-10 the MAV is 7 units for a package labeled with a count of 250 units. The scale should be capable of discriminating differences corresponding to MAV/6 or, in this example, one unit.

 If the criterion above is not met, count the package contents in each package in the sample; if met, go on to step 5.

5. Determine and record the tare weight of the first package opened on the worksheet in item 2.

6. Determine and record the weight and the count of the package contents in the second package opened for tare (items 3 and 4 on the worksheet).

7. Calculate the weights of the labeled counts for the first two packages.

 \[
 \text{Weight of labeled count} = \text{labeled count} \times \frac{\text{contents weight}}{\text{contents count}}
 \]

 Record these weights in item 5 of the worksheet.

5-3
To avoid round-off errors, carry over at least two extra decimal places in the calculation until the weight of the labeled count is obtained.

The difference in weights of the labeled counts of the two packages must not exceed the value given in Table 4-3 (page 11-20). Fill in item 9 on worksheet.

If the difference in weights does not meet this criterion, determine the actual count per package for every package in the sample. If the difference meets this criterion, average the weights of the labeled count and go on to step 8.

8. Determine the tare for the rest of the tare sample if any additional tare sample packages remain. Record the tare values on the worksheet. Average the tare weights (record in item 16 on the worksheet and box 13 on the report form).

9. The average weight of the labeled number of items in the package (step 7) plus the average tare weight (step 8) equals the "nominal gross weight". Record the nominal gross weight on the worksheet in item 11 and in box 14 on the report form.

Package error (weight) =

(actual package gross weight) - (nominal gross weight)

Record package errors for the tare sample packages (items 12 and 13 on the worksheet).

10. Convert the MAV to units of weight.

\[
\text{MAV (weight) = } \frac{\text{MAV (count) x average weight of labeled count}}{\text{labeled count}}
\]

See item 14 on worksheet for calculation.

Convert the MAV to dimensionless units and record in box 4 of the report form and item 15 on the worksheet.

With all measurements converted to weight and dimensionless units, go to Step 6-11 of Section 3.5 (CORE METHOD) to determine lot conformance. Convert back to count when completing box 19 of the report form by following the calculation in item 16 on the worksheet.

5.2. Packages Labeled by Count When the Labeled Count Is 50 or Fewer Units per Package

A special sampling plan is provided for packages labeled by count when the number of units per package is 50 or fewer. The sampling procedure requires counting the number of units in each package in the sample and noting the number of those packages that contain less than the labeled count. The MAV is not used directly in the sampling
The required number of packages for the sample and the allowed number of undercount packages are given in Table 5-1 (page B-22). Average count does not apply.

5.2.1. Procedure

1. Determine inspection lot, fill out report form heading. Sample size and tare sample size are found in Table 5-1, page B-22. Record the column 4 value from Table 5-1 (the number of packages that are permitted to contain fewer than the labeled count) in box 8 of the report form. The MAV in units of count is found in Table 2-10 (page B-13) and recorded in box 3 on the report form.

2. Follow steps 2 through 9 of Section 5.1.3.

 If it is possible to determine count by weighing, compare the gross weight of the unopened packages in the sample with the nominal gross weight. Individual package errors are equal to the actual gross weights minus the nominal gross weight.

 If it is necessary to open every package in the sample and count the contents, the package error is equal to the actual count minus the labeled count. Record the package errors.

3. Circle and count the number of minus package errors of any size. If this number is larger than the number in box 8 of the report form, the lot fails to comply with the package requirements. If the number of minus package errors is less than or equal to the number recorded in box 8 of the report form, the lot complies.

 The MAV’s listed in Table 2-10 for packages labeled by count and fewer than 51 units per package define the limits of reasonable variation for an individual package even though the MAV is not used directly in the sampling plan. However, individual packages that are undercount from the labeled count by more than the MAV are considered defective (even if the lot as a whole passes inspection); they should be repacked, relabeled, or otherwise handled.

5.2.2. Example

An official must test a lot of 360 packages of cotton balls labeled "50 cotton balls". A random sample of 10 packages is chosen from the lot. Because his scale cannot discriminate differences in count, the inspector opens every package and counts the balls. The 10 package counts are: 50, 52, 50, 50, 51, 53, 52, 50, 47, 50.

Referring to Table 5-1, since only one package contains fewer than 50 balls, the inspector declares the lot to have passed the test. The package containing 47 balls should not be introduced into commerce even though the lot complies with the package requirements because it is under count by more than the MAV.
5.3. Packages Labeled by Linear or Square (Area) Measure

The weight of the labeled linear or area measure may be used together with the tare weight at the nominal gross weight, as long as the scale used to weigh the packages can discriminate the weight equivalent to MAV/6 and the weight of the labeled measure does not vary outside the ranges permitted in Table 4-3 (page B-20). Worksheets similar to the one provided for count (pages A-7 and A-8) should be devised and used for length or area measurements.

Products labeled by length or area often require the application of tension to the ends of the product before measurement in order to straighten the product. Tension must be applied to woven or twisted fiber products such as thread, yarn, rope, cording, twine, etc. Because of the specialized equipment required for these products (and because such equipment is not readily available outside the packaging plant), the official is referred to the following standards suitable for in-plant inspection together with sampling plans described in this handbook. These standards are: "Standard Method of Test for Yarn Number by the Skein Method," ASTM D1907-72, for thread and yarn; "Standard Methods of Testing Twine Made from Bast and Leaf Fibers," ASTM D1233-73, and "Standard Tolerances for and Methods of Testing Single Jute Yarn," ASTM D541-71.

Textiles labeled by length should be inspected using textile measuring devices that have been found to conform with the tolerances of NBS Handbook 44.

5.3.1. Equipment

Scales and weights as recommended in Section 3.1.

T-squats.

Steel tapes and rules:

inch-pound:

For labeled dimensions 25 in or less, 36-in rule with 1/64-in or 1/100-in divisions, overall length tolerance of 1/64 in.

For labeled dimensions greater than 25 in, 100-ft tape with 1/16-in divisions, overall length tolerance of 0.1 in.

Metric:

For labeled dimensions 40 cm or less, 1-m rule with 1/2-mm divisions, overall length tolerance of 0.4 mm.

For labeled dimensions greater than 40 cm, 30-m tape\(^1\) with 1 mm divisions, overall length tolerance of 2.5 mm.

\(^1\)The markings specified for the equivalent metric rule and tape may be incorporated in the inch-pound rule and tape.
5.3.2. Procedure

1. Determine inspection lot, fill out the standard pack report form on page A-1, and select the random sample and tare sample. Separate report forms and worksheets (replacing all "count" terms with "dimensions" on page A-9 and A-10) should be filled out for packages labeled by separate dimensions and/or area.

2. Gross weigh and open the packages selected for tare determination. Record on the worksheet in item 1.

3. Determine the measurements (to the nearest division of the appropriate tape or rule) of the packaged goods (length, width, area—depending upon which dimensions are declared on the label) and weigh the goods from the first package opened for tare determination.

Record the weight and measure on the worksheet in items 4 and 3. Calculate the weight of the labeled measurement on the worksheet following item 5.

\[
\text{Weight of the labeled measurement} = \frac{\text{contents weight}}{\text{contents measurement}} \times \text{labeled measurement}
\]

Record the MAV in units of length or area measure (given in Table 2-11, page B-14) in box 3 of the report form and on the worksheet in item 6.

4. Calculate the length or area of packaged product corresponding to MAV/6 and convert the MAV/6 to units of weight as shown in item 7 of the worksheet. MAV/6 in units of weight must be at least as large as 1/2 of the smallest division on the scale used to weigh the product (or at least as large as the smallest increment in the readout, if a digital scale is being used).

For example, an inspector finds that 200 sq ft of product weighs 2,000 lb; 1 sq ft must therefore weigh 0.010 lb. For the small capacity scale, this is 5 times the usual minimum scale division (0.002 lb); therefore, the first criterion is met. [See item 8 on the worksheet.]

If this criterion is met, go on to the next step. If not, all packages in the sample must be opened in order to measure the contents.

5. Determine and record in item 2 on the worksheet the tare weight of the first package opened.

6. Determine the measurements of the product in the second package chosen for tare determination (item 3). Determine the tare weight of this package and record on the worksheet (item 2). Calculate and record the weight of the labeled measurement for the second package (item 5).

7. The weights of the labeled measurement for two packages must not differ by more than the value given in Table 4-3 (page B-20). If they do, all packages in the sample must be opened, measured individually, and compared
against the labeled measure to determine the package errors. [See item 9 on
the worksheet.] If Tabt 4-5 criterion is met, go on to step 8.

8. Calculate the average weight of the labeled measurement and record it on
the worksheet in item 9.

9. Determine the true weights of the rest (if any) of the tare sample. Record on
the worksheet and average the tare weights (item 10 on the worksheet).

10. The average weight of the labeled measurements (item 9 on the worksheet)
plus the average tare weight (item 10 on the worksheet) equals the nominal
gross weight. Record the nominal gross weight on the worksheet in item 11
and in box 14 on the report form.

\[
\text{Package error (weight) = (actual package gross weight - (nominal gross weight))}
\]

11. Determine the package errors for the tare sample following the arithmetic in
items 12 and 13 on the worksheet and transfer these values to the cross-
tatched area of the report form.

12. Convert the MAV to units of weight.

\[
\text{MAV (weight) = \frac{\text{avg. wt. of label measurements} \times \text{MAV (length)}}{\text{labeled measurements}}}
\]

Record MAV in units of weight on the worksheet in item 14.

Convert the MAV to dimensionless units in item 15. With all measurements
converted to weight, follow steps 6-11 of Section 3.5, to determine lot con-
formance. Convert package errors in weight to length (or area) when com-
pleting the report form using the formula in step 16 on the worksheet.

5.4. Polyethylene Sheeting

Polyethylene sheeting is sold not only by its linear or area measurement and net weight,
but also by its thickness. The procedure to check thickness is based on ASTM D374,
"Standard Test Methods for Thickness of Solid Electrical Insulation."

First the net weight of the product and dimensions of the sheeting are checked. If the
net weight and dimensions conform to the package requirements, the thickness of the
sheeting is then checked. [This portion of the procedures does not follow a decision
cart.] All the sample packages are opened for thickness measurements.

A worksheet is provided to record length, width and thickness measurements for poly-
ethylene sheeting on page A-11.

5.4.1. Equipment

Scales and weights recommended in Section 3.1.

5-8
Micrometer:

- A deadweight dial micrometer (see Figure 5-1) equipped with a flat anvil, 1/4-in (6-mm) diameter or larger, and a 3/16-in (4.5-mm) diameter flat surface on the head of the spindle. The anvil and spindle head surfaces should be ground and lapped, parallel to within 0.0001 in (0.002 mm), and should move on an axis perpendicular to their surfaces. The dial spindle should be vertical and the dial should be at least 2 in (50 mm) in diameter. The dial indicator should be continuously graduated to read directly to 0.0001 in (0.002 mm). If capable of making more than one revolution, it must be equipped with a separate indicator to indicate the number of complete revolutions. The dial indicator mechanism should be fully jeweled. The frame should be of sufficient rigidity that a load of 3 lb (13 N) applied to the dial housing, exclusive of the weight or spindle preser foot, will not cause a change in indication on the dial of more than 0.001 in (0.02 mm).

The indicator reading must be repeatable to 0.00005 in (0.0012 mm) at zero setting.

Weight on probe head (total of anvil, weight, spindle, etc.) must be 4 oz (115.6 g).

- Electronic or motor-driven comparator with same specifications as above.

Steel tape rules recommended in Section 5.3.1.

T-square.

Figure 5-1. Deadweight dial micrometer.

5-9
5.4.2. Preparation for Test

Gage blocks covering the range of thicknesses to be tested should be used to check the accuracy of either the micrometer or the comparator and should be maintained without rust, tarnish, or scratches. The micrometer or comparator should be operated in an atmosphere free from drafts and fluctuating temperature and should be allowed to stabilize at ambient room temperature before use.

Place the deadweight dial micrometer or comparator on a solid, level table, free from excessive vibration. Check the weight of the deadweight used with the spindle head. It should have a weight of about 3.6 oz.

If the dial does not read zero with nothing between the anvils and the spindle head, set it at zero. Raise and lower the spindle head and prove several times; it should indicate zero each time. If it does not, find and correct the cause before proceeding. The accuracy of the micrometer or comparator should be checked with appropriate thickness gages whenever the device is moved to a different location and at the beginning of each day's use of the device.

5.4.3. Procedure

Steps 3a and 6a below apply to rolled product, steps 3b and 6b to folded product. Steps 8a and 8b apply to a two-stage MAV and, therefore, both steps 8a and 8b are followed for any single product test.

1. Determine inspection lot, fill out the standard pack report form heading (page A-1), and select the random sample and random test sample.

Check the label declaration to make sure that all the declared dimensions are consistent with one another:

\[W = T \times A \times D \times 0.03613, \] where

- \(W \) = net weight in pounds
- \(T \) = nominal thickness in inches
- \(A \) = nominal area; that is, nominal length in inches times nominal width in inches
- \(D \) = density in grams per cubic centimeter as determined by ASTM Standard D1505-68 "Standard Method of Test for Density of Plastics by the Density Gradient Technique" (or latest issue).

0.03613 is a factor for converting \(\text{g/cm}^3 \) to \(\text{lb/in}^3 \).

Use the density \((D)\) of 0.92 \(\text{g/cm}^3 \) in the calculation.\(^1\)

The labeled weight should be equal to or greater than the weight calculated.

For example, if the label reads:

6 ft x 100 ft
4 mil
net weight 11.1 lb

\(^1\)See Section 2.12.4., Uniform Regulation for the Method of Sale of Commodities, NIST Handbook 130.

Alternative formula: weight (pounds) = 0.0047865 \times \text{length (ft)} \times \text{width (ft)} \times \text{thickness (mils)}

5-10
Chapter 5

\[W = (0.004 \text{ in}) \times (100 \text{ ft} \times 12 \text{ in}) \]
\[\text{ft} \times (6 \text{ ft} \times 12 \text{ in}) \times 0.03613 \times 0.92 = 11.49 \text{ lb net weight} \]
\[\text{ft} \]

Therefore, a declaration of 11.1 lb indicates that the label is not in compliance.

Separate report forms for weight, length, width, and thickness should be attached to one another. The MAV for length and width dimensions is found in Table 2-11, page B-14. The MAV's for weight and thickness are listed in Section 2.13, and in steps 4, 8a and b below. [If the actual length and width are correct, the area declaration is assumed correct.]

2. Gross weigh the packages chosen for tare, open them, and record the gross weights on the report form.

3. Weigh the first package tare (include core if any) and record on report form. Extend the first package to its full dimensions, and remove by hand all creases and folds as far as possible.

Measure the length and width of the product to the closest 1/8 in (3 mm). Make all measurements at intervals uniformly distributed along the length and width of the product. Record the individual measurements on the worksheet for polyethylene. Compute the average length and width and record on the worksheet.

a. With rolls of product, make three length measurements along the width of the roll and at least ten width measurements along the length of the product.

b. For folded products (such as drop cloths or tarps), make three length measurements along the width of the sample and three width measurements along the length of the sample.

4. Follow Section 3.6, for determining conformance of the lot with net weight labeling requirements, but use an MAV of 4% of the labeled weight. If the lots fail to conform with net weight requirements, no further measurements are necessary.

5. Follow steps 4 through 12 of Section 5.3.2. to determine whether the inspection lot conforms with the package requirements on length and width. If the lot fails to conform, thickness need not be checked.

6. Measure the thickness of the plastic sheet with a micrometer or comparator at:

a. Five uniformly distributed locations across the width at each end and 5 locations along each side of each roll in the sample, or;

b. Five uniformly distributed locations across the width at one end and along the length at one side of folded product for each package in the sample.

5-11
When measuring the thickness, place the sample between the micrometer or comparator surfaces and lower the spindle head or probe near, but outside, the area where the measurement will be made. Raise the spindle head or probe a distance of 0.0003 to 0.0004 in (0.008 to 0.01 mm) and move the sheet to the measurement position. Drop the spindle head onto the test area of the sheet. Read the dial thickness 2 seconds or more after the drop, or when the dial hand or digital readout becomes stationary. This procedure minimizes small errors that may occur when the spindle head or probe is lowered slowly onto the test area.

For succeeding measurements, raise the spindle head or probe 0.0003 to 0.0004 in (0.008 to 0.01 mm) above the rest position on the test surface, move to the next measurement location, and drop the spindle head onto the test area. Take care to raise the spindle head or probe no more than 0.0004 in or 0.01 mm above its rest position on the test area. Any part of the test area in contact with the spindle head or probe during measurement must be at least 1/4 in or 6 mm from the edge of the sheet.

Record all thickness measurements on the worksheet. Compute and record the average thickness for the individual package.

7. Repeat step 6 on the remaining packages in the sample.

8. In Section 2.13., the MAV for polyethylene was described to apply in two stages. Follow both a and b below.

a. No measured thickness of polyethylene labeled 1 mil or greater should be less than 80% of the labeled thickness.

No measured thickness of polyethylene labeled less than 1 mil should be less than 65% of the labeled thickness.

Circle any value in the thickness columns of the worksheet that is smaller than (0.8 x labeled thickness) or (0.65 x labeled thickness) if thickness is less than 1 mil. If the number of values circled exceeds the number recircled in box 8 of the report form, the lot fails to conform to requirements. No further testing of the lot is necessary.

If the number of circled thickness measurements is less than or equal to the box 8 value, go on to step 8b.

b. The average thickness for any single package should be at least 90% of the labeled thickness. This is an MAV of 90%.

Circle any package average thickness value that is smaller than (0.93 x labeled thickness).

If the number of package average thicknesses circled exceeds the number recorded in box 8 of the report form, the lot fails to con-

*Count circled average thicknesses only; do not include circled individual thicknesses in this count.
form to requirements. No further testing of the lot is necessary. If the number of circled package average thicknesses is less than or equal to the box 8 value, follow step 8-11 of Section 5.5. (CORE METHOD) to determine lot conformance with respect to average thickness.

5.5. Paper Plates

The plate count is first checked against requirements for the average, then the plate size is checked.

5.5.1. Equipment

Scales and weights recommended in Section 3.1.

Measuring base of any flat, sturdy material approximately 15 in (40 cm) square. Two vertical side pieces approximately 1 in (3 cm) high and the same length as the sides of the measuring base are attached along two adjoining edges of the measuring base to form a 90° corner.

Graph paper, 20 divisions per inch (10 divisions per centimeter).

5.5.2. Preparation for Test

Trim all white borders from 2 or more sheets of graph paper. Place one sheet on the measuring base and position it so that one corner of graph paper is snug to the corner of the measuring base and vertical sides. Tape the sheet to the measuring base. Overlap other sheets on the first sheet so that the lines of top and bottom sheet coincide, expanding the graph area to a size bigger than plates to be measured; these sheets are also taped to the measuring base. Number each inch (or centimeter) line from the top and left side of base plates: 1, 2, 3, etc.

5.5.3. Procedure

1. Determine inspection lot, fill out standard pack report forms (one for each labeled unit), and select random sample and random size sample.

2. Follow the procedures in Section 5.1. or 5.2. (depending on the labeled count) to determine lot conformance with respect to count. If the lot conforms, go on to step 3 below.

3. The sample selected for determining lot conformance with respect to count may be used to determine conformance with respect to dimensions; however, the inspector may have to select additional packages for the sample. For example, if the lot size is between 251 and 500 packages, Table 5-1 (page 8-25) permits a sample size of 10 packages for packages labeled by low

1Equipment and method derived from those provided by Mr. William Marks, American Can Co., 333 No. Commercial St., Neenah, WI 54956.
count, but Table 2-5 requires a sample size of 30 packages for this lot size for checking dimensions.

For low count packages, check sample size required according to Table 2-2 (page B-3) or 2-5 (page B-5) and, if necessary, select additional packages for the sample. A tare sample is not needed in this part of the procedure.

Select 1 plate from each package to represent that package.¹

4. Place each plate to be measured on the measuring base plate, standing surface down, so that two sides of the plate are touching the two vertical side pieces (See Figure 5-2.)

![Figure 5-2. Preparing to measure the dimensions of a paper plate.](image)

Rest the palm of your hand on the plate to ensure that plate is flat and, referring to the numbered lines on the graph paper, read the plate diameter. If the plate is circular, read the smallest diameter if the numbers in the two directions differ. If the plate is oblong, read the plate size in major and minor directions.

5. The package error is equal to the plate diameter minus the labeled diameter. Record the package error on a worksheet and, using an appropriate unit of measure, transfer to a report form (separate from the form used to record count).

¹Some packages of plates contain a combination of plates of differing sizes. In this instance, a plate of each declared size is taken from the package to represent all the plates of that size in the package. For example, if three sizes are declared, three plates are selected from each package. Upon occasion, packages of plates declared to be of one size may contain plates which can be seen by inspection to be of different sizes in the same package. In this instance, select the smallest plate and using the methods above, determine the package error for the smallest. If the smallest plate is not short measure by more than the MAV, each size of plate in the package will have to be measured and the average dimensions of the package calculated. For example, if 5 plates measure 8-7/16 in and 15 measure 8-9/16 in, the average dimension for this package of 20 plates is 8.53 in.
6. Repeat steps 4 and 5 for all packages in the sample. Follow steps 7-11 of section 3.5. (CORE METHOD) to determine lot conformance.

5.6. Sanitary Paper Products

The labeled count is first checked, followed by a check on the linear measurements.

The count of sanitary paper products cannot be determined adequately by weighting. Variability in sheet weight and core weight requires that official tests be conducted by actual count. However, weighting can be a useful audit method.

These products often declare total area as well as unit count and sheet size declarations. If the actual sheet size measurements and the actual count comply with the average requirements, the total area declaration is assumed to be correct.

5.6.1. Equipment

Plastic plate, 1/8 to 1/2 in (0.3 to 2 cm) thick, 20 by 20 in (50 by 50 cm).

Rule, 12 in (30 cm) in length, 0.02 in (1 mm) divisions.

It is easier to make the measurements if two rules are inlaid perpendicular to each other and flush with a working surface.

5.6.2. Procedure

1. Determine inspection lot, fill out separate forms for length count and width. Follow the procedures in Section 5.1. or 5.2. to determine lot conformance with count requirements.

2. If necessary, select additional packages for the sample to be checked for dimensions (as in Section 5.5.3., step 2). A true sample is not necessary.

3. Select one sheet, napkin, etc., from each package. Then, (removing creases if necessary), place the product between the working surface and the plastic plate and measure and record the product's dimensions.

4. The package error is equal to the actual dimension minus the labeled dimension. Record the package errors on a worksheet and, using an appropriate unit of measure, transfer them to a different report form than used to record count.

5. Repeat steps 3 and 4 for all the packages in the sample. Go to step 7 of Section 3.5. (CORE METHOD) to determine lot conformance.

6. Individual sheets within a package or roll may differ from one another. If the above procedure indicates lot nonconformance, measure at least 10 sheets

1Derived from apparatus and method by Mr. William Marks, American Can Co., Neenah, WI 54956.

5-15
Chapter 5

selected randomly from each package. Average these to determine dimen-
sions and use these average dimensions in steps 4 and 5 above.

5.7. Pressed and Blown Glass Tumblers and Stemware

The package requirement that the average quantity of a lot (shipment or delivery) meet
or exceed the labeled quantity is not applied to the capacity of pressed and blown
tumblers and stemware. When a tolerance is provided in a regulation, a minimum net
quantity is defined for the packages in the lot. If any and all packages in a lot are
allowed to be less than the declared quantity by a specified amount, then the average net
quantity of those packages cannot be expected to meet some higher value.

The sampling plans in Table 5-2 (page B-23) are provided for pressed and blown glass
tumblers and stemware.

To use the sampling plans in Table 5-2 the inspection lot is identified and a random
sample (following Appendix B methods) is selected according to the size of the lot.

