Sensor Development: Metrology Tools for Climate Science

David A. Long
Adam J. Fleisher, Zachary D. Reed, and Joseph T. Hodges

Greenhouse Gas and Climate Science Measurements Seminar
1 August 2014
Our approach

- Both *in situ* monitoring and remote sensing require cutting-edge spectroscopic measurements.

- We develop novel techniques which allow for enhanced:
 - Spectral coverage
 - Portability
 - Sensitivity
 - Accuracy
 - Speed
 - Selectivity
Outline

• A series of new spectroscopic techniques
 • They offer a range of complexity, speed, and sensitivity

• Specifically I will discuss:
 • Photoacoustic sensor
 • Ultrasensitive cavity ring-down instruments
 • Multiplexed detection with optical frequency combs
NIST photoacoustic sensor

- Designed for routine monitoring of CO$_2$ concentrations

- Will be placed on the top of the Admin. Building at NIST (101).

Figure from HDR Architecture, Inc.
Photoacoustic spectroscopy (PAS)

- Zero background
- Optically broadband
- Relatively easy to implement
- High sensitivity
 - signal scales with laser power
- Wide dynamic range
Photoacoustic spectrometer at 1.6 µm

- Allows for routine, automated measurements of ambient CO$_2$
- Uncertainty of only 0.8 ppm (0.2%)

New 2 µm sensor

- Moved to 2 µm to probe stronger CO$_2$ transitions
 - Able to utilize recently developed laser technology
- Signal-to-noise ratios of ~14,000:1 for CO$_2$ at ambient levels
- Allows for simultaneous humidity measurements with the same laser
Future directions for the PAS instruments

• Dual species PAS instrument
 – Use fiber switches to probe numerous species simultaneously
 – Potential targets include CO$_2$, H$_2$O, NH$_3$, and CH$_4$ (and their isotopologues)

• Mid-infrared PAS
 – Would allow us to probe CH$_4$ and C$_2$H$_6$ simultaneously
 – Allows for source attribution of CH$_4$ emissions
A series of new spectroscopic techniques

- They offer a range of complexity, speed, and sensitivity

Specifically I will discuss:

- Photoacoustic sensor
 - Ultrasensitive cavity ring-down instruments
- Multiplexed detection with optical frequency combs
Cavity ring-down spectroscopy (CRDS)

Advantages:
• High effective pathlength and sensitivity
• Insensitive to laser intensity noise
• Small sample volume
The problem

• To record a spectrum you need to tune the laser frequency
• This generally requires thermal or mechanical tuning
 • This is usually non-linear and very slow
• Things are even more difficult with cavity-enhanced spectroscopy (discrete frequencies)
Frequency-agile, rapid scanning (FARS) spectroscopy

Method:
- Use waveguide electro-optic phase-modulator (EOM) to generate tunable sidebands
- Drive PM with a rapidly-switchable microwave (MW) source
- Fix carrier and use ring-down cavity to filter out all but one selected side band

Advantages:
- Overcomes slow mechanical and thermal scanning
- Links optical detuning axis link to radio-frequency (RF) standards
- Wide frequency tuning range (> 130 GHz = 4.3 cm⁻¹)

FARS operating principle

\[\omega_c + \delta \]

\[\omega_c + \delta + \omega_f \]

\[\omega_c + \delta + 2\omega_f \]

cavity resonances

frequency scanning

Very high acquisition rates: scanning
Spectra of entire absorption bands

2 THz wide spectra recorded in 45 minutes

425 ppm of CO$_2$ in air

ECDL grating moved every 12 GHz

Each point is the average of 100 RDs
Lower finesse = faster rates

Finesse = 20,000
RD acq. rate = 8 kHz
$\sigma_v/\tau = 0.008 \%$
NEA = 1.7×10^{-12} cm$^{-1}$ Hz$^{-1/2}$

Finesse = 60
RD acq. rate = 5 MHz
$\sigma_v/\tau = 4 \%$
NEA = 1.9×10^{-8} cm$^{-1}$ Hz$^{-1/2}$

What if I want to scan faster?

• Entirely limited by the slow grating tuning

• So use higher bandwidth EOMs to reduce the number of grating steps
Even faster rates

Use recently developed W-band modulators (bandwidth up to 300 GHz!)

Image from Phase Sensitive Innovations
Even faster rates: single grating position

Allows for a 130 GHz (4.3 cm^{-1}) to be recorded in 3 s.
Even faster rates: grating tuning

(30012) \leftrightarrow (00001) CO$_2$ band

$1/c\tau$ (10^{-6} cm$^{-1}$)

Detuning (THz)
What if I want higher sensitivity?

- To reduce $1/f$ noise, we want to make the measurement away from DC.
- Also need to rapidly compare ring-down time constants at different wavelengths.
Improving the sensitivity: Heterodyne measurements

- To do this we adapted the approach of Ye and Hall

APD

High Finesse Cavity

Heterodyne measurements: Our approach

- Replace their two AOMs with a single EOM
- This reduces the complexity and enables rapid scanning

Heterodyne measurements: Reaching the quantum-noise limit

- Utilized both a traditional InGaAs detector and an APD
- Able to reach the quantum-noise limit with the APD
- The traditional InGaAs allows for an NEA of $6 \times 10^{-14} \text{ cm}^{-1} \text{ Hz}^{-1/2}$
Most sensitive spectrometers

<table>
<thead>
<tr>
<th>Technique</th>
<th>Ref.</th>
<th>Sensitivity (cm(^{-1}) Hz(^{1/2}))</th>
<th>Laser</th>
<th>Tuning range (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICE-OHMS</td>
<td>Ye et al.</td>
<td>1E-14</td>
<td>cw-Nd:YAG</td>
<td