The capacity of the items in the sample are measured following Section 5.7.1. Each
package error is compared with the applicable allowable difference. The number of
packages with package errors greater than the allowable difference is counted and com-
pared with the number given in column 4 of Table 5-2. If the number in column 4 is
exceeded, the lot fails to conform with the package requirements. If the number of
packages with errors exceeding the allowable difference is less than or equal to the num-
ber in column 4, the lot conforms. The average package error is not calculated. The lot
conforms or fails based on the individual package errors only. Individual packages con-
taining items exceeding the allowable difference are acted upon individually even though
the requirements for the lot may be met.

The National Conference on Weights and Measures (NCWM) Uniform Sale of Commodities
Regulation (MoS) is a standard for State regulatory use which is periodically updated by State
agency representatives. The 1989 edition of NBS Handbook 131, which contains the current
NCWM uniform regulations, lists the following "allowable differences" or tolerances.
Individual State regulations may or may not permit the following or other allowable dif-
f erences.

<table>
<thead>
<tr>
<th>Product</th>
<th>Allowable Difference</th>
<th>Reference to the</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressed and blown tumblers and stem-ware labeled by count and capacity</td>
<td>Inch-pound: ± 1/4 oz for items less than or equal to 5 oz; ± 5% for items greater than 5 oz.</td>
<td>NCWM MoS Section 3.2.1.</td>
</tr>
<tr>
<td>Metric: ± 10 mL for items less than or equal to 200 mL; ± 5% for items greater than 200 mL.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-16
5.7.1. Procedure

This section describes how to test tumbles and stemware which are labeled by count and capacity. The package count must meet the requirements for the average. The individual units (tumblers, stemware) must meet the requirements for capacity, which for pressed and blown products is an "allowable difference" requirement. Equipment is the same as recommended in Section 4.14.1.

1. Determine inspection lot, and follow the procedures in Section 5.1 or 5.2 (depending on the labeled count) to determine conformance of the lot with respect to count.

 If the lot conforms to requirements for count, go on to step 2 below.

2. The packages selected for the sample to be tested for count may also be used to test for capacity. Since a different sampling plan will be used, a different sample size may be needed.

 For example, an inspection lot of 7 or 12 count, glass tumblers is composed of 50 packages. Referring to Table 5-1 (page B-23), a sample size of 10 is selected to be checked for count. The lot is found to meet the average requirements for count. Referring to Table 5-2 (page B-23), a sample size of 10 is adequate for checking the labeled capacity. Therefore, the same 10 packages are checked for capacity.

 Every package is checked. [No bare sample is needed.]

 The capacity of each container in the package is determined.

3. Follow Section 4.14.2, steps 2, 3, and 4 on each item to be checked. Use separate worksheets and report form from those used to record labeled count.

4. The tumbler error is equal to the measured volume capacity minus the labeled capacity. Note on the report form to refer to the worksheet(s) for the appropriate individual tumbler error.

5. Compare each tumbler/stemware error with the allowable difference. Circle any error that exceeds the allowable difference (either positive or negative error).

6. Compare the total number of circled errors with Table 5-2, column 4 value, corresponding to the sample size.

For example, if the sample size is 30, only one tumbler/stemware error in the sample may exceed the allowable difference.

If the number of circled errors is more than the column 4 value of Table 5-2, the lot fails to conform to the package requirements. If the number of circled errors is less than or equal to the value in Column 4 of Table 5-2, the lot conforms with the package requirements.

5.8. Baler Twine - Test Procedure for Length

5.8.1. Equipment

- Measuring tapes as recommended in § 5.3.1. Determine measurements of length to the nearest division of the appropriate tape or rule.

- A hand-held calibrated straight-face spring scale of at least 5-kg (10 lb) capacity or a cardage testing device (similar to the one illustrated in Figures 1 and 2) that applies the specified tension to the twine being measured. When measuring twine samples or total roll length, apply 5 kg (10 lb) of tension to the twine. Accurate measurement requires the application of tension to the ends of the twine before measurement in order to straighten the product.

![Figure 1 Cardage Test Device](image)

- Scale with 0.1 gram - (0.0002 lb) increments for weighing twine samples. The recommended minimum load for weighing samples is 20 g.

- Scale as recommended in 3.1. for weighing bales and rolls of twine.
5.8.2. Procedure

When the term "tare" is used, this refers to spaces on the Standard Package Report Form (Page A-1). The term "item" refers to spaces on the Baler Twine Worksheet (Page A-X7).

1. Determine the inspection lot; fill out a Standard Package Report Form (Page A-1). A separate report form and bale twine worksheet should be filled out for each lot.

2. Select packages for tare samples. Determine gross weight of tare sample lot and record in Item 1. Open the tare samples, determine the tare weights, and record in Item 2. Compute the average tare weight and enter this value in Item 2a and box 13.

3. Procedure for obtaining twine samples - select, at random, four balls of twine from the packages that were opened for tare. From each of the four balls of twine:
 a. Measure and discard the first 10 meters (33 ft) of twine from each roll.
 b. Take two 30-meter (100 ft) lengths of twine from inside each roll.
 c. Weigh and record the weight of each piece separately and enter the values in Item 3. Compare the weight values to determine the variability of the samples. If the individual weights of the twine samples vary by more than the amount specified in Table 4.3, use the following steps should be taken if the lot is found to be short:

• Determine the actual length of the lightest-weight roll found in the lightest-weight package of the lot to confirm that the weight shortages reflect the shortages in the length of the rolls or;

• Determine the average weight-per-unit of measure by taking (2) 30-meter (100 ft) lengths from inside the lightest weight package and use this value to re-calculate its length and determine lot compliance.

a. Weigh all of the sample lengths together and enter the total value in Item 4. Determine the total length of the samples, (800 meters or feet, unless more than 8 sample lengths were taken) and record the value in Item 5. Compute the average weight-per-unit-of-length by dividing the total weight (Item 4) by the total length of the pieces (Item 5).

4. Determine the MAV for a package of twine (see item 7):

b. Multiply the MAV from Table 2-11 times the total package length to obtain the MAV for length. Enter this value in Item 7b.

c. Multiply the weight per unit of length (Item 6) times the MAV for length (7b) to obtain the MAV by weight. Enter this value in Item 7c and box 3.

d. Convert the MAV to dimensionless units and record on box 4.

5. Calculate the nominal gross weight and record it in Item 9 and box 14.

6. Compute the package errors for the tare sample on the worksheet and transfer these values to the cross-hatched area of the report form. Use the information obtained from the worksheet to conduct the lot inspection. Determine errors using the following formula:

Package error (weight) = (actual package gross weight) - (nominal gross weight).

5-18
ACKNOWLEDGMENTS

We thank the State weights and measures officials who advised us, collected data for us, and commented on several drafts: many packagers, industries, and trade associations for their data and suggestions; the U.S. Department of Agriculture, Food Safety and Inspection Service; the Food and Drug Administration, especially the Bureau of Foods; the Federal Trade Commission; and staff of NIST, especially the staff of the Office of Weights and Measures, and of the Statistical Engineering Division; and finally Dr. Joa Rosenbliut, Mr. H. F. Wollin, and Mr. A. D. Tholen.

We are especially indebted to the many regulatory officials and business representatives who labored with us during seminars and workshops on the first edition. The improvements in all the forms and charts resulted from these efforts. One of the authors, Mrs. Mary Nutrella, passed away before the third edition was published. She will be sorely missed by the entire statistical and legal metrology communities.

REFERENCES

(2) Factors for High Precision Conversion, U.S. Customary and Metric Units, NIST LC 1071, July 1976.
(20) Standard Method of Test for Yarn Number by the Ashen Method, ASTM D1907-75, 1975.

<table>
<thead>
<tr>
<th>Form/Woorksheet Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard pack report form</td>
<td>A-1</td>
</tr>
<tr>
<td>Standard pack - weight only - report form</td>
<td>A-2</td>
</tr>
<tr>
<td>Random pack report form (Page 1 of 2)</td>
<td>A-3</td>
</tr>
<tr>
<td>Random pack report form (Page 2 of 2)</td>
<td>A-4</td>
</tr>
<tr>
<td>Worksheet for packages labeled by liquid volume (Page 1 of 2)</td>
<td>A-5</td>
</tr>
<tr>
<td>Worksheet for packages labeled by liquid volume (Page 2 of 2)</td>
<td>A-6</td>
</tr>
<tr>
<td>Worksheet for checking paint</td>
<td>A-7</td>
</tr>
<tr>
<td>Worksheet for packages labeled by count (Page 1 of 2)</td>
<td>A-9</td>
</tr>
<tr>
<td>Worksheet for packages labeled by count (Page 2 of 2)</td>
<td>A-10</td>
</tr>
<tr>
<td>Worksheet for checking polyethylene sheeting</td>
<td>A-11</td>
</tr>
<tr>
<td>Worksheet for ice cream novelties</td>
<td>A-13</td>
</tr>
<tr>
<td>Flour and dry pet food summary sheet</td>
<td>A-15</td>
</tr>
<tr>
<td>Baler Twine Worksheet</td>
<td>A-16</td>
</tr>
</tbody>
</table>
This report form is designed for standard packages not labeled by weight; for example, liquid volume, count, parts, etc.

Fill out report form handling, boxes 1 through 4 and boxes 5 through 8.

Go to appropriate worksheets, follow directions on the worksheet, recording data on the report form as directed by the worksheet.

<table>
<thead>
<tr>
<th>PACKAGE ERRORS</th>
<th>TOTAL ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[</td>
<td>[</td>
</tr>
</tbody>
</table>

RANGES

- NO. UNREASONABLE
- AVERAGE ERROR (Maximum 5)
- AVERAGE ERROR (Mean 100)
- AVERAGE ERROR (Standard Error)
- ZEROS OR PLUS or MINUS (101)
- SUMS UP VALUE (Table 100)
- ZEROS OR PLUS (00)
- TOTAL ERRORS

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

A-1
RANDOM PACK REPORT FORM

Page 2 of 2

H. WEIGHT CALCULATIONS:

| Gross Weight | | |
| Net Weight | | |

| Package Error | | |
| Package Error | | |

| Additional | | |

| Lot Disposition | Category A |

Note: Packages should not be arranged from lightest to heaviest when following A

16

ON PAGE 1,
THE NUMBER OF UNITS
PACKAGE ERRORS
EXCEEDING THE MAX
IS REGISTRATION IN
REMARKS.

17

GROUP

3.5

4

5

6

7

8

9

10

Average = Sum of = No. of Groups

Result for disposition on page 1 in box 19.

A-4
WORKSHEET FOR PACKAGES LABELED BY LIQUID VOLUME

NUMBERS WITH BOXES (e.g., 23) REFER TO REPORT FORM (PAGE A1)
STEP NUMBERS (e.g., STEP 9) REFER TO WORKSHEET

Fill out report form step 1 through box 8, skip boxes 9 and 10.

<table>
<thead>
<tr>
<th>1st Pkg</th>
<th>2nd Pkg</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-GT:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-GT:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-W:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Flask Weight (full)

4. Flask Weight (partial, unset)

5. Weight of Liquid (Step 3-Step 4)

6. Volume of Flask

7. Temperature of Liquid

8. Do the weights recorded in Step 5 differ from each other by more than the value in Table 4-3 (page B-20)?
 YES [] NO []

9. AVERAGE WEIGHT OF LIQUID IN FLASK = AVERAGE OF STEP 5 =

10. \[\text{AVERAGE WEIGHT OF LABELED LIQUID} = \frac{\text{Labeled Volume}}{\text{Flask Volume}} \times \text{Avg. Weight of Liquid in Flask} \]

11. \[\text{Step 9} = \text{Step 6} \]

12. AVERAGE TARE = AVERAGE OF STEP 2 (or average of Step 2 and additional tares)

*Alternative Tare procedure for liquids packed in glass.
All additional packages are opened for tare, provision should be made for recording all pertinent data.

A-5
13. NOMINAL GROSS WEIGHT = AVERAGE TARE + AVERAGE WEIGHT OF LABELED VOLUME

= Step 12 + Step 10 = Record in box 2b on report form

14. For packages opened for Tare:

PACKAGE ERROR (weight) = GROSS WEIGHT - NOMINAL GROSS WEIGHT

= Step 1 - Step 11

Record package errors on report form in crosshatched area.

15. PACKAGE ERROR (dimensional units) = PACKAGE ERROR (weight) + UNIT OF MEASURE

= Step 14 + box 2

Record package errors on report form in crosshatched area.

16. MAV (volume) from Table 29 = Record in box 2 on report form.

17. MAV (weight) = MAV (volume) x AVERAGE WEIGHT OF LABELED VOLUME / LABELED VOLUME

= Step 16 x Step 10 = Record in box 3

18. MAV (dimensional units) = MAV (weight) + UNIT OF MEASURE

= Step 17 + box 2 = Record in box 4 on report form

19. Compare unopened packages with nominal gross weight (Step 13, box 14).

Compare with package errors with MAV (Step 16, box 4). Average package errors (box 15). Convert back to units of volume as given below:

AVERAGE PACKAGE ERROR (volume) = AVERAGE PACKAGE ERROR (dimensional units) x UNIT OF MEASURE x LABELLED VOLUME

= box 16 x box 2 x box 10 = Record in box 10 on report form

(Boxes above with "3", "4", "5" in corners are for larger lot sample sizes.)

A-6
WORKSHEET FOR CHECKING PAINT

Audit

<table>
<thead>
<tr>
<th>Can Height</th>
<th>Top</th>
<th>Middle</th>
<th>Bottom</th>
<th>Average</th>
<th>6 Average Liquid Diameter</th>
<th>Average Level</th>
<th>Average Container Diameter</th>
<th>Average Liquid Depth</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

1 cu. in. = 0.0044329 gal.
1 cm² = 0.001 L

Volume \(V \) = \(0.7854 \times (6 \times 6 \times 6) \)

If volume in 6 is less than labeled volume, use possible violation procedures (Section 4.9.4.)

Possible Violation

<table>
<thead>
<tr>
<th>1 Label</th>
<th>2 Orang Weight</th>
<th>3 Lid Weight Wet (- Dry)</th>
<th>4 Liquid Weight</th>
<th>5 Tare</th>
<th>6 Water Volume</th>
<th>7 Net Weight</th>
<th>8 Package Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-7
Worksheet for Packages Labeled by Count

Numbers with Boxes (e.g. 3) refer to Report Form (page A-3)
Step Numbers (e.g. Step 5) refer to worksheet

Fill out report form through box 11, skip box 12 and 13

<table>
<thead>
<tr>
<th>1. Gross Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1st pkg)</td>
</tr>
<tr>
<td>(2nd pkg)</td>
</tr>
<tr>
<td>(3rd)</td>
</tr>
<tr>
<td>(4th)</td>
</tr>
<tr>
<td>(5th)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Tare Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Count in Each Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Weight of Counted Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Weight of Labeled Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 =</td>
</tr>
</tbody>
</table>

6. MAV from Table 5:10 (count) (page B:10)

7. MAVX = \[
\text{MAVX (count)} \times \frac{\text{WEIGHT OF COUNTED ITEMS}}{\text{COUNT IN PACKAGE}}
\]

8. If using a weight bale package checking scale, is value calculated in Step 7 equal to or larger than 1/2 the smallest graduation? YES [] No []

9. Do the weights counted in Step 6 above differ from each other by more than 1/10 of their value in Table 4:3 (page B:20)?

10. AVERAGE TARE = AVERAGE OF STEP 2 Record in box 10 on report form.

11. NOMINAL GROSS WEIGHT = AVERAGE TARE + \[
\text{AVERAGE WEIGHT OF LABELED COUNT}
\]

A-5
12. For packages opened for Tare:

\[
\text{PACKAGE ERROR (weight)} = \text{GROSS WEIGHT} - \text{NOMINAL GROSS WEIGHT}
\]

Step 1 - Step 11

\[
= 1 \quad 2 \quad 3 \quad 4 \quad 5
\]

13. PACKAGE ERROR (unitless unit) = PACKAGE ERROR (weight) + UNIT OF MEASURE

Step 12 + box 3

\[
= 1 \quad 2 \quad 3 \quad 4 \quad 5
\]

Record these package errors on report form in crosshatched area.

14. MAV (weight) = MAV (count) \times \text{AVERAGE WEIGHT OF LABELED COUNT}

\[
\text{LABELED COUNT}
\]

Step 6 \times box 2

\[
= \text{box } 1
\]

Record in box 4 on report form.

15. MAV (unitless units) = MAV (weight) + UNIT OF MEASURE

Step 14 \times box 2

\[
= \text{box } 1
\]

Record in box 4 on report form.

16. Compare unlabeled packages with nominal gross weight (Step 11 or box 14). Record package errors for remaining packages in sample directory on report form in crosshatched area.

17. Convert minor package errors with MAV (Step 15 or box 14). Average package errors (box 15). Convert back to unit of count as given below:

\[
\text{AVERAGE PACKAGE ERROR (count) = AVERAGE PACKAGE ERROR (unitless unit) \times UNIT OF MEASURE \times LABELED COUNT}
\]

\[
= \text{box } 8 \times \text{box } 4 \times \text{box } 4
\]

Step 15

\[
= \text{box } 1
\]

Record in box 15 on report form.

(Boxes above with "3", "4", and "5" in corners are for larger tare sample units.)

A-10
<table>
<thead>
<tr>
<th>Package</th>
<th>Length</th>
<th>Width</th>
<th>Thickness</th>
<th>Package</th>
<th>Length</th>
<th>Width</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Labeled Thickness is less than 1 mil:
0.65 x labeled thickness = ______
Compare with All Thickness Measurements

If Labeled Thickness is 1 mil or greater:
0.8 x labeled thickness = ______
0.93 x Labeled Thickness = ______
Compare with Average Package Thickness
WORKSHEET FOR ICE CREAM NOVELTIES

<table>
<thead>
<tr>
<th></th>
<th>(1st Pkg)</th>
<th>(2nd Pkg)</th>
<th>(3rd Pkg)</th>
<th>(4th Pkg)</th>
<th>(5th Pkg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gross Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tare Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Net Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Total water volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Volume of tare materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Volume of novelty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Weight of labeled volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{labeled volume} \times \frac{\text{item 3}}{\text{item 6}} = \]

8. Do the weights recorded in item 7 above differ from each other by more than the value in Table 4-3 (page B-20)?

- YES ☐
- NO ☐

If this box is checked, open all packages in sample and determine each package error by volume displacement.

Average weight of labeled volume = average of item 7 =

9. Average tare = average of item 2 =

Record in box 13 on report form

10. Nominal Gross Weight = Average Tare + Average weight of the labeled volume

\[\text{item 9} + \text{item 8} = \]

Record in box 14 on report form

11. MAV (volume) from Table 2-9 (pages B-11 & 12) =

Record in box 3 on report form

A-13
12. \[
\text{MAV (Dimensionless units)} = \frac{\text{MAV (Volume) \times Average Weight of Labeled Volume}}{\text{Labeled Volume}} \div \text{Unit of Measure}
\]
\[
= \frac{\text{Item 11 \times Item 8}}{\text{box 1 \times box 2}}
\]

13. You should select additional packages over and above the sample size just for the determination of the tare weight and average weight of the labeled volume for example, select 2 additional packages beyond a sample of 10. This will avoid having to determine the package errors for these additional packages. If the inspection lot is very small, however, you may not have access to additional packages just for tare. In this situation, you'll have to determine the package errors for those packages you opened for tare and record the errors so they can be recorded in the crosshatched area of the report form:

\[
\text{Package Error (Dimensionless units)} = \frac{\text{Gross Weight - Nominal Gross Weight}}{\text{Unit of Measure}} \text{ for each package}
\]
\[
= \frac{\text{Item 1 (for each package) - Item 10}}{\text{box 2}}
\]
\[
= \begin{array}{ccccc}
\text{(1st pkg)} & \text{(2nd pkg)} & \text{(3rd pkg)} & \text{(4th pkg)} & \text{(5th pkg)}
\end{array}
\]
Record these package errors on report form in crosshatched area.

14. Compare weight of unopened packages with Nominal Gross Weight (Item 10 and box 14)
Record package errors for unopened packages directly on report form in crosshatched area.
Compare minus package errors with MAV (item 12 or box 4)
Average the package errors (and record in box 10)
Convert back to units of volume as given below:

\[
\text{Average package error (Volume)} = \frac{\text{Average package error (Dimensionless units) \times Unit of Measure \times Average Weight of Labeled Volume}}{\text{Labeled Volume}}
\]
\[
= \frac{\text{box 11 \times box 2 \times box 1}}{\text{Item 8}}
\]
Record in box 19 on the report form.
<table>
<thead>
<tr>
<th>DATE TESTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BRAND</td>
</tr>
<tr>
<td>2. TYPE OF PRODUCT</td>
</tr>
<tr>
<td>3. LABELED WEIGHT (LB)</td>
</tr>
<tr>
<td>4. LOCATION OF TEST (SWPL)</td>
</tr>
<tr>
<td>5. LOT CODE</td>
</tr>
<tr>
<td>5A. LOCATION PACKED</td>
</tr>
<tr>
<td>5B. DATE PACKED</td>
</tr>
<tr>
<td>6. LOT SIZE</td>
</tr>
<tr>
<td>7. SAMPLE SIZE</td>
</tr>
<tr>
<td>8. TARE WEIGHT</td>
</tr>
<tr>
<td>9. AVERAGE PACKAGE ERROR (LB)</td>
</tr>
<tr>
<td>10. LARGEST MINUS PACKAGE ERROR (LB)</td>
</tr>
<tr>
<td>10A. MAV (LB)</td>
</tr>
<tr>
<td>11. IS LOT IN GRAY AREA? (SEE TABLE 3-3)</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>12. MOISTURE CONTENT AT TIME OF TEST (%)</td>
</tr>
<tr>
<td>13. MOISTURE CONTENT AT TIME OF PACK (%)</td>
</tr>
<tr>
<td>14. MOISTURE LOSS (LB) = (ITEM 13) - ITEM 12)</td>
</tr>
<tr>
<td>15. WEIGHT LOSS (LB) = (ITEM 14 * 0.05) * ITEM 3)</td>
</tr>
<tr>
<td>16. IS WEIGHT LOSS (ITEM 15) AT LEAST AS LARGE AS AVERAGE PACKAGE ERROR (ITEM 9)?</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>17. DOES LARGEST MINUS ERROR (ITEM 10) + MOISTURE LOSS (ITEM 15) STILL EXCEED MAV (ITEM 10A)?</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
</tr>
</tbody>
</table>
Baler Twine Worksheet

<table>
<thead>
<tr>
<th>Packages</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gross</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2a. Average tare
Record in box 13 of report form.

3. Weights of sample lengths of baler twine. Length of each piece

| | | | |

4. Determine the total weight of all sample pieces in

5. Determine the combined length of all sample pieces in

6. Compute the average weight per unit of length (divide 4 by 5)

7. Determine the MAV.
 a. Compute total declared package length:
 b. Compute the MAV for total package length. (MAV from table 2-11 x 7a)
 c. Compute the MAV (multiply 6 x 7b) for total package weight and enter it in box 3.

9. Compute the nominal gross weight for a package. (Enter in box 14.)
Nominal gross weight

\[
(\text{multiply } 6 \times 7a) + \text{Average Tare} (2a).
\]
APPENDIX B. TABLES

Table 1-1 Agencies responsible for package regulations. Page B-1
Table 2-1 Guide to locations on the report forms for standard pack packages on pages A-1 and A-2. Page B-2
Table 2-2 Sampling plans of category A. Page B-3
Table 2-3 Values of $(0.8598)/n$ and $2/n$ for sample size n. Page B-3
Table 2-4 Values of f for percent of lot sampled. Page B-4
Table 2-5 Sampling plans of category B. Page B-5
Table 2-6 Initial tare sample size for alternative tare procedures. Page B-6
Table 2-7 Total number of packages (n) to be opened for tare determination. Page B-7
Table 2-8 MAV's for an individual package labeled by weight. Page B-9
Table 2-9 MAV's for an individual package labeled by volume - liquid or dry. Page B-11
Table 2-10 MAV's for an individual package labeled by count. Page B-13
Table 2-11 MAV's for an individual package labeled by length (width) or by area. Page B-14
Table 2-12 U.S. Department of Agriculture, Meat and Poultry, Groups and Lower Limits for individual packages. Page B-15
Table 3-1 Recommended maximum units of measure to be used in recording package weights. Page B-16
Table 3-2 Test allowances for foam aerosol products. Page B-17
Table 3-3 Boundaries of the gray area for different sizes of flour packages. Page B-17
Table 4-1 Weighing devices appropriate to use to check common consumer products labeled by liquid volume. Page B-18
Table 4-2 Recommended maximum units of measure to be used for recording the weights of packaged goods labeled by liquid volume. Page B-19
Table 4-3	Maximum permitted difference in weight of two equal quantities according to the type of scale used to weigh.	B-20
Table 4-4	Thickness of paint can walls and labels.	B-21
Table 5-1	Sampling plans for packages labeled by low cost.	B-22
Table 5-2	Sampling plans for packages given tolerances.	B-23
Table 1-1. Agencies responsible for package regulations. *

<table>
<thead>
<tr>
<th>Agency</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Department of Agriculture, Food Safety and Inspection Service</td>
<td>meat and poultry</td>
</tr>
<tr>
<td>U.S. Department of Health and Human Services, Food and Drug Administration</td>
<td>food, drugs, cosmetics, and medical devices</td>
</tr>
<tr>
<td>U.S. Federal Trade Commission</td>
<td>household or consumer commodities that are not food, drugs, medical devices, or cosmetics</td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency</td>
<td>pesticides</td>
</tr>
<tr>
<td>U.S. Department of the Treasury, Bureau of Alcohol, Tobacco, and Firearms</td>
<td>alcohol and tobacco products</td>
</tr>
<tr>
<td>State Weights and Measures Offices</td>
<td>all packaged products</td>
</tr>
</tbody>
</table>

* See Appendix D for specific regulations.
<table>
<thead>
<tr>
<th>Box</th>
<th>Subject</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Labeled Contents</td>
<td>2.2.1.</td>
<td>2-2</td>
</tr>
<tr>
<td>2</td>
<td>Unit of Measure</td>
<td>2.5.1.</td>
<td>2-18</td>
</tr>
<tr>
<td>3</td>
<td>MAV</td>
<td>2.12.</td>
<td>2-25</td>
</tr>
<tr>
<td>4</td>
<td>MAV (dimensionless units)</td>
<td>2.5.1.</td>
<td>B-9 to B-15</td>
</tr>
<tr>
<td>5</td>
<td>Lot Size (N)</td>
<td>2.3.3.</td>
<td>2-7</td>
</tr>
<tr>
<td>6</td>
<td>Sample Size (n)</td>
<td>2.7., 2.8.</td>
<td>B-3 or B-5</td>
</tr>
<tr>
<td>7</td>
<td>Tare Sample Size (n)</td>
<td>2.7., 2.8., 2.11.</td>
<td>2-12, 2-17</td>
</tr>
<tr>
<td>8</td>
<td>Allowed Number of Unreasonable Errors</td>
<td>2.7.1., 2.8.1.</td>
<td>2-13, 2-17</td>
</tr>
<tr>
<td>9</td>
<td>Range of Net Weights (Rl)</td>
<td>2.11.4.</td>
<td>2-23</td>
</tr>
<tr>
<td>10</td>
<td>Range of Tare Weights (Rt)</td>
<td>2.11.4.</td>
<td>2-23</td>
</tr>
<tr>
<td>11</td>
<td>Rl - Rt</td>
<td>2.11.4.</td>
<td>2-23</td>
</tr>
<tr>
<td>12</td>
<td>n, from Table 2-7</td>
<td>2.11.4.</td>
<td>B-7</td>
</tr>
<tr>
<td>13</td>
<td>Average Tare</td>
<td>2.11., 2.11.3., 2.11.4.</td>
<td>2-15, 2-22, 2-25</td>
</tr>
<tr>
<td>13a</td>
<td>Tare Correction</td>
<td>moisture 2.14. , foam 3.11.6., vacuum pack 3.15.</td>
<td>3-33, B-17, 3-36</td>
</tr>
<tr>
<td>14</td>
<td>Nominal Gross Weight</td>
<td>3.5</td>
<td>3-8</td>
</tr>
<tr>
<td>15</td>
<td>Total Package Error</td>
<td>2.9.3.</td>
<td>2-11</td>
</tr>
<tr>
<td>16</td>
<td>Actual Number of Unreasonable Errors</td>
<td>2.7.1. 2.6.1.</td>
<td>2-13, 2-17</td>
</tr>
<tr>
<td>17</td>
<td>Decision on Unreasonables</td>
<td>2.7.1, 2.8.1.</td>
<td>2-13, 2-17</td>
</tr>
<tr>
<td>18</td>
<td>Average error</td>
<td>2.7.2, 2.8.2.</td>
<td>2-15, 2-18</td>
</tr>
<tr>
<td>19</td>
<td>Average Error (labeled units)</td>
<td>2.7.2, 2.8.2.</td>
<td>2-15, 2-18</td>
</tr>
<tr>
<td>20</td>
<td>Decision on Average</td>
<td>2.7.2, 2.8.2.</td>
<td>2-15, 2-18</td>
</tr>
<tr>
<td>21</td>
<td>Average Range</td>
<td>2.7.2, Appendix G</td>
<td>2-15, G-1</td>
</tr>
<tr>
<td>22</td>
<td>Value from Table 2-3, column 2</td>
<td>2.7.2</td>
<td>2-15, B-3</td>
</tr>
<tr>
<td>23</td>
<td>Q</td>
<td>2.7.2</td>
<td>2-16</td>
</tr>
<tr>
<td>24</td>
<td>(n/N)*100</td>
<td>2.7.2</td>
<td>2-16</td>
</tr>
<tr>
<td>25</td>
<td>f</td>
<td>2.7.2</td>
<td>B-4</td>
</tr>
<tr>
<td>26</td>
<td>T</td>
<td>2.7.2</td>
<td>2-16</td>
</tr>
<tr>
<td>27</td>
<td>Decision on Average</td>
<td>2.7.2</td>
<td>2-16</td>
</tr>
<tr>
<td>28</td>
<td>Disposition of Lot</td>
<td>2.2.3.</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Summary of boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>26, 27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-2
Table 2-2. Sampling plans of Category A.

<table>
<thead>
<tr>
<th>Lot size (number of packages in lot)</th>
<th>Sample size (number of packages in sample)</th>
<th>Tare sample size (number of packages chosen for tare determination)</th>
<th>Number of minus package errors allowed to exceed the MAV<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n</td>
<td>n<sub>t</sub></td>
<td></td>
</tr>
<tr>
<td>30 or less</td>
<td>all</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>31-800</td>
<td>30</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>801-2,000</td>
<td>50</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2,001-5,000</td>
<td>80</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5,001-15,000</td>
<td>125</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>15,001 and greater</td>
<td>200</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

^a Special rules for tare sampling apply when Section 2.11.4. is followed (this is the tare procedure for variable tare and must be used for glass or aerosol packages).

^b See Tables 2-8 through 2-11 (pages B-9 through B-14), and Sections 2.12., and 2.13.

Table 2-3. Values of 0.8598 and 2 for sample size n.

<table>
<thead>
<tr>
<th>n sample size</th>
<th>0.8598<sup>n</sup></th>
<th>used only when R is calculated</th>
<th>2<sup>n</sup></th>
<th>used only when s is calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.1570</td>
<td></td>
<td>0.3652</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.1216</td>
<td></td>
<td>0.2828</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.09613</td>
<td></td>
<td>0.2236</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0.07691</td>
<td></td>
<td>0.1789</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.06090</td>
<td></td>
<td>0.1414</td>
<td></td>
</tr>
</tbody>
</table>

B-3
Table 2-4. Values of f for percent of lot sampled

<table>
<thead>
<tr>
<th>Percent of lot sampled</th>
<th>f</th>
<th>Percent of lot sampled</th>
<th>f</th>
<th>Percent of lot sampled</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.99</td>
<td>36</td>
<td>.90</td>
<td>71</td>
<td>.54</td>
</tr>
<tr>
<td>2</td>
<td>.99</td>
<td>37</td>
<td>.79</td>
<td>72</td>
<td>.53</td>
</tr>
<tr>
<td>3</td>
<td>.98</td>
<td>38</td>
<td>.79</td>
<td>73</td>
<td>.52</td>
</tr>
<tr>
<td>4</td>
<td>.98</td>
<td>39</td>
<td>.78</td>
<td>74</td>
<td>.51</td>
</tr>
<tr>
<td>5</td>
<td>.97</td>
<td>40</td>
<td>.77</td>
<td>75</td>
<td>.50</td>
</tr>
<tr>
<td>6</td>
<td>.97</td>
<td>41</td>
<td>.77</td>
<td>76</td>
<td>.49</td>
</tr>
<tr>
<td>7</td>
<td>.96</td>
<td>42</td>
<td>.76</td>
<td>77</td>
<td>.48</td>
</tr>
<tr>
<td>8</td>
<td>.96</td>
<td>43</td>
<td>.75</td>
<td>78</td>
<td>.47</td>
</tr>
<tr>
<td>9</td>
<td>.95</td>
<td>44</td>
<td>.75</td>
<td>79</td>
<td>.46</td>
</tr>
<tr>
<td>10</td>
<td>.95</td>
<td>45</td>
<td>.74</td>
<td>80</td>
<td>.45</td>
</tr>
<tr>
<td>11</td>
<td>.94</td>
<td>46</td>
<td>.73</td>
<td>81</td>
<td>.44</td>
</tr>
<tr>
<td>12</td>
<td>.94</td>
<td>47</td>
<td>.73</td>
<td>82</td>
<td>.42</td>
</tr>
<tr>
<td>13</td>
<td>.93</td>
<td>48</td>
<td>.72</td>
<td>83</td>
<td>.41</td>
</tr>
<tr>
<td>14</td>
<td>.93</td>
<td>49</td>
<td>.71</td>
<td>84</td>
<td>.40</td>
</tr>
<tr>
<td>15</td>
<td>.92</td>
<td>50</td>
<td>.71</td>
<td>85</td>
<td>.39</td>
</tr>
<tr>
<td>16</td>
<td>.92</td>
<td>51</td>
<td>.70</td>
<td>86</td>
<td>.37</td>
</tr>
<tr>
<td>17</td>
<td>.91</td>
<td>52</td>
<td>.69</td>
<td>87</td>
<td>.36</td>
</tr>
<tr>
<td>18</td>
<td>.91</td>
<td>53</td>
<td>.69</td>
<td>88</td>
<td>.35</td>
</tr>
<tr>
<td>19</td>
<td>.90</td>
<td>54</td>
<td>.68</td>
<td>89</td>
<td>.33</td>
</tr>
<tr>
<td>20</td>
<td>.89</td>
<td>55</td>
<td>.67</td>
<td>90</td>
<td>.32</td>
</tr>
<tr>
<td>21</td>
<td>.89</td>
<td>56</td>
<td>.66</td>
<td>91</td>
<td>.30</td>
</tr>
<tr>
<td>22</td>
<td>.88</td>
<td>57</td>
<td>.66</td>
<td>92</td>
<td>.28</td>
</tr>
<tr>
<td>23</td>
<td>.88</td>
<td>58</td>
<td>.65</td>
<td>93</td>
<td>.26</td>
</tr>
<tr>
<td>24</td>
<td>.87</td>
<td>59</td>
<td>.64</td>
<td>94</td>
<td>.24</td>
</tr>
<tr>
<td>25</td>
<td>.87</td>
<td>60</td>
<td>.63</td>
<td>95</td>
<td>.22</td>
</tr>
<tr>
<td>26</td>
<td>.86</td>
<td>61</td>
<td>.62</td>
<td>96</td>
<td>.20</td>
</tr>
<tr>
<td>27</td>
<td>.85</td>
<td>62</td>
<td>.62</td>
<td>97</td>
<td>.17</td>
</tr>
<tr>
<td>28</td>
<td>.85</td>
<td>63</td>
<td>.61</td>
<td>98</td>
<td>.16</td>
</tr>
<tr>
<td>29</td>
<td>.84</td>
<td>64</td>
<td>.60</td>
<td>99</td>
<td>.10</td>
</tr>
<tr>
<td>30</td>
<td>.84</td>
<td>65</td>
<td>.59</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>.83</td>
<td>66</td>
<td>.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>.82</td>
<td>67</td>
<td>.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>.82</td>
<td>68</td>
<td>.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>.81</td>
<td>69</td>
<td>.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>.81</td>
<td>70</td>
<td>.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Percent of lot sampled = \(\frac{\text{sample size} \times 100}{\text{lot size}} = \frac{n \times 100}{N} \)
<table>
<thead>
<tr>
<th>Lot size (number of packages in lot)</th>
<th>Sample size (number of packages in sample)</th>
<th>Tare sample size (number of packages chosen for tare determination)</th>
<th>Number of minus package errors allowed to exceed the MAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n</td>
<td>n<sub>t</sub></td>
<td></td>
</tr>
<tr>
<td>Up to and including 250</td>
<td>10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>251 and greater</td>
<td>30</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

\[a\] Special rules for tare sampling apply when Section 2.11.4. is used (glass or aerosol packages).

\[b\] See Tables 2-8 through 2-11 (pages B-9 to B-14), Sections 2.12. and 2.13.
<table>
<thead>
<tr>
<th>Sampling plan Category</th>
<th>Lot size</th>
<th>Initial tare sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>all</td>
<td>5 packages</td>
</tr>
<tr>
<td>B</td>
<td>equal to or less than 250 packages</td>
<td>2 packages</td>
</tr>
<tr>
<td></td>
<td>greater than 250 packages</td>
<td>5 packages</td>
</tr>
<tr>
<td>Ratio R_D/R_I</td>
<td>(n = 10)</td>
<td>(n = 30)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>0.2 OR LESS</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>0.21 - 0.40</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>0.41 - 0.80</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>0.61 - 0.80</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>0.61 - 1.00</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>1.01 - 1.20</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>1.21 - 1.40</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>1.41 - 1.60</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1.61 - 1.80</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>1.81 - 2.00</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>2.01 - 2.20</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>2.21 - 2.40</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>2.41 - 2.80</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2.61 - 2.80</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>2.81 - 3.00</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>3.01 - 3.20</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3.21 - 3.40</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3.41 - 3.60</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3.61 - 3.80</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3.81 - 4.00</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4.01 - 4.20</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4.21 - 4.40</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4.41 - 4.60</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4.62 - 4.80</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4.81 - 5.00</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5.01 - 5.20</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.21 - 5.40</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.41 - 5.60</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5.61 - 5.80</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.81 - 6.00</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

* Including those already opened for initial tare determination.
<table>
<thead>
<tr>
<th>Ratio R_d/R_l</th>
<th>n = 10</th>
<th>n = 30</th>
<th>n = 50</th>
<th>n = 80</th>
<th>n = 125</th>
<th>n = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01 - 6.20</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>6.21 - 6.40</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>6.41 - 6.60</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>6.61 - 6.80</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>6.81 - 7.00</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>7.01 - 7.20</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>7.21 - 7.40</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>7.41 - 7.60</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>7.61 - 7.80</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>7.81 - 8.00</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>8.01 - 8.20</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>8.21 - 8.40</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8.41 - 8.60</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8.61 - 8.80</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8.81 - 9.00</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9.01 - 9.20</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9.21 - 9.40</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9.41 - 9.60</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9.61 - 9.80</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9.81 - 10.00</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10.01 - 10.20</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10.21 - 10.40</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10.41 - 10.60</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10.61 - 10.80</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10.81 - 11.00</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11.01 - 11.20</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

* Including those already opened for initial tare determination.
<table>
<thead>
<tr>
<th>Table 2-8. MAV’s for an individual package labeled by weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoidupois Units</td>
</tr>
<tr>
<td>Labeled Weight</td>
</tr>
<tr>
<td>Pounds or Ounces</td>
</tr>
<tr>
<td>up to and including</td>
</tr>
<tr>
<td>0.08 + to 0.12 lb</td>
</tr>
<tr>
<td>1.28 + to 1.92 oz</td>
</tr>
<tr>
<td>0.12 to 0.18 lb</td>
</tr>
<tr>
<td>1.92 + to 2.88 oz</td>
</tr>
<tr>
<td>0.18 + to 0.26 lb</td>
</tr>
<tr>
<td>2.88 + to 4.16 oz</td>
</tr>
<tr>
<td>0.26 + to 0.34 lb</td>
</tr>
<tr>
<td>4.16 + to 5.44 oz</td>
</tr>
<tr>
<td>0.34 + to 0.46 lb</td>
</tr>
<tr>
<td>5.44 + to 7.36 oz</td>
</tr>
<tr>
<td>0.46 + to 0.58 lb</td>
</tr>
<tr>
<td>7.36 + to 9.28 oz</td>
</tr>
<tr>
<td>0.58 + to 0.70 lb</td>
</tr>
<tr>
<td>9.28 + to 11.20 oz</td>
</tr>
<tr>
<td>0.70 + to 0.84 lb</td>
</tr>
<tr>
<td>11.20 + to 13.44 oz</td>
</tr>
<tr>
<td>0.84 + to 0.94 lb</td>
</tr>
<tr>
<td>13.44 + to 15.04 oz</td>
</tr>
<tr>
<td>0.94 + to 1.08 lb</td>
</tr>
<tr>
<td>15.04 + to 17.28 oz</td>
</tr>
<tr>
<td>1.08 + to 1.26 lb</td>
</tr>
<tr>
<td>1.26 + to 1.40 lb</td>
</tr>
<tr>
<td>1.40 + to 1.54 lb</td>
</tr>
<tr>
<td>1.54 + to 1.70 lb</td>
</tr>
</tbody>
</table>

* Applies only to shortages in package weight (that is, the MAV is compared with minus package errors only)
* 0.08 + means “greater than 0.08”
* “to” means “to and including”
See Section 2.13 for polyethylene
Table 2-8. (continued) MAV’s for an individual package labeled by weight*

<table>
<thead>
<tr>
<th>Labeled Weight</th>
<th>MAV</th>
<th>Metric Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decimal Pounds</td>
<td>Fractional Ounces</td>
</tr>
<tr>
<td>Pounds or Ounces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.78 + to 1.88</td>
<td>0.064</td>
<td>1</td>
</tr>
<tr>
<td>1.88 + to 2.14</td>
<td>0.070</td>
<td>1 1/8</td>
</tr>
<tr>
<td>2.14 + to 2.48</td>
<td>0.078</td>
<td>1 1/4</td>
</tr>
<tr>
<td>2.48 + to 2.76</td>
<td>0.086</td>
<td>1 3/8</td>
</tr>
<tr>
<td>2.76 + to 3.20</td>
<td>0.094</td>
<td>1 1/2</td>
</tr>
<tr>
<td>3.20 + to 3.90</td>
<td>0.11</td>
<td>1 3/4</td>
</tr>
<tr>
<td>3.90 + to 4.70</td>
<td>0.12</td>
<td>2</td>
</tr>
<tr>
<td>4.70 + to 5.60</td>
<td>0.14</td>
<td>2 1/4</td>
</tr>
<tr>
<td>5.60 + to 6.60</td>
<td>0.15</td>
<td>2 1/2</td>
</tr>
<tr>
<td>6.60 + to 7.90</td>
<td>0.17</td>
<td>2 3/4</td>
</tr>
<tr>
<td>7.90 + to 9.40</td>
<td>0.19</td>
<td>3</td>
</tr>
<tr>
<td>9.40 + to 11.70</td>
<td>0.22</td>
<td>3 1/2</td>
</tr>
<tr>
<td>11.70 + to 14.30</td>
<td>0.25</td>
<td>4</td>
</tr>
<tr>
<td>14.30 + to 17.70</td>
<td>0.28</td>
<td>4 1/2</td>
</tr>
<tr>
<td>17.70 + to 23.20</td>
<td>0.31</td>
<td>5</td>
</tr>
<tr>
<td>23.20 + to 31.60</td>
<td>0.37</td>
<td>6</td>
</tr>
<tr>
<td>31.60 + to 42.40</td>
<td>0.44</td>
<td>7</td>
</tr>
<tr>
<td>42.40 + to 54.40</td>
<td>0.50</td>
<td>8</td>
</tr>
</tbody>
</table>

| 54.40 + | 2% of labeled weight | 24.70 + 2% of labeled weight |

B-10
<table>
<thead>
<tr>
<th>Labeled quantity</th>
<th>Liquid MAV (fl oz)</th>
<th>Dry MAV (cu in)</th>
<th>Metric</th>
<th>Liquid and dry MAV (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to and including 0.50 fl oz</td>
<td>b</td>
<td>0.03</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>0.50 + to 0.75 fl oz</td>
<td>0.06</td>
<td>0.11</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>0.75 + to 2.25 fl oz</td>
<td>0.13</td>
<td>0.23</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>2.25 + to 4.25 fl oz</td>
<td>0.19</td>
<td>0.34</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>4.25 + to 5.75 fl oz</td>
<td>0.25</td>
<td>0.45</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>5.75 + to 7.50 fl oz</td>
<td>0.31</td>
<td>0.56</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>7.50 + to 11.75 fl oz</td>
<td>0.38</td>
<td>0.68</td>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>11.75 + to 17.00 fl oz</td>
<td>0.50</td>
<td>0.90</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>17.00 + to 21.00 fl oz</td>
<td>0.63</td>
<td>1.13</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>21.00 + to 27.00 fl oz</td>
<td>0.75</td>
<td>1.35</td>
<td>22.00</td>
<td></td>
</tr>
</tbody>
</table>

Liquid Measure Equivalents
1 pint = 16 fl oz
1 quart = 32 fl oz
1 gallon = 128 fl oz

a Applies to shortages in package volume (that is, minus package errors).
b Convert to metric units and use laboratory glassware.
c Use laboratory glassware.
d 0.50 + means "greater than 0.50."
e "to" means "to and including."
<table>
<thead>
<tr>
<th>Inch-Pound</th>
<th>Liquid MAV (fl oz)</th>
<th>Labeled quantity</th>
<th>Dry MAV (cu in)</th>
<th>Labeled quantity</th>
<th>Metric</th>
<th>Labeled quantity</th>
<th>Liquid and dry MAV (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.00+ to 31.00 fl oz</td>
<td>0.88</td>
<td>48.73+ to 55.95 cu in</td>
<td>1.58</td>
<td>796+ to 917 mL</td>
<td>28</td>
<td>917 mL to 1.153 L</td>
<td>30</td>
</tr>
<tr>
<td>31.00+ to 39.00 fl oz</td>
<td>1.00</td>
<td>55.96+ to 70.38 cu in</td>
<td>1.80</td>
<td>1.153+ to 1.627 L</td>
<td>37</td>
<td>1.627+ to 2.041 L</td>
<td>44</td>
</tr>
<tr>
<td>39.00+ to 55.00 fl oz</td>
<td>1.25</td>
<td>70.38+ to 99.26 cu in</td>
<td>2.20</td>
<td>2.041+ to 2.514 L</td>
<td>52</td>
<td>2.514+ to 3.046 L</td>
<td>59</td>
</tr>
<tr>
<td>55.00+ to 69.00 fl oz</td>
<td>1.50</td>
<td>99.26+ to 124.5 cu in</td>
<td>2.71</td>
<td>3.046+ to 4.732 L</td>
<td>74</td>
<td>4.732+ to 5.489 L</td>
<td>89</td>
</tr>
<tr>
<td>69.00+ to 85.00 fl oz</td>
<td>1.75</td>
<td>124.5+ to 153.4 cu in</td>
<td>3.2</td>
<td>5.489+ to 7.098 L</td>
<td>104</td>
<td>7.098+ to 8.044 L</td>
<td>118</td>
</tr>
<tr>
<td>85.00+ to 103.00 fl oz</td>
<td>2.0</td>
<td>153.4+ to 185.9 cu in</td>
<td>3.6</td>
<td>8.044+ to 10.173 L</td>
<td>133</td>
<td>10.173+ to 11.593 L</td>
<td>148</td>
</tr>
<tr>
<td>103.00+ to 160 fl oz (1.25 gal)</td>
<td>2.5</td>
<td>185.9+ to 289.8 cu in</td>
<td>4.5</td>
<td>10.173+ to 11.593 L</td>
<td>148</td>
<td>11.593+ to 15.616 L</td>
<td>177</td>
</tr>
<tr>
<td>160+ to 185.6 fl oz</td>
<td>3.0</td>
<td>288.6+ to 335.0 cu in</td>
<td>5.4</td>
<td>15.616+ to 18.927 L</td>
<td>207</td>
<td>18.927+ to 23.659 L</td>
<td>237</td>
</tr>
<tr>
<td>185.6+ to 240 fl oz</td>
<td>3.5</td>
<td>335.0+ to 433.1 cu in</td>
<td>6.3</td>
<td>23.659+ to 26.734 L</td>
<td>266</td>
<td>26.734+ to 32.165 L</td>
<td>318</td>
</tr>
<tr>
<td>240+ to 272 fl oz</td>
<td>4.0</td>
<td>433.1+ to 490.9 cu in</td>
<td>7.2</td>
<td>32.165+ to 39.27 L</td>
<td>411</td>
<td>39.27+ to 47.25 L</td>
<td>507</td>
</tr>
<tr>
<td>272+ to 344 fl oz</td>
<td>4.5</td>
<td>490.9+ to 620.3 cu in</td>
<td>8.1</td>
<td>47.25+ to 56.59 L</td>
<td>562</td>
<td>56.59+ to 66.57 L</td>
<td>657</td>
</tr>
<tr>
<td>344+ to 392 fl oz</td>
<td>5.0</td>
<td>620.3+ to 707.4 cu in</td>
<td>9.0</td>
<td>66.59+ to 79.2 L</td>
<td>825</td>
<td>79.2+ to 93.7 L</td>
<td>981</td>
</tr>
<tr>
<td>392+ to 560 fl oz</td>
<td>6.0</td>
<td>707.4+ to 1011 cu in</td>
<td>10.8</td>
<td>93.7+ to 114.6 L</td>
<td>1189</td>
<td>114.6+ to 140.4 L</td>
<td>1492</td>
</tr>
<tr>
<td>560+ to 640 fl oz (5 gal)</td>
<td>7.0</td>
<td>1011+ to 1155 cu in</td>
<td>12.6</td>
<td>140.4+ to 172 L</td>
<td>1847</td>
<td>172+ to 213 L</td>
<td>2226</td>
</tr>
<tr>
<td>640+ to 800 fl oz</td>
<td>8.0</td>
<td>1155+ to 1444 cu in</td>
<td>14.4</td>
<td>213+ to 260 L</td>
<td>2660</td>
<td>260+ to 320 L</td>
<td>3260</td>
</tr>
<tr>
<td>800+ to 904 fl oz</td>
<td>9.0</td>
<td>1444+ to 1631 cu in</td>
<td>16.2</td>
<td>320+ to 390 L</td>
<td>3960</td>
<td>390+ to 472 L</td>
<td>4720</td>
</tr>
<tr>
<td>Over 904 fl oz</td>
<td>1% of labeled volume</td>
<td>Over 1631 cu in</td>
<td>1% of labeled volume</td>
<td>Over 26.734 L</td>
<td>1% of labeled volume</td>
<td>Over 26.734 L</td>
<td>1% of labeled volume</td>
</tr>
</tbody>
</table>

See Section 2-13 for exception: bark mulch

Dry Measure Equivalents:
1 Dry Pint = 33.6003125 cu in 1 Bushel = 2150.42 cu in
1 Dry Quart = 67.200625 cu in 1 cu ft = 1728 cu in
<table>
<thead>
<tr>
<th>Labeled count</th>
<th>MAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to and including</td>
<td></td>
</tr>
<tr>
<td>17D</td>
<td>0</td>
</tr>
<tr>
<td>16 - 50b</td>
<td>1</td>
</tr>
<tr>
<td>51 - 83</td>
<td>2</td>
</tr>
<tr>
<td>84 - 116</td>
<td>3</td>
</tr>
<tr>
<td>117 - 150</td>
<td>4</td>
</tr>
<tr>
<td>151 - 200</td>
<td>5</td>
</tr>
<tr>
<td>201 - 240</td>
<td>6</td>
</tr>
<tr>
<td>241 - 290</td>
<td>7</td>
</tr>
<tr>
<td>291 - 345</td>
<td>8</td>
</tr>
<tr>
<td>346 - 400</td>
<td>9</td>
</tr>
<tr>
<td>401 - 465</td>
<td>10</td>
</tr>
<tr>
<td>466 - 540</td>
<td>11</td>
</tr>
<tr>
<td>541 - 625</td>
<td>12</td>
</tr>
<tr>
<td>626 - 725</td>
<td>13</td>
</tr>
<tr>
<td>726 - 815</td>
<td>14</td>
</tr>
<tr>
<td>816 - 900</td>
<td>15</td>
</tr>
<tr>
<td>901 - 990</td>
<td>16</td>
</tr>
<tr>
<td>991 - 1075</td>
<td>17</td>
</tr>
<tr>
<td>1076 - 1165</td>
<td>18</td>
</tr>
<tr>
<td>1166 - 1250</td>
<td>19</td>
</tr>
<tr>
<td>1251 - 1333</td>
<td>20</td>
</tr>
<tr>
<td>1334 and over</td>
<td>1.5% of labeled count rounded off to the nearest whole number</td>
</tr>
</tbody>
</table>

a Applies only to shortages in package count (that is, minus package errors).
b See Section 5.2. for sampling plans to be used with these package sizes.
<table>
<thead>
<tr>
<th>Inch-Pound</th>
<th>MAV (expressed as a percentage of the labeled length)</th>
<th>Metric</th>
<th>Labeled length (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labeled Length</td>
<td>Length</td>
<td>Up to and including 1</td>
<td>Up to and including 1</td>
</tr>
<tr>
<td>(yards)</td>
<td>3%</td>
<td>1.5%</td>
<td>48</td>
</tr>
<tr>
<td>1 to 48</td>
<td>48+ to 96</td>
<td>2%</td>
<td>40+ to 85</td>
</tr>
<tr>
<td>96+ to 154</td>
<td>96+ to 154</td>
<td>2.5%</td>
<td>85+ to 140</td>
</tr>
<tr>
<td>154+ to 330</td>
<td>154+ to 330</td>
<td>3%</td>
<td>140+ to 300</td>
</tr>
<tr>
<td>330+ to 1100</td>
<td>330+ to 1100</td>
<td>4%</td>
<td>300+ to 1000</td>
</tr>
<tr>
<td>1100+</td>
<td>1100+</td>
<td>5%</td>
<td>1000+</td>
</tr>
</tbody>
</table>

Area

The MAV for packages labeled by area is 3% of the labeled area.

a Applies only to shortages in package measure (that is, minus package errors).
b 1+ means greater than 1
c "to" means "to and including".

See Section 2.13. for exceptions: textiles, polyethylene sheeting.
<table>
<thead>
<tr>
<th>Group Name</th>
<th>Definition of Group (numbers are labeled weight in ounces)</th>
<th>Lower Limit for Individual Weights (Use the limits according to the scale division being used)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Homogeneous, Fluid when Filled</td>
<td>All Other Products</td>
</tr>
<tr>
<td>A</td>
<td>less than 3</td>
<td>less than 3 10% of labeled weight</td>
</tr>
<tr>
<td>1</td>
<td>3 - 15</td>
<td>7.1 g 0.25 oz 8/32 oz 4/16 oz 2/10 oz 2/8 oz 1/4 oz 0.16 lb</td>
</tr>
<tr>
<td>2</td>
<td>over 16</td>
<td>14.2 g 0.50 oz 16/32 oz 8/16 oz 5/10 oz 4/8 oz 2/4 oz 0.031 lb</td>
</tr>
<tr>
<td>3</td>
<td>over 7 to 48</td>
<td>28.3 g 0.062 lb</td>
</tr>
<tr>
<td>4</td>
<td>over 48 to 160</td>
<td>42.5 g 0.094 lb</td>
</tr>
<tr>
<td>5</td>
<td>over 160</td>
<td>1% of labeled weight</td>
</tr>
</tbody>
</table>

B-15
Table 3-1. Recommended maximum units of measure to be used in recording package weights

<table>
<thead>
<tr>
<th>Labeled weight</th>
<th>Units of measure (oz avoirdupois)</th>
<th>Metric units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.92 oz (0.12 lb))</td>
<td>a</td>
<td>Up to and including 82 g</td>
</tr>
<tr>
<td>Greater than 1.92 oz (0.12 lb) to and including 5.44 oz (0.34 lb)</td>
<td>1/32b</td>
<td>Greater than 82 g to and including 250 g</td>
</tr>
<tr>
<td>Greater than 5.44 oz (0.34 lb) to and including 20 oz (1.25 lb)</td>
<td>1/16</td>
<td>Greater than 250 g to and including 900 g</td>
</tr>
<tr>
<td>Greater than 1.25 lb to and including 4 lb</td>
<td>1/8</td>
<td>Greater than 900 g to and including 2.5 kg</td>
</tr>
<tr>
<td>Greater than 4 lb to and including 8 lb</td>
<td>1/4</td>
<td>Greater than 2.5 kg to and including 30 kg</td>
</tr>
<tr>
<td>Greater than 8 lb to and including 25 lb</td>
<td>1/2</td>
<td>Greater than 30 kg to and including 60 kg</td>
</tr>
<tr>
<td>Greater than 25 lb to and including 50 lb</td>
<td>1</td>
<td>Greater than 60 kg</td>
</tr>
<tr>
<td>Greater than 50 lb to and including 150 lb</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>Greater than 150 lb</td>
<td>8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

a An analytical or other high accuracy balance will be necessary for weighing packages in this category.

b The equal-arm package scale must be used as null-indicator for packages labeled from 1.92 to 5.44 oz or 82 to 250 g to eliminate effects of possible lower errors.
Table 3-2. Test allowances for Foam Aerosol Products

<table>
<thead>
<tr>
<th>Labeled weight of package</th>
<th>Test allowance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ounce</td>
</tr>
<tr>
<td>0 to less than</td>
<td>1-1/2 oz</td>
</tr>
<tr>
<td>1-1/2 oz to less than</td>
<td>5 oz</td>
</tr>
<tr>
<td>5 oz to less than</td>
<td>8 oz</td>
</tr>
<tr>
<td>8 oz to less than</td>
<td>11 oz</td>
</tr>
<tr>
<td>11 oz to less than</td>
<td>14 oz</td>
</tr>
<tr>
<td>14 oz to less than</td>
<td>1 lb 1 oz</td>
</tr>
<tr>
<td>1 lb 1 oz or more</td>
<td>3/8</td>
</tr>
</tbody>
</table>

Table 3-3. Boundaries of the Gray Area for Different Sizes of Flour and Dry Pet Food* Packages

<table>
<thead>
<tr>
<th>Labeled weight of package</th>
<th>Test allowance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grams</td>
</tr>
<tr>
<td>0 to less than</td>
<td>50 g</td>
</tr>
<tr>
<td>50 g to less than</td>
<td>100 g</td>
</tr>
<tr>
<td>100 g to less than</td>
<td>200 g</td>
</tr>
<tr>
<td>200 g to less than</td>
<td>300 g</td>
</tr>
<tr>
<td>300 g to less than</td>
<td>400 g</td>
</tr>
<tr>
<td>400 g to less than</td>
<td>500 g</td>
</tr>
<tr>
<td>Over 500 g</td>
<td></td>
</tr>
</tbody>
</table>

The retail or wholesale lot is in the gray area if:

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>the labeled weight is:**</td>
<td>the average package error is minus and is between zero and 3% of label weight: and any individual package error is minus and is between the MAV and MAV + 3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 lb</td>
<td>-0.06 lb</td>
<td>-0.07 lb</td>
<td>-0.13 lb</td>
</tr>
<tr>
<td>5 lb</td>
<td>-0.16 lb</td>
<td>-0.14 lb</td>
<td>-0.29 lb</td>
</tr>
<tr>
<td>10 lb</td>
<td>-0.30 lb</td>
<td>-0.22 lb</td>
<td>-0.52 lb</td>
</tr>
<tr>
<td>20 lb</td>
<td>-0.66 lb</td>
<td>-0.31 lb</td>
<td>-0.91 lb</td>
</tr>
<tr>
<td>25 lb</td>
<td>-0.75 lb</td>
<td>-0.37 lb</td>
<td>-1.12 lb</td>
</tr>
<tr>
<td>50 lb</td>
<td>-1.50 lb</td>
<td>-0.50 lb</td>
<td>-2.00 lb</td>
</tr>
<tr>
<td>100 lb</td>
<td>-3.00 lb</td>
<td>-0.50 lb</td>
<td>-6.00 lb</td>
</tr>
</tbody>
</table>

*Dry pet foods are defined as those that are packaged in paperboard boxes or Kraft paper bags and have a moisture content of 13 percent or less at the time of pack. Moisture content information is declared in the nutrition and ingredient statement on the package. **If a package size is not listed, apply 3 percent to the labeled net weight.

B-17
Table 4-1. Weighing devices appropriate to use to check common consumer products labeled by liquid volume.

<table>
<thead>
<tr>
<th>Labeled volume (inch-pound)</th>
<th>Device</th>
<th>Labeled volume (metric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to and including 4.25 fl oz</td>
<td>analytical or other high accuracy balance</td>
<td>Up to and including 126 mL</td>
</tr>
<tr>
<td>Greater than 4.25 fl oz to and including 32 fl oz</td>
<td>small capacity equal-arm scale or equivalent</td>
<td>Greater than 126 mL to and including 1 L</td>
</tr>
<tr>
<td>Greater than 32 fl oz to and including 3 gal</td>
<td>large capacity equal-arm scale or equivalent</td>
<td>Greater than 1 L to and including 12 L</td>
</tr>
<tr>
<td>Greater than 3 gal</td>
<td>commercial scale and substitution weighing</td>
<td>Greater than 12 L</td>
</tr>
</tbody>
</table>

B-18
<table>
<thead>
<tr>
<th>Labeled volume</th>
<th>Units of measure (oz avoirdupois)</th>
<th>Units of measure (lb)</th>
<th>Metric</th>
<th>Units of measure (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to and including 4.25 fl oz</td>
<td>a</td>
<td>a</td>
<td>Up to and including 3 mL</td>
<td>0.01a</td>
</tr>
<tr>
<td>Greater than 4.25 fl oz to and including 17.00 fl oz</td>
<td>1/32b</td>
<td>0.002b</td>
<td>Greater than 126 mL to and including 503 mL</td>
<td>0.1b</td>
</tr>
<tr>
<td>Greater than 17.00 fl oz to and including 55.00 fl oz</td>
<td>1/16</td>
<td>0.004</td>
<td>Greater than 2.041 L to and including 5.489 L</td>
<td>2.0</td>
</tr>
<tr>
<td>Greater than 55.00 fl oz to and including 1.25 gal</td>
<td>1/8</td>
<td>0.01</td>
<td>Greater than 1.875 gal to and including 4.375 gal</td>
<td>5.0</td>
</tr>
<tr>
<td>Greater than 1.25 gal to and including 1.875 gal</td>
<td>1/4</td>
<td>0.02</td>
<td>Greater than 4.375 gal to and including 9 gal</td>
<td>10.0</td>
</tr>
<tr>
<td>Greater than 1.875 gal to and including 4.375 gal</td>
<td>1/2</td>
<td>0.02</td>
<td>Greater than 9 gal to and including 18 gal</td>
<td>a</td>
</tr>
</tbody>
</table>

a Use analytical or other high accuracy balance.

b Use package checking scale as null indicator.
Table 4-3. Maximum permitted difference in weights of two equal quantities according to the type of scale used to weigh.

<table>
<thead>
<tr>
<th>Type of Scale</th>
<th>Pounds</th>
<th>Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical or other high accuracy balance</td>
<td>0.0001</td>
<td>0.95</td>
</tr>
<tr>
<td>Small capacity equal-arm scale* or equivalent electronic scale</td>
<td>0.002</td>
<td>1.0</td>
</tr>
<tr>
<td>Large capacity equal-arm scale equivalent electronic scale</td>
<td>0.004</td>
<td>2.0</td>
</tr>
<tr>
<td>Commercial scale up to and including 30 lb (14 kg)*</td>
<td>0.005</td>
<td>2.0</td>
</tr>
<tr>
<td>Commercial scale above 30 lb (14 kg) up to and including 100 lb</td>
<td>0.01</td>
<td>5.0</td>
</tr>
<tr>
<td>Commercial scale above 100 lb</td>
<td>0.02</td>
<td>9.0</td>
</tr>
</tbody>
</table>

* When using an electronic scale with a capacity different from the 5-lb or 20-lb equal-arm scales (some having capacities ranging as high as the 30-lb commercial scales), use the permitted difference in weight corresponding to the range of the equivalent equal-arm scale.

That is:
- for weights up to 5 lb, permit 0.002 lb
- for weights between 5 and 20 lb, permit 0.005 lb
- for weights between 20 and 30 lb, permit 0.01 lb
Table 4-4. **Thickness of paint can walls and labels.**

<table>
<thead>
<tr>
<th>Inch-Pound</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>can size</td>
<td>can size</td>
</tr>
<tr>
<td>1 gal</td>
<td>0.010 .25</td>
</tr>
<tr>
<td>1/2 gal</td>
<td>0.010 .25</td>
</tr>
<tr>
<td>1 qt</td>
<td>0.009 (.15)</td>
</tr>
<tr>
<td>1 pt</td>
<td>0.008 (.26)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Label thickness (paper)

<table>
<thead>
<tr>
<th>Inch-pound</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.004 in (.10)</td>
</tr>
</tbody>
</table>

a The thickness of labels lithographed directly onto the container may be ignored.
Table 5-1. Sampling plans for packages labeled by low count\(^a\)

<table>
<thead>
<tr>
<th>Lot size (number of packages in lot)</th>
<th>Sample size (number of packages in sample)</th>
<th>Tare sample size (number of packages chosen for tare determination)</th>
<th>Number of packages allowed to contain fewer than the labeled count.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Up to and including 500)</td>
<td>n</td>
<td>n(_1)</td>
<td>.1</td>
</tr>
<tr>
<td>501-5000</td>
<td>30</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5001 and greater</td>
<td>50</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^a\) Labeled count is 50 or fewer units.
Table 5-2. Sampling plans for packages given tolerances.

<table>
<thead>
<tr>
<th>Lot size</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample size</td>
<td>Tare sample size</td>
<td>Number of package errors which may exceed allowable difference</td>
</tr>
<tr>
<td>N</td>
<td>n</td>
<td>n_t</td>
<td></td>
</tr>
<tr>
<td>Up to and including 500</td>
<td>10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>501-4,000</td>
<td>30</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5,0001 and over</td>
<td>50</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
APPENDIX C. GLOSSARY

ACCEPTANCE TOLERANCE. The limit of inaccuracy for new, newly reconditioned, or adjusted equipment. [See Section 3.1.]

ALLOWABLE DIFFERENCE. The amount by which the actual quantity in the package may differ from the declared quantity. Pressed and blown numbers and stereo wares labeled by count and capacity are assigned an allowable difference in capacity. [See Section 3.7.]
Also termed Tolerance.

ANALOGUE SCALE. A weighing device in which weight values are indicated by means of "a series of graduations in combination with an indicator, or in which the most sensitive element of an indicating system moves continuously during the operation of the device." [See Section 3.9.]

AUDIT TESTING. Preliminary tests designed to quickly potential noncompliance. [See Section 1.5.]

AVERAGE. The sum of a number of individual measurement values divided by the number of values. For example, the sum of the individual weights of 12 packages divided by 12 would be the average weight of those packages.

AVERAGE ERROR. The sum of the individual package errors (defined) (considering their arithmetic sign) divided by the number of packages comprising the sample. [See Section 2.6.2.]

AVERAGE REQUIREMENT. [See Section 1.2.1.]

AVERAGE TARE. The sum of the weights of individual package containers (or wrappers, etc.) divided by the number of containers or wrappers weighed.

AVOIRDUPOIS UNITS. The inch-pound unit (defined) for weight commonly used in the United States of America, based on the pound of 16 ounces and the ounce of 16 drams.

BERRY BASKETS AND BOXES. Disposable containers in capacities of 1 dry quart or less for berries and small fruits.

BREAK POINT. That point at which a digital indicator changes its indication from one value to an adjacent value. (This is determined by adding test weights 6.1 of the value of the smallest indication until the break point is reached.) [See Section 3.9.]

CATEGORY A (CATEGORY B). A set of sampling plans provided in this handbook for use in checking packages that must meet the average requirement (defined). [See Section 2.6. for Category A, and Section 2.7. for Category B.]

NIST Handbook 44.

C-1
CHECKWEIGHER. A weighing device often used in packaging operations. It separates packages into weight groups according to the amount their actual weights differ (over or under) from the target or nominal weight.

COMBINATION QUANTITY DECLARATIONS. A package label that contains the count of items in the package as well as one or more of the following: weight, measure, or size.

COMPLIANCE TESTING. The determination of conformance of packages with specified legal requirements.

CORRECTED AVERAGE TARE. For foam product aerosols (defined), this is the average tare (defined) as measured minus the test allowance (defined). [See Section 3.11.6. and Table 3-2.]

DECISION CRITERIA. The rules for deciding whether or not a lot is in conformance with package requirements based on the results of checking the packages in the sample. [See Sections 2.6.1, 2.8.2, 2.7.1, and 2.7.2.]

DELIVERY. A quantity of identically labeled product received at one time by a buyer.

DIMENSIONLESS UNITS. The integers in terms of which the official record package errors. The dimensionless units must be multiplied by the unit of measure (defined) to obtain package errors in terms of weight, length, etc. [See Section 2.9.1.]

DISPOSABLE CONTAINERS. A package container designed to be used only once.

DIVISION (on a scale). For a mechanical scale: the smallest subdivision of the scale. For a digital (electronic) scale: the difference between two consecutively indicated values.

DRAINED WEIGHT. The weight of solid or semisolid product representing the contents of a package obtained after a prescribed method for removal of the liquid has been employed. [See Section 3.10 and 3.13.]

DRIED USED TARE. Used tare (defined) that has been air-dried, or dried in some manner to simulate the unused new weight. [See Section 3.16.]

DRY MEASURE. Rigid containers designed for general and repeated use in the volume measurement of particulate solids.

DRY TARE. Unused tare.

ERROR. See PACKAGE ERROR.

FILL WEIGHT. A supplemental statement of the weight of solids put into the package (usually canned food) but before further processing. It is not the same as a drained weight statement.

1 NIST Handbook 130, Uniform Method of Sale of Commodities Regulation.
2 NIST Handbook 44.
FOAM PRODUCT AEROSOL. A product that forms a foam at the container valve or on impingement with a surface, the foam volume not being substantially reduced for at least 30 seconds.

FLUSH FILL CAPACITY. The capacity of a cup or container as defined by the volume contained by it when a flat plate (such as a slicker plate (defined)) rests on its rim.

GRAY AREA. For packaged goods subject to moisture loss, when the average net weight of a sample is found between the labeled weight and the boundary of the gray area, the lot is said to be in a gray or no-decision area. Further information is required to determine lot compliance or noncompliance. See Section 3.17, and 3.18.

GROSS WEIGHT. The weight of the package including contents, packing material, labels, etc.

HEADSPACE. The container volume not occupied by product.

INDEX OF AN INDICATOR. That particular portion of an indicator (as, for example, on a weighing scale) that is directly utilized in making a reading (e.g., the tip of a movable pointer on a dial). [See Section 3.4.]

INCH-POUND UNITS. Units based upon the yard, gallon, and the pound commonly used in the United States of America. Some of these units have the same name as similar units in the United Kingdom (British, English, or UK units), but are not necessarily equal to them.

INITIAL TARE SAMPLE. The first packages (either two or five) selected from the sample to be opened for tare determination in the alternative tare procedure. Depending upon the variability of these individual tare weights as compared with the variability of the net contents, this initial tare sample may be sufficient or more packages may be needed to determine the tare. [See Section 2.114, and Table 2-6.]

INSPECTION LOT. The collection of identically labeled (except for actual quantity in the case of random pack) packages available for inspection at one time. This collection will pass or fail as a whole based on the results of tests on a sample drawn from this collection. [See Section 2.3.]

LABEL. "Any written, printed, or graphic matter affixed to, applied to, attached to, blown into, formed, molded into, embossed on, or appearing upon or adjacent to a consumer commodity or a package containing any consumer commodity, for purposes of branding, identifying, or giving any information with respect to the commodity or to the contents of the package, except that an inspector's tag or other nonpromotional matter affixed to or appearing upon a consumer commodity... (a)..." or a label."

LOCATION OF TEST. The place where the package will be examined. Broadly defined as one of three general locations: (1) where the commodity was packaged, (2) a warehouse or storage location; or (3) a retail outlet.

LOT. See INSPECTION LOT.

1NRS Handbook 130, Uniform Packaging and Labeling Regulation.
LOT CODE. A series of identifying numbers and/or letters on the outside of a package designed to provide information such as the size and location of packaging, the expiration date, and so on.

LOT SIZE. The number of packages in the inspection lot (defined). [See Section 2.3.3.]

LUBRICATING OIL BOTTLES. A rigid (inflexible) measure container (defined) for repeated use in "measurement of lubricating oil for direct delivery to the crankcase of a motor vehicle, whether or not the bottle is sealed with a cap or some other device."

MAV (MAXIMUM ALLOWABLE VARIATION). A deficiency is the weight, measure or count of an individual package beyond which the deficiency is considered to be an unreasonably error (defined). The number of packages with deficiencies greater than the MAV is controlled by the sampling procedure. [See Section 2.12.]

MEAN OR ARITHMETIC MEAN. See AVERAGE.

MEASURE CONTAINERS. Containers whose capacities are used to determine quantity. They are of two basic types: (a) retail and (b) prepackaged. Retail containers are packaged at the time of retail sale and prepackaged containers are packaged in advance of sale. An example of a prepackaged measure container is an ice cream package.

METERED VALVE. A push-button operated aerosol delivery device that meter a predetermined quantity of product when depressed and then shuts off automatically. No additional product will be expelled until the push button is released and depressed again to repeat the procedure.

MILK BOTTLES. A container that is designed as a measure container (defined) for repeated use in the measurement and delivery of milk and other fluid dairy products at retail.

MINUS OR PLUS ERRORS. Negative or positive deviations from the labeled quantity of the actual package quantities as measured. [See PACKAGE ERRORS.]

MULCH. Any product or material other than peat or peat moss (see Section 2.4) that is advertised, offered for sale, or sold for primary use as a horticultural, above-ground dressing for decoration, moisture control, weed control, erosion control, temperature control, or other similar purposes.

MOISTURE ALLOWANCE. That variation in weight of a packaged product permitted in order to account for loss of weight due to loss of moisture during good package distribution practices. [See Sections 1.9., 2.14., Step 4 of Section 3.5.]

NET QUANTITY OR NET CONTENTS. That quantity of packaged product remaining after all necessary deductions for tare (defined) have been made.

NOMINAL. "Refers to 'intended' ... as opposed to 'actual.'"

NOMINAL GROSS WEIGHT. The sum of the nominal tare weight (defined) plus the declared or labeled weight (or other labeled quantity converted to a weight basis). [See Section 2.11. and step 5 of Section 3.5.]

1NBS Handbook 44.
Nominal Tare Weight. The quantity designated as tare (defined) and used in the determination of the nominal gross weight. It may be an average tare value or a corrected average tare value.

Null Indicator. A device or portion of device used to indicate a "zero" or load-balanced condition.

Observed Value. A particular quantity determined as the result of an observation, test, or measurement.

Packaged Goods. Product or commodity put up in any manner in advance of sale suitable for either wholesale or retail sale.

Package Error. The difference between the actual net contents of an individual package as measured and the declared net contents on the package label; (-) minus for less than the label and (+) plus for more than the label. [See Section 2.9.]

Petroleum Products. "Petroleum products" are gasoline, diesel fuel, kerosene, or any product (whether or not such a product is actually derived from naturally occurring hydrocarbon mixtures known as "petroleum") commonly used in powering, lubricating, or idling engines or other devices, or labeled as fuel to power camping stoves or lights. Sewing machine lubricant, camping fuels, and synthetic motor oil are "petroleum products" for the purposes of this regulation. Brake fluid, copier machine dispersant, antifreeze, cleaning solvents, and alcohol are not "petroleum products".

Point. "A movable weight mounted upon or suspended from a weightbeam bar and used in combination with graduations, and frequently with notches, on the bar to indicate weight values."

Plus Errors. See Minus or Plus Errors.

Principal Display Panel. "The term 'principal display panel or panels' shall be construed to mean that part, or those parts, of a label that is, or are, so designed as to most likely be displayed, presented, shown, or examined under normal and customary conditions of display and purchase. Wherever a principal display panel appears more than once on a package, all requirements pertaining to the principal display panel shall pertain to all such "principal display panels."

Production Lot. The total collection of packages defined by the packager, usually consisting of those packages produced within a given unit of time and coded identically.

Pycnometer. A container of known volume used to contain material for weighing so that the weight of a known volume may be determined for the material. [See Section 4.10.]

Random Pack. "The term 'random package' shall be construed to mean a package that is one of a lot, shipment, or delivery of packages of the same consumer commodity with varying weights; that is, packages of the same consumer commodity with no fixed pattern of weight."

16 CFR §500.2(b).
NBS Handbook 130
NBS Handbook 44.
RANDOM SAMPLING. The process of selecting sample packages such that all packages under consideration have the same probability of being selected. An acceptable method of random selection is to use a table of random numbers. [See Appendices E and F.]

RANGE. The difference between the largest and the smallest of a set of measured values. [See Appendix G.]

REASONABLE VARIATION. An amount by which individual package net contents are allowed to vary from the labeled net contents. This term is found in most Federal and State laws and regulations governing packaged goods. [See Appendix D.] Reasonable variations from the labeled declaration are recognized for (1) unavoidable deviation in good manufacturing practice, and (2) loss or gain of moisture in good distribution practice.

ROUNDING. The process of omitting some of the end digits of a numerical value and adjusting the last retained digit so that the resulting number is as near as possible to the original number. [See Section 3.4.]

SAMPLE. A group of packages taken from a larger collection of packages and providing information that can be used as a basis for making a decision concerning the larger collection of packages or of the package production process. A sample provides a valid basis for decision only when it is a random sample (defined). [See Appendix E.]

SAMPLE SIZE. The number of packages in a sample.

SAMPLING PLAN. A specific plan that states the number of packages to be checked and the associated decision criteria. [See Section 1.4.]

SCALE TOLERANCE. The official value fixing the limit of allowable error for commercial weighing equipment as defined in NBS Handbook 44.

SEAT (as in "seat diameter" or "seated capacity"). The projection or shoulder near the upper rim of a cup or container that is designed to serve as the support for a lid or cover.

SEATED CAPACITY. The capacity of a cup, container, or bottle, as defined by the volume contained by them when the lid or a flat disc is inserted in the lid groove located inside and near the upper rim of the cup, container, or bottle. [See Section 4.14.]

SENSITIVITY (of a weighing device). The minimum change in the position of rest of the indicating element of the scale in response to an increase or decrease of the test-weight load on the scale. [See Section 3.1.]

SHIPMENT. A quantity of identically labeled product (except for lot code) sent at one time to a single location.

SLICKER PLATE. A flat plate, usually of glass or clear plastic composition used to determine the "level full" condition of a capacity (volumetric) measure. [See Section 4.10. and 4.14.]

STANDARD DEVIATION. A measure to describe the scatter of the individual package contents around the mean contents. [See Section 2.6.2.]

NBS Handbook 44.
STANDARD PACK. That type of package in which a commodity is put up with identical labels and only in certain specific quantity sizes. Examples of goods so packed are canned, boxed, bottle and bagged foods, and over-the-counter drugs.

SUBSTITUTION WEIGHING. The use of a commercial scale as a "null indicator" (defined). The weight of the package or product is determined by using the official's test weights (defined), the commercial scale serving merely as an indicator for a "zero" or load balanced condition and not as an indicating device. [See Section 3.9.]

SUPPLEMENTARY QUANTITY DECLARATIONS. The required quantity declaration may be supplemented by one or more declarations of weight, measure, or count, such declaration appearing other than on a principal display panel. Such supplemental statement of quantity of contents shall not include any terms qualifying a unit of weight, measure, or count that tend to exaggerate the amount of commodity contained in the package (e.g., "giant" quart, "full" gallons, "when packed," "minimum," or words of similar import)."

SURVEY TESTING. See audit testing.

TAPE RULES. Flexible steel linear measures.

TARE WEIGHT. The weight of a container, wrapper, or other material (see discussion in Section 2.11.) that is deducted from the gross weight to obtain the net weight.

TARE SAMPLE. The packages or packaging material used to determine the average tare weight. [See Section 2.11.]

TARE SAMPLE SIZE. The number of packages or packaging material units used to determine the average tare weight. [See column 3 of Tables 2-2 or 2-5.]

TEST ALLOWANCE. An allowance made to compensate for differences in delivery of foam aerosol packaged products between normal consumer usage and the test procedure. [See Section 3.11.6.]

TEST WEIGHTS. Weights of known value used to check the accuracy of package quantities and scales (also used in substitution weighing). [See Section 3.1.]

TOLERANCE. A value fixing the limit of allowed departure from the labeled contents; usually presented as a (+) and a (-) value. [See Sections 1.2.2. and 5.7.]

UNIT OF MEASURE. An increment of weight, length, or volume chosen so that an inspector may record package errors in terms of small integers. (The package errors are actually the integers multiplied by the unit of measure.) [See Section 29.1.]

UNREASONABLE ERRORS. Minus package errors that exceed the MAV (defined). [See Secp 7 of Section 3.5.] The number of unreasonable errors permitted in a sample is specified by the sampling plan.

16 CFR §500.20
2 NIST Handbook 44.
Appendix C

UNUSED TARE. All packaging materials (including glue, labels, ties, etc.) that contain or
enclose a product, including prizes, gifts, coupons, or decorations that are not part of the prod-
uct. Unused tare is weighed before the product is introduced into the container.

USED TARE. All packaging materials that can be separated from the product, either readily
(e.g., by shaking) or by washing, wrapping, ambient air drying, or other techniques involving
more than "normal" household recovery procedures, but not including laboratory procedures.
Prizes, decorations, and the materials that are not part of the product are included in the used
tare. See also "wet tare" and "dried used tare."

VALVE ACTUATOR (VALVE BUTTON). The push button located on the top of the aerosol
package that controls the flow of product by means of a valve.

VAPOR TAP VALVE. A push button aerosol delivery device that will expel product whether
the container is in the upright or inverted position.

VOLUMETRIC MEASURES. Standard measuring flasks, graduates, cylinders, etc. for use
in the measurement of volumes of liquids. [See Section 4.2.1]

WET TARE. Used tare (defined) when no effort is made to reconstruct unused tare weight
by drying out the absorbent portions (if any) of the tare. Free-flowing liquid is part of the wet
weight of meat or poultry products from Federally-inspected plants. See Section 3.18.
APPENDIX D. PACKAGE NET CONTENTS REGULATIONS

Certain portions of the Federal and State regulations that refer specifically to labeled net contents on packages are listed below. Additional information concerning packaging and labeling and appropriate methods of sale are contained in NBS Handbook 130.

D.1. Federal Regulations

References are taken from the April, 1988, Code of Federal Regulations.

D.1.1. U.S. Department of Health and Human Services, Food and Drug Administration

Food

21 CFR §101.105

(g) The declaration of net quantity of contents shall express an accurate statement of the quantity of contents of the package. Reasonable variations caused by loss or gain of moisture during the course of good distribution practice or by unavoidable deviations in good manufacturing practice will be recognized. Variations from stated quantity of contents shall not be unreasonably large.

Prescription drugs

21 CFR §201.51

(g) The declaration of net quantity of contents shall express an accurate statement of the quantity of contents of the package. Reasonable variations caused by loss or gain of moisture during the course of good distribution practice or by unavoidable deviations in good manufacturing practice will be recognized. Variations from stated quantity of contents shall not be unreasonably large. In the case of a liquid drug in ampules or vials, intended for injection, the declaration shall be considered to express the minimum quantity and the variation above the stated measure.

D-1
shall comply with the excess volume prescribed by the National Formulary or the U.S. Pharmacopoeia for filling of ampules. In the case of solid drug in ampules or vials, the declaration shall be considered to express the accurate net weight. Variations shall comply with the limitations provided in the U.S. Pharmacopoeia or the National Formulary.

Over-the-counter drugs, aerosols

21 CFR §201.62

(f) The declaration shall accurately reveal the quantity of drug or device in the package exclusive of wrappers and other material packed therewith. Provided, That in the case of drugs packed in containers designed to deliver the drug under pressure, the declaration shall state the net quantity of the contents that will be expelled when the instructions for use as shown on the container are followed. The propellant is included in the net quantity declaration.

Over-the-counter drugs

21 CFR §201.62

(q) The declaration of net quantity of contents shall express an accurate statement of the quantity of contents of the package. Reasonable variations caused by loss or gain of moisture during the course of good distribution practice or by unavoidable deviations in good manufacturing practice will be recognized. Variations from stated quantity of contents shall not be unreasonably large.

Cosmetics, aerosols

21 CFR §701.13

(g)(1) In the case of cosmetics packed in containers designed to deliver the cosmetic under pressure, the declaration shall state the net quantity of the contents that will be expelled when the instructions for use as shown on the container are followed. The propellant is included in the net quantity declaration.

Cosmetics

21 CFR §701.13

(s) The declaration of net quantity of contents shall express an accurate statement of the quantity of contents of the package. Reasonable variations caused by loss or gain of moisture during the course of good distribution practice or by unavoidable deviations in good manufacturing practice will be recognized. Variations from stated quantity of contents shall not be unreasonably large.

D-2
Medical devices

21 CFR §801.62

(q) The declaration of net quantity of contents shall express an accurate statement of the quantity of contents of the package. Reasonable variations caused by loss or gain of moisture during the course of good distribution practice or by unavoidable deviations in good manufacturing practice will be recognized. Variations from stated quantity of contents shall not be unreasonably large.

D.1.2. U.S. Department of Agriculture, Food Safety and Inspection Service

Meat

9 CFR §317.2

(b)(2) The statement as it is shown on a label shall not be false or misleading and shall express an accurate statement of the quantity of contents of the container exclusive of wrappers and packing substances. Reasonable variations caused (1) by loss or gain of moisture during the course of good distribution practices or (2) by unavoidable deviations in good manufacturing practice will be recognized. Variations from stated quantity of contents shall not be unreasonably large.

Poultry

9 CFR §381.121

(c)(6) The statement as it is shown on a label shall not be false or misleading and shall express an accurate statement of the quantity of contents of the container, exclusive of wrappers and packaging substances. Reasonable variations caused by loss or gain of moisture during the course of distribution, notwithstanding good distribution practices or by unavoidable deviations, notwithstanding good manufacturing practice will be recognized. Variations from stated quantity of contents shall not be unreasonably large. The statement shall not include any term qualifying a unit of weight, measure or count such as "jumbo quart," "full gallon," "giant quart," "when packed," "minimum" or words of similar import, except as provided in paragraph (b) of this section.

D.1.3. Federal Trade Commission

Non-food consumer commodities covered under the Fair Packaging and Labeling Act, 16 CFR §500.22.

(a) The statement of net quantity of contents shall accurately reveal the quantity of the commodity in the container exclusive of wrappers and other materials packed therewith: Provided, That in the case of a commodity packed in a container designed to deliver the commodity under pressure, the statement shall declare the net quantity of the contents that will be ex-
pelled when the instructions for use are followed. The propellant is included in that net quantity statement.

(b) Variations from the stated weight or measure shall be permitted when caused by ordinary and customary exposure, after the commodity is introduced into interstate commerce, to conditions which normally occur in good distribution practice and which unavoidably result in change of weight or measure.

(c) Variations from the stated weight, measure or numerical count shall be permitted when caused by unavoidable deviations in weighing, measuring, or counting the contents of individual packages which occur in good packaging practice: Provided, that such variations shall not be permitted to such extent that the average of the quantities in the packages comprising a shipment or other delivery of the commodity is below the quantity stated, and no unreasonable shortage in any package will be permitted, even though overages in other packages in the same shipment or delivery compensate for such shortage. Variations from stated quantity of contents shall not be unreasonably large.

D.1.4. Environmental Protection Agency

Pesticides (including aerosols)

40 CFR §162.10

(d) Net weight or measure of contents.

1. The net weight or measure of content shall be exclusive of wrappers or other materials and shall be the average content unless explicitly stated as a minimum quantity.

2. If the pesticide is a liquid, the net content statement shall be in terms of liquid measure at 68 °F (20 °C) and shall be expressed in conventional American units of fluid ounces, pints, quarts, and gallons.

3. If the pesticide is solid or semisolid, viscous or pressurized, or is a mixture of liquid and solid, the net content statement shall be in terms of weight expressed as avoirdupois pounds and ounces.

4. In all cases, net content shall be stated in terms of the largest suitable unit, i.e., "1 pound 10 ounces" rather than "36 ounces."

5. In addition to the required units specified, net content may be expressed in metric units.

6. Variation above minimum content or around that average is permissible only to the extent that it represents deviation unavoidable in good manufacturing practice. Variation below a stated minimum is not permitted. In no case shall the average content of the packages in a shipment fall below the stated average content.
D.1.5. U.S. Department of the Treasury, Bureau of Alcohol, Tobacco and Firearms

Wine

27 CFR §4.37

(e) Tolerances. Statements of net contents shall indicate exactly the volume of wine within the container, except that the following tolerances shall be allowed:

(1) Discrepancies due exclusively to errors in measuring which occur in filling conducted in compliance with good commercial practice.

(2) Discrepancies due exclusively to differences in the capacity of containers, resulting solely from unavoidable difficulties in manufacturing such containers so as to be of uniform capacity. Provided, That no greater tolerance shall be allowed in case of containers which, because of their design, cannot be made of approximately uniform capacity than is allowed in case of containers which can be manufactured so as to be of approximately uniform capacity.

(3) Discrepancies in measure due to differences in atmospheric conditions in various places and which unavoidably result from the ordinary and customary exposure of alcoholic beverages in containers to evaporation. The reasonableness of discrepancies under this paragraph shall be determined on the facts in each case.

(f) Unreasonable shortages. Unreasonable shortages in certain of the containers in any shipment shall not be compensated by overages in other containers in the same shipment.

27 CFR §240.578

Proprietors of bonded wine cellars will be held strictly responsible for the correct determination of the quantity and alcohol content of wine removed. As required by 240.173, appropriate and accurate measures and instruments for measuring and testing the wine must be provided at each wine cellar. Bottles must be filled as nearly as possible to conform to the amount shown on the label or blown in the bottle to be contained therein, but in no event may the amount of wine contained in any bottle, due to lack of uniformity of the bottles, vary more than two percent from the amount stated to be contained therein; and further in such case there shall be substantially as many bottled overfilled as there are bottles underfilled for each lot of wine bottled.

Distilled spirits

27 CFR §5.47 and 27 CFR §5.47a

(b) Tolerances. The following tolerances shall be allowed:
(1) Discrepancies due to errors in measuring which occur in filling conducted in compliance with good commercial practice.

(2) Discrepancies due to differences in the capacity of bottles, resulting solely from unavoidable difficulties in manufacturing such bottles to a uniform capacity. Provided, that no greater tolerance shall be allowed in case of bottles which, because of their design, cannot be made of approximately uniform capacity than is allowed in case of bottles which can be manufactured so as to be of approximately uniform capacity.

(3) Discrepancies in measure due to differences in atmospheric conditions in various places and which unavoidably result from the ordinary and customary exposure of alcoholic beverages in bottles to evaporation. The reasonableness of discrepancies under this paragraph shall be determined on the facts in each case.

27 CFR §19.397

(b) Variations in proof and fill. If the contents do not agree with the respective data on the label or bottle as to:

(1) Quantity (fill), except for such variations in measuring as may occur in filling conducted in compliance with good commercial practice with the overall objective of maintaining 100 percent fill for all bottled products; and/or

(2) Proof, subject to a normal drop in proof occurring during bottling operations nor to exceed three-tenths of a degree the proprietor shall rebotle, recondition, or label the spirit in such manner that the label will correctly describe the contents.

21 CFR §245.126 (in part)

The statement of net contents shall indicate exactly the volume of beer within the bottle except for such variations in measuring as may occur in filling conducted in compliance with good commercial practice. Short-fill bottles of beer which are sold or otherwise disposed of by a brewery to its own employees for their own use but which are not for resale need not be labeled, but, if labeled, need not show an accurate statement of net contents.

D.2. Regulations Recommended by the NCWM for State Adoption

The National Conference on Weights and Measures (NCWM), an organization of State and local weights and measures officials, has adopted guidelines and standards upon which individual States and other jurisdictions may model their laws and regulations. A majority of the States have adopted the following portion of the NCWM Uniform Packaging and Labeling Requirements quoted on the following pages.
SECTION 6. DECLARATION OF QUANTITY: CONSUMER PACKAGES

6.13. CHARACTER OF DECLARATION: AVERAGE. The average quantity of contents in the package of a particular lot, shipment, or delivery shall at least equal the declared quantity, and no unreasonable shortage in any package shall be permitted, even though overages in other packages in the same shipment, delivery, or lot compensate for such shortage.

SECTION 7. DECLARATION OF QUANTITY: NONCONSUMER PACKAGES

7.6. CHARACTER OF DECLARATION: AVERAGE. The average quantity of contents in the package of a particular lot, shipment, or delivery shall at least equal the declared quantity, and no unreasonable shortage in any package shall be permitted, even though overages in other packages in the same shipment, delivery, or lot compensate for such shortage.

SECTION 12. VARIATIONS TO BE ALLOWED.

12.1. PACKAGING VARIATIONS.

12.1.1. VARIATIONS FROM DECLARED NET QUANTITY. Variations from the declared net weight, measure, or count shall be permitted when caused by unavoidable deviations in weighing, measuring, or counting the contents of individual packages that occur in good packaging practice, but such variations shall not be permitted to such extent that the average of the quantities in the packages of a particular commodity, or a lot of the commodity that is kept, offered, or exposed for sale, or sold, is below the quantity stated, and no unreasonable shortage in any package shall be permitted, even though overages in other packages in the same shipment, delivery, or lot compensate for such shortage. Variations above the declared quantity shall not be unreasonably large.

12.1.2. VARIATIONS RESULTING FROM EXPOSURE. Variations from the declared weight or measure shall be permitted when caused by ordinary and customary exposure to conditions that normally occur in good distribution practice and that unavoidably result in change of weight or measure, but only after the commodity is introduced into intrastate commerce. Provided, that the phrase "introduced into intrastate commerce" as used in this paragraph shall be construed to define the time and the place at which the first sale and delivery of a package is made within the state, the delivery being either

(a) directly to the purchaser to his agent, or

(b) to a common carrier for shipment to the purchaser, and this paragraph shall be construed as requiring that, so long as a shipment, delivery, or lot of packages of a particular commodity remains in the possession or under the control of the carrier or the person who introduces the package into intrastate commerce, exposure variations shall not be permitted.

D-7
12.2. MAGNITUDE OF PERMITTED VARIATIONS.

The magnitude of variations permitted under Sections 12., 12.1., 12.1.1, and 12.1.2. of this regulation shall be those expressly set forth in this regulation and variations such as those contained in the procedures and tables of National Bureau of Standards Handbook 133, "Checking the Net Contents of Packaged Goods."
APPENDIX E. SELECTION OF A RANDOM SAMPLE

E.1. Introduction

All of the sampling plans presented in this handbook are based on the assumption that the packages constituting the sample are chosen at random from the inspection lot. Randomness in this instance means that every package in the lot has an equal chance of being selected as part of the sample. It does not matter what other packages have already been chosen, what the package net contents are, or where the package is located in the lot.

The selection of a random sample requires some care. The procedures that follow present several methods for obtaining a random sample, and a randomly selected sub-sample for tare. However they are not the only techniques that may be used. (See Section E.5.)

For the discussion that follows, there are considered to be N packages in the inspection lot and n packages in the sample.

To obtain a random sample, two steps are necessary. First it is necessary to identify each package in the lot of N packages with a specific number whether on the shelf, in the warehouse or coming off the packaging line. Then it is necessary to obtain a random numbers, as from a table of random numbers for example. These n random numbers indicate exactly which packages in the lot shall be taken for the sample.

E.2. Lot Numbering Systems

A numbering system or scheme for the lot must be decided upon before selecting the random numbers for the sample. There are many methods of numbering the lot, two of which are outlined below.

E.2.1. Serial Lot Numbering Systems

In a simple arrangement, such as packages on a shelf or on a packing line, the packages in the lot can be considered to be numbered from 1 to N. The testing official does not have to mark the packages with numbers, but may imagine each package at having a number associated with it. The official may straighten the packages on the shelf before beginning if this helps to clarify the envisioned numbering system. A simple sketch on a piece of cross-section paper may also be helpful. For example, if the packages are in only one layer, the packages could be found (or arranged) in rows and columns on the shelf, as shown (standing in front of and looking down at the shelf):

\[
\begin{array}{cccccc}
\circ & \circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ & \circ \\
\end{array}
\]

E-1
Imagine that the packages are numbered from 1 to 10 in some systematic fashion, perhaps:

```
  6  7  8  9  10
  1  2  3  4  5
```

If there is more than one layer of packages, the serial numbering system can be extended, layer by layer. In the example above, the second layer would be considered to be packages numbered 11 through 20, the third layer, packages numbered 21 through 30, etc.; in the same pattern as given for the first 10.

The inspector can use any numbering scheme provided that each package has a number associated with it, and can be located by its number. In the 3-layer scheme suggested above, with N = 30, package number 26 would be in the third layer, second row from the front, first package on the left.

E.2.2. Three-dimensional Numbering System

If a large stack of packages must be numbered, it may be more convenient to use a three-dimensional lot numbering system with a designated "zero point" (starting place), say the lower left corner of the stack. The official can then use three directions to count from this starting place—toward the Right, Up, and toward the Back (RUB). If, from the zero point, there are 10 units to the Right, 3 units Up, and 7 units Back, the dimensions of the stack are 10 by 3 by 7. As an example, unit number 4-1-5, would be the package located 4 units to the Right of the zero point, 1 unit Up, and 5 units towards the Back. [See Figure E-1.]

E.3. The Random Number Table

E.3.1. General

A random number table such as in Appendix F is composed of the digits from 0 through 9, with approximately equal frequency of occurrence. The table consists of 31 pages. On each page digits are printed in blocks of five columns and blocks of five rows. The printing of the table in blocks is intended only to make it easier to locate specific columns and rows.

E.3.2. Random Starting Place

a. Starting Page. The pages of Appendix F are numbered 1 through 31. Use the day of the month to determine the starting page. For example, if the inspection takes place on February 11, use page 11 as the first page (then pages 12 through 31, followed by pages 1 through 10 if necessary).

b. Starting Column and Row. The inspector may choose a starting page in the random number table and with eyes closed, drop a pencil anywhere on the page to indicate a starting place in the table.

For example, assume that testing takes place on the 11th day of the month. Start with page 11 of the random number table in Appendix F. Assume that you have dropped your pencil on the page and it has indicated a starting place at column 22, row 45. Start using the random
If 1-digit random numbers are needed, record them, going down the column to
the bottom of the page and then to the top of the next column, and so on. Ignore
duplicates and record zero (0) as ten (10). Following on from the last example,
these numbers are 1, 6, 7, 8, 2, etc. If two-digit random numbers are needed,
rule off the page, and further pages if necessary, in columns of two digits each.
If there is a single column left on the page, ignore this column, and rule the next
page in columns of two. Again, ignore duplicate numbers and record 00 as 190.
For example, using the same starting place as in the last example (page 11,
column 22, row 45), the recorded two-digit recorded numbers would be 14, 63,
79, 89, 24, 2, 17, etc. When three-digit numbers are needed, rule the page in
columns of three. Record 000 as 1000. Starting on page 11, column 22, row 45,
the recorded numbers would be 142, 636, 797, 891, 245, 28, 794, 710, 66, 353,
etc.

E.4. Obtaining Random Numbers for the Sample

E.4.1 Serial Lot Numbering System

Once the packages in the lot have been assigned numbers (from 1 to N), it is
necessary to obtain a random number that will correspond to those packages that
will become the random sample. If the lot contains 100 packages or fewer, use
two-digit random numbers. If the lot contains more than 100, but not more
than 1000 packages, use three-digit random numbers. Using the random number
table (Appendix F), rule the table off in columns (if desired). Read off successive
numbers less than or equal to N until n different numbers have been
recorded on a worksheet. These designate the packages for the test sample.

<table>
<thead>
<tr>
<th>Sample package in the sequence to be used for determination</th>
<th>Package number in lot (in the order they are selected from the random number table)</th>
<th>Rearranged in the order to be selected from the lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>14 tare</td>
</tr>
<tr>
<td>4</td>
<td>89</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>53</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td>63 tare</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>53</td>
<td>89</td>
</tr>
</tbody>
</table>

Figure E-1.

E-3
The testing official may, of course, rearrange these random numbers in a serial fashion to facilitate actual package selection (or mark through the random numbers on the worksheet as packages are selected). In any event, the order in which the numbers come out of the random number table indicates those packages in the sample to be chosen as the tare.

For example: The lot consists of 99 packages. A sample of 10 packages is required. Starting on page 11, column 22, row 45, the following random numbers are recorded: 14, 65, 79, 89, 24, 7, 17, 37, 10, 55. [If a duplicate appears in the table, it is ignored. If 50 had appeared, it would have been ignored in this case (it would usually be recorded as 100.)] The packages corresponding to the 10 random numbers are selected for the sample.

Note that the tare sample is obtained according to the order in which the random numbers are recorded; that is, for a sample of 10, the tare sample in this instance, would be packages numbered 31 and 38 in the lot.

E.4.2. Three-dimensional Lot Numbering System

The official should choose a convenient "zero point" (such as the lower left corner of the stack) and record the number of packages in the stack in each of the three directions (RUB). For example, the stack might be 10 by 7 by 3, i.e., 10 units to the Right of the starting place, 7 units Up, and 3 units Back.

Figure E-2. Choosing a starting place for a three-dimensional lot numbering system.

E-4
A work table like the one on the following page is useful to record the positions of sample packages in the lot as determined from the random number table.

At the bottom of the table in the spaces labeled "Dimensions of Stack," record the total number of units in each direction in the stack. This will aid in going through the random number table, because larger numbers in any column are not usable. Beginning at a random starting place in Appendix F, go down the column filling in the first column of the work table by using successive random numbers less than or equal to the dimension shown at the bottom of the work table. When the first column of the work table is completed, fill in the second column. When the bottom of a column is reached in Appendix F, begin at the top of the next column. If all dimensions of the stack are 10 or less, use one-digit columns of the random number table; if any dimension is greater than 10, but not greater than 100, use two-digit columns; if greater than 100, but not greater than 1000, use three-digit columns, and so on.

Package Selection Worksheet for a Three-Dimensional Lot Numbering System

<table>
<thead>
<tr>
<th>Package location</th>
<th>Right</th>
<th>Up</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample package in the sequence to be used for determination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continue if larger sample size is required)

| Dimensions of stack = | \bar{R} | \bar{U} | \bar{b} |

Figure E-3.

In the case of a three-dimensional lot numbering system, there is very little chance of duplicating all three numbers. Of course, if a set of three numbers should be found to duplicate an earlier entry, it should be replaced with the next available set.
If any dimension of the stack is "two", choose "one" if the random number in the table is odd, and "two" if even. Alternatively, the random selection for that dimension can be made by successively tossing a coin rather than using the random number table.

For example, the dimensions of a stack are 10 by 7 by 3 and 10 packages are to be selected at random. The office needs three one-digit numbers to locate each of the 10 samples in the stack. Assume that the random starting place is the 22nd column and the 45th row on page 11 of Appendix F.

The first sample package is found 3 packages to the right, 7 packages up, and the third package back from the zero point.

The ninth sample package is 5 packages to the right, 5 packages up, and the second package back. [See completed example.]

Package Selection Worksheet
for a Three-Dimensional Lot Numbering System

<table>
<thead>
<tr>
<th>Sample package in the sequence to be used for tare determination</th>
<th>Package location Right</th>
<th>Up</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>10(0)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(continue if larger sample size is required)

Dimensions of stack =

\[
\begin{array}{ccc}
10 & 7 & 3 \\
\bar{R} & \bar{U} & \bar{B} \\
\end{array}
\]

Figure E-4. Completed example of package selection using a three-dimensional lot numbering system.

E-6
E.5. Other Methods or Tables to Obtain Random Numbers

Random number dice may be used as an alternative to the random number table as a way of obtaining random numbers. These are special 20-sided dice sold and used in a set of three. Each die has 20 faces—two faces numbered 0, two faces numbered 1, etc., through the number 9. Two sources for purchasing the dice are:

Lansford Publishing Company
P.O. Box 8711
San Jose, California 95155

Technovate
910 Southwest 12th Avenue
Ft. Lauderdale, Florida 33304

The random number dice can be used to get random numbers for the sample for serial lot-numbering systems if the lot contains 1000 packages or less, or for three-dimensional lot-numbering systems if no dimension is larger than 1000.

Other types of random number tables are helpful in choosing a random sample especially if the first digit of the lot size N is no greater than 5. For example, consider a lot of 200 serially numbered packages. Using the random number table in Appendix F requires elimination of all three-digit numbers over than 200. Since the numbers 0 to 9 occur with equal frequency, most of the random numbers in the table will be rejected. In such instances the book, Tables of Random Permutations, by Lincoln E. Moses and Robert V. Oakford (published by Stanford U. Press, Stanford, California in 1963) would be quite a time saver. In this book, a number of tables correspond to N with a small first digit (e.g., N = 10, 25, 50, 100), reducing the time to search (and the need to reject) many random numbers.

E.6. Other Considerations When Selecting the Sample

E.6.1. Selecting the Tare Sample

The order in which numbers come out of the random number table determines those packages in the sample that are the tare sample.

When testing glass or aerosol packages, it is very important, to retain the order of packages corresponding to the order in which the random numbers come out of the random number table, since the additional packages (if any) to be opened for tare are selected in this order.

The example worksheet shown on page E-5 provides a column labeled "Package Number in Lot". The random numbers are recorded in this column in the order in which they come from the random number table. The testing...

*The mention of firm names does not imply that they are endorsed or recommended by the Department of Commerce over other firms not mentioned.

*The mention of firm names does not imply that they are endorsed or recommended by the Department of Commerce over other firms not mentioned.

E-7
official will want to select the packages in the order corresponding to a serial arrangement of the numbers. One way of doing this and not forgetting the order of the packages for the tare sample (which, of glass or aerosol, could amount to a large proportion of the sample) is to associate each random number with the number printed to the left of it on a worksheet (page E-5 or E-6) and to order or mark the packages that are selected with this latter number. This number indicates the order in which the packages will be opened for tare. In the example of a package selection using a serial lot numbering system (referring to the example in Section E.4), the package corresponding to random number 31 is the first package to be opened for tare, that package corresponding to random number 58 is the second and so on. However, in selecting the sample, the package corresponding to random number 2 may be the first removed from the lot. In this case, the official may wish to mark (or lay a piece of paper on) this first package removed from the lot with a "3". The second package removed from the lot in a serial fashion will be the package corresponding to the random number 31, but the inspector will want to note that this is the first package to be opened for tare determination.

When testing at the packaging location, if dry tare is to be used, the tare sample should be selected from the same lot of tare materials into which the finished product (which is being checked) is being packaged. The major contribution to the tare weight (the can, cardboard box, etc.) should be selected randomly in the same fashion as the sample packages are selected. As long as they do not comprise a major proportion of the tare weight, supplementary tare materials in the finished package (solder, ties, glue, labels, caps, etc.) may be selected from the lot without rigorous random selection; however, such materials should be visually identical to and selected from the same batch as other such materials on the packaging line.

E.6.2. Selecting the Sample at Various Locations

When the lot consists of packages on a retail shelf, a customer may remove packages from the lot while the official is choosing his sample. The official should continue choosing the sample as if a missing package had not been there initially (that is, by selecting the next package in sequence).

It is permissible to eliminate individual packages from the sample (and from the inspection lot) if found to be defective by visual examination alone, e.g., cut boxes, empty bottles, torn wrappers, etc. Such individual packages should not become part of the sample. However, individual packages must not be eliminated from the sample after quantitative measurements have been made.

If a defective package is found during sampling, the official may select a package immediately adjacent to the defective package. If found after selection, but before measurement, and the original package location is not conveniently accessible, the official may select another random number to identify a package for replacing the defective one in the sample.

When the lot is defined as packages on open display plus cartons in a storeroom, the sample should be taken proportionately from the packages on the shelf and from the cartons. Thus, with 24 packages on display and 220 packages in the storeroom, approximately 1/10 of the sample should be from packages on display and 9/10 from packages in the storeroom. If there are
to be 30 packages in the sample, 3 should come from the display and 27 from the store room.

- When the lot consists of cartons in a storage area or warehouse, the random sample can be obtained by using the three-dimensional lot numbering system. However, it may be extremely difficult to collect the sample if the packages are aggregated into larger storage units, such as cartons, strapped-together pallets, or shrink packs.

Therefore, for convenience, the official may randomly select more than one package from each carton, and more than one carton from each pallet. However, choosing the entire sample from a single pallet or a single carton must be strictly avoided.

The testing official may find it convenient to use the three-dimensional numbering system for selection of cartons on a pallet, and the serial numbering system for the selection of pallets and of packages from a carton.

The official should first choose the pallets (if any) from which the sample will be taken, then the cartons from those pallets (or from the entire lot if there are no pallets), and finally choose from the previously selected cartons, the individual packages that will comprise the sample. The number of units selected at each stage (pallet, carton, and package) does not have to be the same.

- When the lot consists of a portion of production at the packing plant, the packages coming off the packaging line can be considered to be numbered serially from 1 to N (the last package in the lot). Random numbers may be obtained from the random number table as described for serial lot numbering systems. The random numbers should be chosen, then ordered serially before physically choosing the packages corresponding to those numbers from the packing line.
APPENDIX F: RANDOM NUMBER TABLE


TABLE OF RANDOM DIGITS

24558 3522 16576 98787 50260 65866 77899 11911 46951 69883
81726 27718 98384 92043 61816 26810 89557 14213
55017 97010 34229 66427 12869 89768 90577 51615 64666 67742
70683 84512 28479 05715 45569 71823 68696 40256 84424 39248
13585 72455 19019 83382 74432 61549 54065 83679 91311 40107
48711 64144 80373 71858 70504 59408 93066 64847 13706 92344
52208 94447 15412 14288 33017 38577 94247 72743 23563 88277
38328 55047 29009 62316 80299 61233 95726 74138 11410 62759
62763 87499 38079 46236 21999 28451 62029 55944 13972 91615
92802 97941 83751 64571 71053 55546 65946 90165 89591 27569
63926 55647 49815 19035 21439 53209 42650 76618 71768 88040
94393 11875 05903 24999 06367 91125 27883 17249 82637 55662
46998 40194 85526 26480 19170 41726 51561 30169 42534 07143
60702 43711 60123 55636 96207 64374 37890 23723 64251 27040
58986 77949 65289 95469 81436 20018 24235 94339 74000 40600
51299 87126 75059 66541 21898 54248 17509 60259 27767 97751
91939 99958 00963 83259 25213 43776 21662 89894 78219 74929
13335 93167 73632 33467 58580 26017 17913 07410 56130 64563
89764 66275 77799 72105 39969 72188 51519 76932 16633 44377
42988 25394 20139 98892 21673 79554 31751 23225 67156 54504
31443 03545 98981 82000 20579 76096 56347 56350 83343 00364
27776 24219 01014 97110 61490 85908 42593 12711 30973 28762
32892 66745 40277 26854 81941 71064 16514 63431 15078 33395
60006 26941 01981 34114 66863 90045 74566 07702 42225 15575
39467 03634 47079 30458 19834 26706 96110 63240 48979 95446
34951 24766 22228 13483 10325 85140 89326 38960 47397 06773
42406 88984 43946 53462 31462 88484 85547 20000 38688 90985
90843 49973 81093 18797 99226 60965 94577 54072 89174 66916
79117 94800 51513 19688 16464 83748 84495 15277 28029 14492
78785 19381 61654 20515 49697 0003 83980 11334 97365 29854
60256 41173 48232 78781 25637 02554 57393 96163 54207 74570
42167 38346 65132 30178 04000 92571 69632 33982 47994 23735
97221 80502 19090 06111 81787 71871 04632 51170 42693
28493 20355 68213 07719 95859 50765 41050 09781 97962 19545
86775 97256 68451 44802 17864 29560 01641 64372 90850 25142
21862 00623 01170 32474 27615 82953 76271 50317 95074 46229
12212 66702 07409 70205 04999 47266 44618 29441 79933 08999
60285 62489 94662 77544 70218 61707 78737 22013 17481 44495
07229 73956 83592 53742 75890 29900 96995 30719 33281 63364
10734 46061 60672 99961 56995 25800 04395 55432 57335 34840
10846 93370 88133 25860 75362 72439 94824 66290 00938 30905
94599 81879 70953 64614 24076 34449 13638 68239 79767 27524
56885 28110 58653 31863 84960 83054 89699 98666 83808 02627
75664 88393 04093 06221 70677 92714 30410 63324 72874 98868
75827 87534 15097 00295 59243 27377 18444 06155 39239 82710
70968 92077 89354 72591 55818 89149 12159 15026 80352 81818
37262 07291 43790 60391 9237 63214 77214 61906 79381 39123
67450 54232 13248 90661 32751 61205 59289 53983 1275 1323
6029 94869 42257 45150 52417 83335 28557 22037 64654 98239
<table>
<thead>
<tr>
<th>TABLE OF RANDOM DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>91237 07867 85818 65791 94263 76470 55316 60468 08349 45372</td>
</tr>
<tr>
<td>75170 34589 88879 21968 49032 69953 41384 73403 04969 72748</td>
</tr>
<tr>
<td>17160 57451 22993 95995 60311 75701 39554 72526 76626 35516</td>
</tr>
<tr>
<td>28432 75589 08525 40761 49691 29414 10393 22326 60211 66803</td>
</tr>
<tr>
<td>34233 26312 47707 40663 17368 13771 64374 84821 99617 59335</td>
</tr>
<tr>
<td>68669 15334 31326 84367 15970 82126 09434 49383 98426 67431</td>
</tr>
<tr>
<td>30569 59241 82988 41280 48823 61393 96352 65506 72120 72156</td>
</tr>
<tr>
<td>28530 94506 26791 34413 89006 45738 92535 58530 28398 2557</td>
</tr>
<tr>
<td>44878 71668 78750 63234 02977 60613 54814 86166 66345 49621</td>
</tr>
<tr>
<td>25302 03112 47707 40663 17368 13771 64374 84821 99617 59335</td>
</tr>
<tr>
<td>40286 22769 79837 48498 55079 20298 69141 35427 7539 1256</td>
</tr>
<tr>
<td>80016 10413 94902 54547 86810 28844 02045 81694 27016 45253</td>
</tr>
<tr>
<td>03818 87648 52697 40711 16286 68925 16873 51940 32269 04615</td>
</tr>
<tr>
<td>62824 27330 10699 90885 05127 60613 37668 24302 28583 40911</td>
</tr>
<tr>
<td>33241 41647 70927 31321 58988 75962 71337 42109 38181 77338</td>
</tr>
<tr>
<td>82037 25359 84869 89446 35327 25093 20393 65964 80235 12341</td>
</tr>
<tr>
<td>58583 21453 28978 48964 01446 28247 13768 00416 69238 55102</td>
</tr>
<tr>
<td>32465 48311 35855 50557 94278 57524 34992 89948 75223 65146</td>
</tr>
<tr>
<td>61189 09904 68896 70758 21707 81003 23564 10068 95005 57943</td>
</tr>
<tr>
<td>68356 72642 20518 44369 15589 62728 78302 40813 09885 13404</td>
</tr>
<tr>
<td>53767 63388 07696 68413 24031 58407 36014 85645 94248 42266</td>
</tr>
<tr>
<td>01245 35379 29727 75385 43918 83453 79415 34940 68209 23890</td>
</tr>
<tr>
<td>53272 44710 40717 72148 13007 82860 97749 56655 62741 46189</td>
</tr>
<tr>
<td>37098 08300 48241 90943 40885 12399 05442 28268 12356 36443</td>
</tr>
<tr>
<td>58914 22391 48474 10652 76098 20478 73009 58681 69363 95319</td>
</tr>
<tr>
<td>00659 39351 75820 65463 24064 92922 49320 49419 16655 14743</td>
</tr>
<tr>
<td>14877 78689 94191 19491 64818 98110 28340 96802 00155 90570</td>
</tr>
<tr>
<td>64171 14812 41393 75929 57552 92812 80861 93239 27037 61817</td>
</tr>
<tr>
<td>01313 45725 99886 95978 40279 53585 64531 37081 92012 75326</td>
</tr>
<tr>
<td>84486 47129 25225 96889 10099 30825 12216 52286 07438 51617</td>
</tr>
<tr>
<td>06619 85356 47361 64574 37366 46547 14307 99140 34138 49423</td>
</tr>
<tr>
<td>23247 15258 75885 66826 45603 17334 29522 25995 49177 00386</td>
</tr>
<tr>
<td>19656 32970 01911 45103 91007 14371 16772 10672 12276 97246</td>
</tr>
<tr>
<td>20104 38856 54856 21710 84860 86301 91226 13570 26240 85423</td>
</tr>
<tr>
<td>44859 39279 43361 20494 20892 64854 12599 05155 45526 55095</td>
</tr>
<tr>
<td>18895 76874 87347 10701 81719 54202 81442 55533 20803 85819</td>
</tr>
<tr>
<td>67786 86821 48217 81164 41457 13469 77345 80653 20848 21596</td>
</tr>
<tr>
<td>96705 61333 01358 57027 17136 62946 34968 26212 48009 40920</td>
</tr>
<tr>
<td>20496 87788 05319 95104 06723 16999 55862 02673 20105 93779</td>
</tr>
<tr>
<td>62949 29971 74501 54044 66695 82884 12198 16962 36351 87090</td>
</tr>
<tr>
<td>65486 82819 28015 20219 15494 57338 26610 18188 49963 25004</td>
</tr>
<tr>
<td>60855 01535 35174 84290 85093 43073 75784 50708 15367 60230</td>
</tr>
<tr>
<td>73464 50057 02920 35790 18558 76655 05076 54906 47374 92741</td>
</tr>
<tr>
<td>42149 51759 70269 07229 13231 59552 40658 78135 81191 12386</td>
</tr>
<tr>
<td>32443 55882 43664 65255 09746 59332 06379 59282 22940 12506</td>
</tr>
<tr>
<td>82791 66279 59688 39350 48456 04296 72296 86020 79582 66857</td>
</tr>
</tbody>
</table>

F-18
<table>
<thead>
<tr>
<th>TABLE OF RANDOM DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>74443 91686 64861 13547 47668 02710 11434 82867 40442 53126</td>
</tr>
<tr>
<td>30744 56700 07299 58964 02002 78870 29737 79074 03891 96198</td>
</tr>
<tr>
<td>52766 36045 71786 78399 41466 73730 44254 81514 81591 80870</td>
</tr>
<tr>
<td>30583 57645 02821 46759 11611 81875 75750 71403 90200 90567</td>
</tr>
<tr>
<td>11411 87781 88412 14794 62116 24237 64399 57199 62003 06072</td>
</tr>
<tr>
<td>65154 65573 86050 85246 28223 48663 84092 80996 62804 25602</td>
</tr>
<tr>
<td>71484 49166 34478 40084 96185 64001 74278 19220 59231 79651</td>
</tr>
<tr>
<td>10645 53607 05493 66388 14896 41047 13541 60814 84317 56153</td>
</tr>
<tr>
<td>86989 62529 53234 64428 57719 18708 88916 98692 40281 61694</td>
</tr>
<tr>
<td>81822 31709 27919 60106 04794 7092 58285 69508 54471 94840</td>
</tr>
<tr>
<td>57260 73820 40482 50228 80141 63218 92180 33241 88052 99333</td>
</tr>
<tr>
<td>03182 15444 20152 57789 80072 41926 69223 03756 28451 60251</td>
</tr>
<tr>
<td>03883 01325 75192 64298 84969 82978 39150 56925 58287 37961</td>
</tr>
<tr>
<td>20476 36163 49805 39966 40557 89825 99037 61841 68330 15457</td>
</tr>
<tr>
<td>04097 82269 13198 24279 30119 00488 40891 77511 82718 20503</td>
</tr>
<tr>
<td>03150 81213 38131 72821 36859 60749 64581 54225 97892 13659</td>
</tr>
<tr>
<td>41688 08227 15733 03512 66602 52544 42884 95252 58055 18796</td>
</tr>
<tr>
<td>19019 75509 82299 64407 80331 67153 97832 07965 78527 25388</td>
</tr>
<tr>
<td>66762 65274 72880 42722 12871 61036 35093 70330 19690 65487</td>
</tr>
<tr>
<td>56964 25274 51915 47671 32288 94252 46278 62179 64552 20813</td>
</tr>
<tr>
<td>62919 32771 60512 67786 62409 25006 15544 27585 41141 70506</td>
</tr>
<tr>
<td>80152 53910 58708 63052 29172 61110 50082 61103 31451 73706</td>
</tr>
<tr>
<td>14669 63459 37671 61386 55876 76651 12026 57979 53041 00518</td>
</tr>
<tr>
<td>69789 02607 20667 98617 24172 80258 30825 84539 97341 97026</td>
</tr>
<tr>
<td>37635 41663 23805 16495 50566 29229 58570 39789 14654 96483</td>
</tr>
<tr>
<td>97233 40313 38311 79632 88471 94287 18642 56481 10717 75168</td>
</tr>
<tr>
<td>46938 51292 32191 89408 42015 70990 39767 33981 00986 56262</td>
</tr>
<tr>
<td>77647 92257 83281 56223 20137 50999 01856 37476 65479 37315</td>
</tr>
<tr>
<td>84557 54389 92455 66027 25750 75424 74213 54278 87040 17720</td>
</tr>
<tr>
<td>50118 53941 77795 47527 99423 48380 94101 96132 65776 50863</td>
</tr>
<tr>
<td>62994 33610 61431 81063 07104 72977 47234 51208 58087 64966</td>
</tr>
<tr>
<td>74536 61392 54720 01442 22791 37295 42279 36401 84360 97841</td>
</tr>
<tr>
<td>24945 28226 08113 92223 76135 43679 40184 67041 13070 51304</td>
</tr>
<tr>
<td>76649 51745 07848 59772 84922 21500 88296 61970 21854 74586</td>
</tr>
<tr>
<td>21759 73680 84999 71172 20223 04734 05297 38494 57925 83158</td>
</tr>
<tr>
<td>76373 36578 07987 73464 86703 47369 38133 85094 76527 89207</td>
</tr>
<tr>
<td>75771 17498 31380 63547 88809 22895 80860 43634 08719 34006</td>
</tr>
<tr>
<td>37569 95478 68728 53949 66346 55218 73532 47208 97021 39974</td>
</tr>
<tr>
<td>26809 77325 78505 67784 64659 55428 54794 96871 74887 37961</td>
</tr>
<tr>
<td>56525 13986 71462 95812 87510 56434 93220 76318 54313 79861</td>
</tr>
<tr>
<td>50575 71610 48683 28969 32355 75387 22438 84636 94631 27382</td>
</tr>
<tr>
<td>83160 02119 84966 51513 18912 48728 72713 28797 17663 88883</td>
</tr>
<tr>
<td>80426 58177 68886 58495 27405 17932 89267 57990 57790 58615</td>
</tr>
<tr>
<td>74836 84145 82436 68509 32923 12254 28278 69092 49651 70140</td>
</tr>
<tr>
<td>60971 88014 58161 70972 08593 91048 90612 70159 47830 03778</td>
</tr>
</tbody>
</table>

F-30
APPENDIX G. CALCULATION OF THE AVERAGE RANGE

To calculate the average range of package errors for groups of 5 packages:

1. Record the package errors in successive groups of five packages in the order of weighing. (See Figure 2-5, page 2-19, and page A-1.)

For example, the following package errors were recorded on the report form (only the first three columns are shown):

<table>
<thead>
<tr>
<th>pkg. number</th>
<th>pkg. error</th>
<th>pkg. number</th>
<th>pkg. error</th>
<th>pkg. number</th>
<th>pkg. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>+2</td>
<td>(6)</td>
<td>-2</td>
<td>(11)</td>
<td>+2</td>
</tr>
<tr>
<td>(2)</td>
<td>+4</td>
<td>(7)</td>
<td>-4</td>
<td>(12)</td>
<td>-4</td>
</tr>
<tr>
<td>(3)</td>
<td>+5</td>
<td>(8)</td>
<td>-5</td>
<td>(13)</td>
<td>+5</td>
</tr>
<tr>
<td>(4)</td>
<td>+10</td>
<td>(9)</td>
<td>-10</td>
<td>(14)</td>
<td>+10</td>
</tr>
<tr>
<td>(5)</td>
<td>+3</td>
<td>(10)</td>
<td>-3</td>
<td>(15)</td>
<td>-3</td>
</tr>
</tbody>
</table>

2. Calculate the range (R) of package errors for each group of five. R does not have a sign.

The range is obtained as follows:

0 If there are only plus errors in a group of five, subtract the smallest plus error from the largest plus error. This is the range (R) for the group.

For example for the first group of five packages:

\[
+10 - (+2) = 8
\]

0 If there are only minus errors in the group, subtract the largest number with a minus sign from the smallest number with a minus sign. This is the range (R) for the group.

For example for the second group of five packages:

\[
-10 - (-10) = 8
\]
If there are both plus and minus errors in the group of five, add the largest error which has a plus sign to the largest error which has a minus sign (but ignore the minus sign). This is the range (R) of the group.

For example for the third group of five packages:

+2
-4
+5
+10
-3

\[R = 10 + 4 = 14 \]

3. Calculate the sum of all R and note the number of groups. For example, let us consider the previous three examples as one set of sample data. For these examples the sum of R = 8 + 8 + 14 = 30 and the number of groups is 3.

4. Calculate the average R, called \(\bar{R} \), as follows:

\[\bar{R} = \frac{\text{sum of all } R \text{ (step 3)}}{\text{number of groups}} \]

In the example above, \(\bar{R} = \frac{30}{3} = 10 \)

When calculating the range in net weights or range in tare weights for the alternative tare procedure, the range is the difference between the largest and smallest weights.

For example, the following tare weights are recorded:

0.201 lb
0.200 lb
0.204 lb
0.199 lb
0.201 lb

The range in tare weights is 0.204 lb - 0.199 lb = 0.005 lb.
APPENDIX II.
EXAMPLES OF COMPLETED REPORT FORMS AND WORKSHEETS

This section contains worked examples of worksheets and report forms for commonly encountered packages.

- Category B, standard pack, labeled by weight, using an equal-arm package checking scale.
- Category B, standard pack, labeled by weight, using an electronic scale.
- Category A, standard pack, labeled by weight, using an equal-arm package checking scale.
- Category B, standard pack, labeled by volume.
- Category B, random pack.
- Category B, standard pack, labeled by count.
This report form is designed for standard packages not labeled by weight: for example, liquid volume, count, area, etc.

Fill out report form heading, boxes 1 & 2, and boxes 3 through 6.

Go to appropriate worksheets, follow directions on the worksheet, recording data on the report form as directed by the worksheet.

<table>
<thead>
<tr>
<th>PACKAGE ERRORS</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>14</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
</tr>
<tr>
<td>III</td>
<td>13</td>
</tr>
<tr>
<td>III</td>
<td>9</td>
</tr>
<tr>
<td>III</td>
<td>14</td>
</tr>
<tr>
<td>RANGES</td>
<td>+58</td>
</tr>
</tbody>
</table>

NO. UNREACHABLE	0
REACHABLE	
AVERAGE RANGE	

Comments:

TF Miller
Acknowledged Issuer of Report

John Doe

Officer
Worksheet for Packages Labeled by Liquid Volume

Numbers with Boxes (e.g. [B]) refer to report form (page A-1)

Step Numbers (e.g. Step 5 refer to worksheet)

Fill out report form up through box [B], skip boxes [C] and [D].

<table>
<thead>
<tr>
<th>Gross Weight</th>
<th>0.904 lb</th>
<th>0.899 lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tare Weight</td>
<td>0.080 lb</td>
<td>0.081 lb</td>
</tr>
<tr>
<td>Net Weight</td>
<td>0.824 lb</td>
<td>(only use for alternate tare)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight of Liquid (Step 1 - Step 4)</th>
<th>1.126 lb</th>
<th>1.125 lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of Liquid (Step 1 - Step 4)</td>
<td>0.584 lb</td>
<td>0.584 lb</td>
</tr>
<tr>
<td>Weight of Liquid (Step 1 - Step 4)</td>
<td>0.542 lb</td>
<td>0.541 lb</td>
</tr>
<tr>
<td>Weight of Liquid (Step 1 - Step 4)</td>
<td>8.60 lb</td>
<td>8.2 lb</td>
</tr>
<tr>
<td>Weight of Liquid (Step 1 - Step 4)</td>
<td>75°F</td>
<td>75°F</td>
</tr>
</tbody>
</table>

5. Do the weights recorded in Step 5 differ from each other by more than the values in Table 3-3 (page 6-27)?

YES: If this box is checked, open all packages in sample and determine each package's tare by volume (see Section 4.8.1).

NO: If box is checked, continue below.

6. AVERAGE WEIGHT OF LIQUID IN FLASK = AVERAGE OF STEP 5 = 0.541 lb

7. AVERAGE WEIGHT OF Labeled Volume = Labeled Volume

8. AVERAGE WEIGHT OF Labelled Volume = Flash Volume

9. AVERAGE TARE = AVERAGE OF STEP 2 (for average of Step 2 and additional initil)

Report 14012-T

3/11/89

Note:

*Alternative Tare procedure for liquids packed in glass. If all additional packages are opened for tare, provision should be made for recording all pertinent data.
13. Nominal Gross Weight

\[\text{Nominal Gross Weight} = \text{Average Weight} + \text{Average Weight of Labeled Volume} \]

\[\text{Step 12} + \text{Step 10} = \frac{0.893 \, \text{lb}}{0.0805 \, \text{lb} + 0.81225 \, \text{lb}} \]

- 0.893 \, \text{lb} in box 12 on report form

14. For Packages Small for Tare

\[\text{Package Error} = \frac{\text{Gross Weight} - \text{Nominal Gross Weight}}{\text{Unit of Measure}} \]

\[\text{Step 1} - \text{Step 13} = \frac{0.893}{0.006 \, \text{lb}} \]

- 0.893 \, \text{lb} in box 13 on report form

15. Package Error (Dimensionsless unit)

\[\text{Step 14} + \text{box 14} = \frac{0.006 \, \text{lb}}{0.001 \, \text{lb}} \]

- 0.006 \, \text{lb} in box 14 on report form

16. MAV from Table 29

\[\text{MAV (volume)} = \frac{0.5 \, \text{lb} \, \text{oz}}{16.820 \, \text{lb}} \]

- MAV in box 16 on report form

17. MAV (weight)

\[\text{MAV (weight)} = \frac{\text{MAV (volume)} \times \text{Labeled Volume}}{\text{Unit of Measure}} \]

\[\text{Step 16} \times \frac{0.034 \, \text{lb}}{0.001 \, \text{lb}} \]

- MAV in box 16 on report form

18. MAV (dimensionsless unit)

\[\text{MAV (dimensionsless unit)} = \frac{\text{MAV (weight)}}{\text{Unit of Measure}} \]

\[\text{Step 17} = \frac{34}{0.001 \, \text{lb}} \]

- MAV in box 17 on report form

19. Compare unopened packages with same gross weight (Step 13, box 12).

- MAV in box 16 on report form

Average Package Error

\[\text{Average Package Error} = \frac{\text{Average Package Error (volume)} \times \text{Unit of Measure}}{\text{Labeled Volume}} \]

\[\frac{0.0157 \, \text{ml}}{0.001 \, \text{lb} \times 124 \, \text{oz}} = \frac{1.8 \, \text{lb}}{0.812 \, \text{lb}} \]

- Average package error in box 18

Notes:
- Boxes above with "3", "4", "5" in corners are for larger, rare sample sizes.
- **H-6**
<table>
<thead>
<tr>
<th>PRODUCT DESCRIPTION</th>
<th>LOT CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>brick cheese</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNPACKED WEIGHT (lb)</th>
<th>PACKED WEIGHT (lb)</th>
<th>PACKAGE ERROR (lb)</th>
<th>PACKAGE (14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/16/89</td>
<td>0.47</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>0.51</td>
<td>0.62</td>
<td>0.63</td>
<td>0.77</td>
</tr>
<tr>
<td>0.58</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.62</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.63</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOT SIZE (lb)</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE SIZE (lb)</td>
<td>0.65</td>
</tr>
<tr>
<td>TARE SAMPLE SIZE (lb)</td>
<td>0.60</td>
</tr>
<tr>
<td>UNREASONABLE ERROR</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
</tr>
</tbody>
</table>

TARE (lb)	0.02
	0.02
	0.02
	0.02
	0.02
	0.02

TARE 1	0.02
TARE 2	0.02
TARE 3	0.02
TARE 4	0.02
AVERAGE TARE	0.02

AVERAGE ERROR	0.002
	0.002
	0.002
	0.002
	0.002
	0.002

AVERAGE ERROR (lb)	0.002
	0.002
	0.002
	0.002
	0.002
	0.002

TOTAL ERROR	-0.010
	-0.010
	-0.010
	-0.010
	-0.010
	-0.010

COMMENTS	

Acknowledged:esignee
Random Pack Report Form

Page 2 of 2

Altnerative Tape Calculations

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Weight</td>
<td></td>
</tr>
<tr>
<td>Tape Weight</td>
<td></td>
</tr>
<tr>
<td>Net Weight</td>
<td></td>
</tr>
<tr>
<td>Package Error</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Package Error</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
</tbody>
</table>

Lot Disposition

- Category A
- Note: Packages should not be arranged from lightest to heaviest which follows a

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Error</td>
<td></td>
</tr>
<tr>
<td>Total Error</td>
<td></td>
</tr>
<tr>
<td>No. of Packages</td>
<td></td>
</tr>
</tbody>
</table>

Table A

<table>
<thead>
<tr>
<th>Group</th>
<th>Range of Packages Seen per Each Group of A Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average + Sum of No. of Groups</td>
<td></td>
</tr>
</tbody>
</table>

Results

- Record final one disposition on line 1 in box 32

H-8
STANDARD PACK REPORT FORM

PRODUCT IDENTITY: beer

BRAND: Happy's

LOT CODE(S): 22-FT 86

CONTAINING DESCRIPTION: One 12 oz glass screwcap

<table>
<thead>
<tr>
<th>DATE</th>
<th>6/20/90</th>
</tr>
</thead>
</table>

LOCATION OF TEST (from, Address): Al's

UNIT SIZE (IN): 12oz

SAMPLE SIZE IN: 0

SAMPLE SIZE OUT: 0

UNIFORMITY: yes

SORTABLE: yes

RECOMMENDATION: Approved

This report form is designed for standard packages not labelled by weight; for example, liquid volume, count, blank, etc.

Fill out report form heading, boxes 1 through 8, and boxes 9 through 12.

Go to appropriate worksheets, follow directives on the worksheet, recording data on the report form as directed by the worksheet.

PACKAGE ERRORS

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

VITALS

| TOTAL ERROR | +14 |

AVERAGE RANGE

DATA

| DATA | 0.0044D | 0.0044D |

HANGS

- 0
- 1
- 4

DISCREPANCY

REMARKS:

<table>
<thead>
<tr>
<th>REMARKS</th>
<th>Approved</th>
<th>Rejected</th>
</tr>
</thead>
</table>

SIGNATURES:

<table>
<thead>
<tr>
<th>Signature</th>
<th>John Doe</th>
</tr>
</thead>
</table>

DATE: H-10
<table>
<thead>
<tr>
<th></th>
<th>(1st Plg)</th>
<th>(2nd Plg)</th>
<th>(3rd)</th>
<th>(4th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gross Weight</td>
<td>1.184 lb</td>
<td>1.187 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tare Weight</td>
<td>0.004 lb</td>
<td>0.596 lb</td>
<td>0.345 lb</td>
<td></td>
</tr>
<tr>
<td>Net Weight</td>
<td>0.780 lb</td>
<td>0.792 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Flash Weight (full)</td>
<td>1.109 lb</td>
<td>1.108 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Flash Weight (empty, wetted)</td>
<td>0.585 lb</td>
<td>0.585 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Weight of Liquid (Step 3 – Step 4)</td>
<td>0.524 lb</td>
<td>0.523 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Volume of Flash</td>
<td>8.510 cu ft</td>
<td>8.510 cu ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Temperature of Liquid</td>
<td>70°F</td>
<td>71°F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Do the weights recorded in step 5 differ from each other by more than the value in Table 4.3 (page 8-20)?

YES ☐ NO ☐

9. AVERAGE WEIGHT OF LIQUID IN FLASK = AVERAGE OF STEP 5 = 0.5235 lb

10. AVERAGE WEIGHT OF LABELED VOLUME = LABELED VOLUME \times AVERAGE WEIGHT OF LIQUID IN FLASK

\[\frac{\text{Box 1}}{\text{Step 6}} \times \text{Step 5} = \frac{0.78525 \text{ lb}}{0.5235 \text{ lb}} \]

\[\frac{0.78525 \text{ lb}}{0.5235 \text{ lb}} \]

11. (Option) = 4 \text{ cu ft} = 2 \text{ cu ft}

12. AVERAGE TARE = AVERAGE OF STEP 2 (or average of Step 2 and additional tare) \[= \frac{0.3955 \text{ lb}}{} \]

*Record in box 13 on report form

*Alternative Tare procedure for liquids placed in glass.
All additional packages are opened for tare, provision should be made for recording all pertinent data.
13. NOMINAL GROSS WEIGHT = AVERAGE CARE + AVERAGE WEIGHT OF LABELED VOLUME

\[\text{Step 12} \quad \text{Step 10} = \frac{1.181 \text{ lb}}{} \]

Record in box 23 on report form.

\[\text{Step 12} = 0.3955 \text{ lb} + 0.78525 \text{ lb} \]

14. For package opened for Tare:

\[\frac{1.184 - 1.181}{\text{Step 11}} = \frac{1.187 - 1.181}{\text{Step 13}} = \frac{+0.003 \text{ lb}}{+0.006 \text{ lb}} \]

15. PACKAGE ERROR (height)

\[\text{Step 14} = \frac{+0.033 \text{ lb}}{+0.002 \text{ lb}} \]

Record package errors on report form in crosshatched area.

16. MAV (from Table 20) = 0.651

\[\text{Step 15} = \frac{0.651 \text{ g}}{\text{gallon-8-lb/gal}} \]

Referred in box 3 on report form.

17. MAV (volume) = MAV (volume) \times AVERAGE WEIGHT OF LABELED VOLUME

\[\text{Step 16} \times \text{Step 10} = \frac{0.0327 \text{ lb}}{0.002 \text{ lb}} \]

18. MAV (pounds)

\[\text{Step 17} \times \text{Step 15} = \frac{0.0327 \text{ lb}}{0.651 \text{ g}} \]

Record in box 2 on report form.

19. Compare shipped package with nominal gross weight (Step 12, box 23).

Report package errors in sample directly on report form in crosshatched area.

Compare minus package errors with MAV (Step 18, box 2).

Average package errors (box 18). Convert back to units of volume as given below:

\[\text{AVERAGE PACKAGE ERROR (volume)} = \frac{AVG \text{ PACKAGE ERROR (height)}}{\text{UNIT OF MEASURE}} \times \text{LABELED VOLUME} \]

\[\text{Step 18} \times \text{Step 15} = \frac{0.002 \text{ lb}}{0.78525 \text{ lb}} \]

Record in box 18 on report form.

(Notes above with "b", "c", "e" in curves are for larger law sample sizes.)

H-12
This report form is designed for standard packages not labeled by weight; for example, liquid volume, count, area, etc.

Fill out report form heading, boxes 1, 2, and box 5 through 12.

Go to appropriate worksheets, follow directions on the worksheet, recording data on the report form as directed by the worksheet.

Audit - see worksheet

[Signature]

[Signature]

H-14
WORKSHEET FOR PACKAGES LABELED BY COUNT

NUMBERS WITH BOXES and \(\Box \) REFER TO REPORT FORM (PAGE A-1)

STEP NUMBERS (eg. Step 5 REFER TO WORKSHEET

Fill out report form through box \(\Box \). Skip boxes \(1 \) and \(2 \).

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Count</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gross Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tare Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Count in Each Package</td>
<td>10</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>Weight of Counted Items</td>
<td>(0.133) (\text{lb})</td>
<td>(0.117) (\text{lb})</td>
</tr>
<tr>
<td>5</td>
<td>Weight of Labeled Count</td>
<td>(0.122) (\text{lb})</td>
<td>(0.121) (\text{lb})</td>
</tr>
</tbody>
</table>

6. MAY

<table>
<thead>
<tr>
<th>Count</th>
<th>(step 8-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3)</td>
</tr>
</tbody>
</table>

7. TARE

\(\frac{\text{WEIGHT OF COUNTED ITEMS}}{\text{COUNT IN PACKAGE}} \times \frac{\text{WEIGHT OF COUNTED ITEMS}}{\text{COUNT IN PACKAGE}} = \frac{0.5 \times 0.133}{10} = 0.0006 \text{ lb} \)

8. **If using an empirical formula, what error in the mean calculated in Step 7 is equal to or greater than in the smallest graduation?**

If using an empirical formula, what error in the mean calculated in Step 7 is at least as large as the smallest increment?

NOTE: If this box is checked, open all packages in sample and determine each package error by actually counting the items inside the packages.

Continue as required

9. **If the weight recorded in Step 5 above differ from each other by more than the value in Table 4-3 (page B-22)?**

YES \(\Box \) If this box is checked, open all packages in sample and determine each package error by actually counting the items inside the packages.

NOTE: Average Weight of Labeled Count = Average of Step 5 \(= \frac{0.1215}{2} = 0.1215 \text{ lb} \)

10. **AVERAGE TARE = AVERAGE OF STEP 2**

\(= \frac{0.002}{2} = 0.001 \text{ lb} \)

<table>
<thead>
<tr>
<th>11. NOMINAL GROSS WEIGHT</th>
<th>AVERAGE</th>
<th>AVERAGE WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TARE</td>
<td>OF LABELS COUNT</td>
</tr>
<tr>
<td></td>
<td>Step 6</td>
<td>Step 8</td>
</tr>
<tr>
<td></td>
<td>(0.124) (\text{lb})</td>
<td>(0.124) (\text{lb})</td>
</tr>
</tbody>
</table>

Record in box \(\Box \) on report form.

H-15
12. For packages checked for Tare:

\[\text{PACKING ERROR (weight) = GROSS WEIGHT - NOMINAL GROSS WEIGHT} \]

\[= 0.120 \text{lb} - 0.124 \text{lb} \]

\[+ 0.12 \text{lb} - 0.004 \text{lb} \]

\[\frac{+0.12 \text{lb} - 0.004 \text{lb}}{3} \]

13. PACKAGE ERROR (dimension units) = PACKAGE ERROR (weight) + UNIT OF MEASURE

\[= 0.012 \text{ u} - 0.002 \text{ u} \]

\[+ 6 = -2 \]

Record these package errors on report form in crosshatched area.

14. MAV (weight) = MAV (count) \times \frac{\text{AVERAGE WEIGHT OF LABELLED COUNT}}{\text{LABELLED COUNT}}

\[= \text{Step 6} \times \frac{\text{Step 9}}{\text{box 1}} \]

\[= 0.00364 \text{ lb} \]

15. MAV (dimension units) = MAV (weight) \times \text{UNIT OF MEASURE}

\[= \text{Step 14} + \text{box 2} \]

\[= 2 \]

Record in box 1 on report form.

16. Compare unopened packages with nominal gross weight (Step 11 or box 8).

Record package errors for remaining packages in sample directly on report form in crosshatched area.

Compare unit package errors with MAV (Step 15 or box 2).

Average package errors (box 9). (Convert back to units of count as given below:

\[\text{AVERAGE PACKAGE ERROR (count)} = \text{AVG. PACKAGE ERROR (dimension units)} \times \text{UNIT OF MEASURE} \times \frac{\text{LABELLED COUNT}}{\text{AVG. WEIGHT OF LABELLED COUNT}} \]

\[= \text{box 8} \times \text{box 10} \times \frac{\text{box 1}}{\text{Step 2}} \]

\[= 4 \times 0.002 \text{ lb} \times 100 \]

\[= 0.1215 \text{ lb} \]

\[= 6.6 \text{ chips} \]

Record in box 10 on report form.

(Skewed above with "3", "4", and "5" in corner are for larger tare amount 9/28/2).
APPENDIX I. EQUIPMENT TOLERANCES
Table 1-1. Tolerances for field standard weights (avoirdupois and metric)

CLASS F TOLERANCES FOR FIELD STANDARD WEIGHTS (Avoirdupois)

Tolerances for weights 2 lb or larger are 1 part in 10,000; weights between 0.5 lb and 0.02 lb are 1 part in 5,000; weights smaller than 0.02 lb have tolerances determined by the equation in footnote c. For all denominations not shown, but which are intermediate between those listed, the tolerance for the smaller denomination shall apply.

<table>
<thead>
<tr>
<th>Denomination</th>
<th>Tolerances</th>
<th>Denomination</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds (lb)</td>
<td>Pounds (lb)</td>
<td>Grams (g)</td>
<td>Kilograms (kg)</td>
</tr>
<tr>
<td>10,000</td>
<td>1.20</td>
<td>454</td>
<td>500</td>
</tr>
<tr>
<td>5,000</td>
<td>0.50</td>
<td>227</td>
<td>300</td>
</tr>
<tr>
<td>3,000</td>
<td>0.30</td>
<td>136</td>
<td>200</td>
</tr>
<tr>
<td>2,500</td>
<td>0.25</td>
<td>113</td>
<td>100</td>
</tr>
<tr>
<td>2,000</td>
<td>0.20</td>
<td>95.5</td>
<td>50</td>
</tr>
<tr>
<td>1,000</td>
<td>0.10</td>
<td>45.5</td>
<td>30</td>
</tr>
<tr>
<td>500</td>
<td>0.05</td>
<td>22.5</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>0.010</td>
<td>4.5</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>0.005</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.003</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.002</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.001</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Micropounds (grain)</td>
<td>Milligrams (mg)</td>
<td>Grams (g)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>227</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>136</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>91</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>154</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>0.3</td>
<td>60</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>0.2</td>
<td>40</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>0.1</td>
<td>20</td>
<td>9.1</td>
<td>2</td>
</tr>
<tr>
<td>0.05</td>
<td>10</td>
<td>4.5</td>
<td>1.50</td>
</tr>
<tr>
<td>0.03</td>
<td>6</td>
<td>2.7</td>
<td>1.24</td>
</tr>
<tr>
<td>0.02</td>
<td>4</td>
<td>1.6</td>
<td>1.12</td>
</tr>
<tr>
<td>0.01</td>
<td>3.20</td>
<td>1.45</td>
<td>0.90</td>
</tr>
<tr>
<td>0.005</td>
<td>2.58</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>2.18</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>1.95</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Ounces (oz)</td>
<td>Micropounds (grain)</td>
<td>Milligrams (mg)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>45</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>23</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>11</td>
<td>0.26</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>5.4</td>
<td>0.21</td>
</tr>
<tr>
<td>1/2</td>
<td>6.2</td>
<td>2.8</td>
<td>0.17</td>
</tr>
<tr>
<td>1/4</td>
<td>3.92</td>
<td>1.78</td>
<td>0.14</td>
</tr>
<tr>
<td>1/8</td>
<td>3.44</td>
<td>1.56</td>
<td>0.10</td>
</tr>
</tbody>
</table>

CLASS F TOLERANCES FOR FIELD STANDARD WEIGHTS (Metric)

Tolerances for weights 1 kg or larger are 1 part in 10,000; weights between 200 g and 10 g are 1 part in 5,000; weights smaller than 10 g have tolerances determined by the equation in footnote c. For all denominations not shown, but which are intermediate between those listed, the tolerance for the smaller denomination shall apply.

<table>
<thead>
<tr>
<th>Milligrams (mg)</th>
<th>Grams (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>79</td>
</tr>
<tr>
<td>300</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>70</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>1.24</td>
</tr>
<tr>
<td>20</td>
<td>1.12</td>
</tr>
<tr>
<td>18</td>
<td>0.90</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.54</td>
</tr>
<tr>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>0.17</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Table I-1. Tolerances for field standard weights (avoirdupois and metric) (Continued).

<table>
<thead>
<tr>
<th>Denomination</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ounces (oz)</td>
<td>Micropounds</td>
</tr>
<tr>
<td>0.1</td>
<td>2.76</td>
</tr>
<tr>
<td>(1/16) 0.0625</td>
<td>2.38</td>
</tr>
<tr>
<td>0.05</td>
<td>2.29</td>
</tr>
<tr>
<td>(1/32) 0.03125</td>
<td>1.90</td>
</tr>
<tr>
<td>0.03</td>
<td>1.87</td>
</tr>
<tr>
<td>0.02</td>
<td>1.65</td>
</tr>
<tr>
<td>0.01</td>
<td>1.32</td>
</tr>
</tbody>
</table>

b) 1 lb = 0.000001 lb

\[T(w) = 0.9 \times \frac{w}{0.316} \]

where \(T(w) \) is the tolerance in milligrams and \(w \) is the metric equivalent in grams of the nominal weight for which the tolerance is being determined.
Table 1-2. Scale units and tolerances for field standard flasks and cylinders (inch-pound and metric fluid measures)\(^a\)

Scale units for flasks in inch-pound fluid measure

<table>
<thead>
<tr>
<th>Size</th>
<th>Graduated range on each side of nominal</th>
<th>Minimum graduation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gill</td>
<td>1/2 fl dr</td>
<td>1/4 fl dr</td>
</tr>
<tr>
<td>1/2 pint</td>
<td>1 fl dr</td>
<td>1/4 fl dr</td>
</tr>
<tr>
<td>Pint</td>
<td>2 fl dr</td>
<td>1/2 fl dr</td>
</tr>
<tr>
<td>Quart</td>
<td>4 fl dr</td>
<td>1 fl or</td>
</tr>
<tr>
<td>1/2 Gallon</td>
<td>6 fl dr</td>
<td>1 fl dr</td>
</tr>
<tr>
<td>Gallon</td>
<td>8 fl dr</td>
<td>1 fl dr</td>
</tr>
</tbody>
</table>

Tolerances for inch-pound field standard flasks and cylinders (with conversions to milliliters)

<table>
<thead>
<tr>
<th>Nominal capacity at 68 (^\circ)F</th>
<th>Tolerances at nominal capacity</th>
<th>Tolerances at total or partial capacity (i.e. graduated portion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gill</td>
<td>1,920 Minims (118.3 mL)</td>
<td>1.0 Minims (0.06 mL)</td>
</tr>
<tr>
<td>1/2 Pint</td>
<td>940 Minims (57.6 mL)</td>
<td>1.5 Minims (0.09 mL)</td>
</tr>
<tr>
<td>1 Pint</td>
<td>780 Minims (47.3 mL)</td>
<td>2.0 Minims (0.12 mL)</td>
</tr>
<tr>
<td>1 Quart</td>
<td>360 Minims (226.3 mL)</td>
<td>2.5 Minims (0.15 mL)</td>
</tr>
<tr>
<td>1/2 Gallon</td>
<td>307 Minims (189.2 mL)</td>
<td>3.0 Minims (0.18 mL)</td>
</tr>
<tr>
<td>1 Gallon</td>
<td>614 Minims (378.5 mL)</td>
<td>3.5 Minims (0.21 mL)</td>
</tr>
<tr>
<td>1 Fluid</td>
<td>960 Minims (59.1 mL)</td>
<td>4.0 Minims (0.24 mL)</td>
</tr>
</tbody>
</table>

Scale units for metric flasks

<table>
<thead>
<tr>
<th>Size</th>
<th>Graduated range on each side of nominal</th>
<th>Minimum graduation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mL</td>
<td>2 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>200 mL</td>
<td>4 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>250 mL</td>
<td>5 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>500 mL</td>
<td>10 mL</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>1000 mL</td>
<td>25 mL</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>2000 mL</td>
<td>50 mL</td>
<td>1.0 mL</td>
</tr>
</tbody>
</table>

Tolerances for metric field standard flasks and cylinders

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Tolerance at nominal capacity</th>
<th>Tolerance at total or partial capacity (i.e. graduated portion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mL(^b)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>100 mL</td>
<td>0.2 mL</td>
<td>0.08 mL</td>
</tr>
<tr>
<td>200 mL</td>
<td>0.3 mL</td>
<td>0.10 mL</td>
</tr>
<tr>
<td>500 mL</td>
<td>0.5 mL</td>
<td>0.10 mL</td>
</tr>
<tr>
<td>1000 mL</td>
<td>1.0 mL</td>
<td>0.20 mL</td>
</tr>
<tr>
<td>2000 mL</td>
<td>1.0 mL</td>
<td>0.30 mL</td>
</tr>
<tr>
<td>30 mL</td>
<td>0.3 mL</td>
<td>0.30 mL</td>
</tr>
</tbody>
</table>

\(^b\)Tolerance of 10 mL graduate is 0.08 mL calibrated "to contain" and 0.10 mL calibrated "to deliver".

1-3
<table>
<thead>
<tr>
<th>INDEX</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>aerosols</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>aerosol test allowances</td>
<td>Table 3-2</td>
</tr>
<tr>
<td></td>
<td>aerosol test stand</td>
<td>3.11.1</td>
</tr>
<tr>
<td></td>
<td>alcoholic beverages, regulatory authority</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>allowable difference</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>- definition</td>
<td>Appendix C</td>
</tr>
<tr>
<td></td>
<td>alternative tare procedure</td>
<td>2.11.4</td>
</tr>
<tr>
<td></td>
<td>analytical balance</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>area measure, labeled as to</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>audit testing</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>average error</td>
<td>2.7.2</td>
</tr>
<tr>
<td></td>
<td>average requirement definition</td>
<td>2.8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.1</td>
</tr>
<tr>
<td>B</td>
<td>borax</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>break point</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>buret</td>
<td>4.6</td>
</tr>
<tr>
<td>C</td>
<td>capacity, labeled by</td>
<td>4.14</td>
</tr>
<tr>
<td></td>
<td>Category A sampling plans</td>
<td>Appendix B</td>
</tr>
<tr>
<td></td>
<td>- introduction</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>- why there are two categories</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>- how to use Table 2-2</td>
<td>2.7.1</td>
</tr>
<tr>
<td></td>
<td>- decision criteria</td>
<td>2.7.2</td>
</tr>
<tr>
<td></td>
<td>Category B sampling plans</td>
<td>Appendix B</td>
</tr>
<tr>
<td></td>
<td>- introduction</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>- why there are 2 categories</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>- how to use Table 2-5</td>
<td>2.8.1</td>
</tr>
<tr>
<td></td>
<td>- decision criteria</td>
<td>2.8.2</td>
</tr>
<tr>
<td></td>
<td>caulking compounds</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>- checkweighers</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>coffee</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>core method</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>corrected tare</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>cosmetics, regulatory authority</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>count, labeled by</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>- audit procedure</td>
<td>5.1.2</td>
</tr>
<tr>
<td></td>
<td>- violation procedure</td>
<td>5.1.3</td>
</tr>
<tr>
<td></td>
<td>cups</td>
<td>4.14</td>
</tr>
<tr>
<td></td>
<td>crosshatched area of report form</td>
<td>2.5.3</td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>2.7.2</td>
</tr>
<tr>
<td></td>
<td>deadweight dial micrometer</td>
<td>5.4.1</td>
</tr>
<tr>
<td>J-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>defoaming agents</td>
<td>4.2.</td>
<td>4-4</td>
</tr>
<tr>
<td>density cup</td>
<td>4.10.1.</td>
<td>4-29</td>
</tr>
<tr>
<td>depth gage</td>
<td>4.6.1.</td>
<td>4-12</td>
</tr>
<tr>
<td>digital tape measure</td>
<td>4.9.1.</td>
<td>4-21</td>
</tr>
<tr>
<td>digital electronic scales</td>
<td>3.1</td>
<td>3-3</td>
</tr>
<tr>
<td>- commercial</td>
<td>3.1.</td>
<td>3-3</td>
</tr>
<tr>
<td>- inspector's equipment</td>
<td>3.9</td>
<td>3-22</td>
</tr>
<tr>
<td>dimensionless unit</td>
<td>3.1.</td>
<td>3-1</td>
</tr>
<tr>
<td>drained weight</td>
<td>2.5.1.</td>
<td>2-18</td>
</tr>
<tr>
<td></td>
<td>2.11.</td>
<td>2-19</td>
</tr>
<tr>
<td>- frozen foods</td>
<td>3.10.</td>
<td>3-24</td>
</tr>
<tr>
<td>drugs, regulatory authority</td>
<td>3.13.</td>
<td>3-33</td>
</tr>
<tr>
<td>dry tare</td>
<td>1.1.</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>2.11.</td>
<td>2-19</td>
</tr>
<tr>
<td>E</td>
<td>equal arm scales</td>
<td>3.1.</td>
</tr>
<tr>
<td>electronic scales</td>
<td>3.1.</td>
<td>3-1</td>
</tr>
<tr>
<td>error weight testing</td>
<td>3.9.</td>
<td>3-22</td>
</tr>
<tr>
<td>F</td>
<td>field standard weights</td>
<td>2.7.2.</td>
</tr>
<tr>
<td>standards</td>
<td>3.1.</td>
<td>3-4</td>
</tr>
<tr>
<td>flasks</td>
<td>3.14.</td>
<td>3-35</td>
</tr>
<tr>
<td>foam aerosols</td>
<td>4.2.</td>
<td>4-4</td>
</tr>
<tr>
<td>foods, regulatory authority</td>
<td>3.11.4.</td>
<td>3-40</td>
</tr>
<tr>
<td>frozen dessert novelties</td>
<td>1.1.</td>
<td>3-30</td>
</tr>
<tr>
<td>frozen foods</td>
<td>4.13.</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>3.12.</td>
<td>4-34</td>
</tr>
<tr>
<td></td>
<td>3.13.</td>
<td>3-33</td>
</tr>
<tr>
<td></td>
<td>3.14.</td>
<td>3-33</td>
</tr>
<tr>
<td>G</td>
<td>glassware</td>
<td>5.7.</td>
</tr>
<tr>
<td>glazed raw seafood & fish</td>
<td>3.14.</td>
<td>5-35</td>
</tr>
<tr>
<td>glazed seafood</td>
<td>3.14.</td>
<td>3-35</td>
</tr>
<tr>
<td>glazed seafood</td>
<td>4.10.</td>
<td>4-29</td>
</tr>
<tr>
<td>gray area</td>
<td>3.17.</td>
<td>3-39</td>
</tr>
<tr>
<td></td>
<td>3.18.</td>
<td>3-46</td>
</tr>
<tr>
<td>H</td>
<td>hardware labeled by count</td>
<td>5.1.</td>
</tr>
<tr>
<td></td>
<td>5.2.</td>
<td>5-4</td>
</tr>
<tr>
<td>I</td>
<td>ice cream</td>
<td>4.13.</td>
</tr>
<tr>
<td>- novelties</td>
<td>4.15.</td>
<td>4-38</td>
</tr>
</tbody>
</table>
in-plant testing 1.3.1. 1-3
individual packages exceeding MAV E.6.2. E-8
initial tare sample 2.5. 2-18
inspection lot 2.11.4. 2-22
Table 2-6 B-6
2.3. 2-5

L
Jacquers
liquid volumes
- change with temperature 4.9. Chapter 4 4-21
- reference temperatures 4.1. 4-1
linear measure, labeled by 4.1. 4-2
5.3. 5-6

Lot
- definition 2.3. 2-5
- inspection lot 2.3. 2-5
- standard pack 2.3.1. 2-6
- random pack 2.3.2. 2-6
- sampling E.2. E-1
- size 2.3.3. 2-7
E.2. E-1

Lot numbering

M
Maximum Allowable Variation
MAV
- exceptions 1.2.1. 1-2
2.12. 2-25
2.13. 2-26
4.8. 4-20
4.14. 4-35
3.18. 3-46
1.1. 1-1
Table 2 12 B-15
5.4.1. 5-9
4.6.1. 4-12
4.7. 4-18
2.4. 2-7
1.9. 1-9
1.10. 1-10
2.14. 2-28
4.12. 4-33
3.10. 3-24

mulch
mushrooms (drained weight)

N
nominal gross weight
null indicator
n

O
100 percent testing

Section
Page
1.3.1. 1-3
E.6.2. E-8
2.5. 2-18
2.11.4. 2-22
Table 2-6 B-6
2.3. 2-5
4.9. Chapter 4 4-21
4.1. 4-1
4.1. 4-2
5.3. 5-6
2.3. 2-5
2.3. 2-5
2.3.1. 2-6
2.3.2. 2-6
E.2. E-1
2.3.3. 2-7
E.2. E-1
1.2.1. 1-2
2.12. 2-25
2.13. 2-26
4.8. 4-20
4.14. 4-35
3.18. 3-46
1.1. 1-1
Table 2 12 B-15
5.4.1. 5-9
4.6.1. 4-12
4.7. 4-18
2.4. 2-7
1.9. 1-9
1.10. 1-10
2.14. 2-28
4.12. 4-33
3.10. 3-24
3.5. 3-6
3.4. 3-5
2.11.4. 2-22
Table 2-7 B-7
1.6. 1-6

J-3
<table>
<thead>
<tr>
<th>Item</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>olives (drained weight)</td>
<td>3.10</td>
<td>3-24</td>
</tr>
<tr>
<td>P</td>
<td>4.9</td>
<td>4-21</td>
</tr>
<tr>
<td>paint</td>
<td>Table 4.4</td>
<td>B-21</td>
</tr>
<tr>
<td>- thickness of can walls and labels</td>
<td>4.9.2</td>
<td>4-22</td>
</tr>
<tr>
<td>- field audit</td>
<td>4.9.3</td>
<td>4-25</td>
</tr>
<tr>
<td>- In-plant audit</td>
<td>4.9.4</td>
<td>4-27</td>
</tr>
<tr>
<td>- violation procedure</td>
<td>2.4</td>
<td>2-7</td>
</tr>
<tr>
<td>package errors</td>
<td>2.5</td>
<td>2-17</td>
</tr>
<tr>
<td>- report form</td>
<td>2.2.3</td>
<td>2-4</td>
</tr>
<tr>
<td>package testing scales</td>
<td>3.1</td>
<td>3-1</td>
</tr>
<tr>
<td>paper products</td>
<td>5.5</td>
<td>5-13</td>
</tr>
<tr>
<td>- paper plates</td>
<td>5.6</td>
<td>5-15</td>
</tr>
<tr>
<td>- sanitary products</td>
<td>5.6</td>
<td>5-15</td>
</tr>
<tr>
<td>- towels</td>
<td>5.6</td>
<td>5-15</td>
</tr>
<tr>
<td>- toilet tissue</td>
<td>5.1</td>
<td>5-1</td>
</tr>
<tr>
<td>- napkins</td>
<td>5.2</td>
<td>5-4</td>
</tr>
<tr>
<td>pastes</td>
<td>5.3</td>
<td>5-6</td>
</tr>
<tr>
<td>peat moss</td>
<td>4.10</td>
<td>4-29</td>
</tr>
<tr>
<td>pesticides, regulatory authority</td>
<td>4.11</td>
<td>4-32</td>
</tr>
<tr>
<td>pesticides, special precautions</td>
<td>1.1</td>
<td>1-1</td>
</tr>
<tr>
<td>pickles</td>
<td>1.3.3</td>
<td>1-5</td>
</tr>
<tr>
<td>piper</td>
<td>4.6</td>
<td>4-12</td>
</tr>
<tr>
<td>plastic disks</td>
<td>4.6</td>
<td>4-12</td>
</tr>
<tr>
<td>plus error</td>
<td>4.8.1</td>
<td>4-20</td>
</tr>
<tr>
<td>point of pack</td>
<td>4.14.1</td>
<td>4-36</td>
</tr>
<tr>
<td>polyethylene</td>
<td>2.4</td>
<td>2-7</td>
</tr>
<tr>
<td>poultry</td>
<td>1.3.1</td>
<td>1-3</td>
</tr>
<tr>
<td>poultry, regulatory authority</td>
<td>5.4</td>
<td>5-8</td>
</tr>
<tr>
<td>pycnometer</td>
<td>3.18</td>
<td>3-46</td>
</tr>
<tr>
<td>Random Number Table</td>
<td>1.1</td>
<td>1-1</td>
</tr>
<tr>
<td>random pack</td>
<td>4.10.1</td>
<td>4-29</td>
</tr>
<tr>
<td>random pack lot</td>
<td>2.7.2</td>
<td>2-15</td>
</tr>
<tr>
<td>random sampling</td>
<td>2.11.4.</td>
<td>2-23</td>
</tr>
<tr>
<td>random starting place</td>
<td>2.11.4.</td>
<td>2-23</td>
</tr>
<tr>
<td>range</td>
<td>E.3</td>
<td>E-2</td>
</tr>
<tr>
<td>reasonabale variation</td>
<td>Appendix F</td>
<td>F-1</td>
</tr>
<tr>
<td>regulations</td>
<td>Appendix</td>
<td>G-1</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>report forms</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>- standard pack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- random pack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retail sampling</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>retail testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rounding</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>S salad dressing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- general discussion</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>- differences between Category A&B</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>sampling plans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- what they consist of</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>- types of plans</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>- selection of</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>- low count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- glassware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scales</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>seafood, glazed raw</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>selecting tare sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>selecting sample</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>shift test</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>sieves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soils</td>
<td>3.13.1</td>
<td></td>
</tr>
<tr>
<td>standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard pack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard pack report form</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>- A-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A-2 (weight only)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>standard pack lot</td>
<td>2.3.1</td>
<td></td>
</tr>
<tr>
<td>stemware</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>stop watch</td>
<td>3.13.1</td>
<td></td>
</tr>
<tr>
<td>substitution method</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>T T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tare</td>
<td>2.7.2</td>
<td></td>
</tr>
<tr>
<td>- report form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tare selection</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>test allowance (aerosol)</td>
<td>2.2.2</td>
<td></td>
</tr>
<tr>
<td>thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- polyethylene</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>- paint walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tobacco, regulatory authority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>toilet tissue</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- total error</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>tumblers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>unit of measure</td>
<td>2.5.2</td>
</tr>
<tr>
<td>unreasonable errors</td>
<td>2.7.1</td>
</tr>
<tr>
<td></td>
<td>2.8.1</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>vacuum packed coffee</td>
<td>3.15</td>
</tr>
<tr>
<td>variable tare</td>
<td>2.11.4</td>
</tr>
<tr>
<td>varnish</td>
<td>4.9</td>
</tr>
<tr>
<td>viscous products</td>
<td>4.10</td>
</tr>
<tr>
<td>volumetric measure</td>
<td>4.2</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>warehouse sampling</td>
<td>E.6.2</td>
</tr>
<tr>
<td>weights</td>
<td>1.3.1</td>
</tr>
<tr>
<td>wet tare</td>
<td>3.1</td>
</tr>
<tr>
<td>wholesale testing</td>
<td>2.11</td>
</tr>
<tr>
<td>wrapping paper</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
</tr>
</tbody>
</table>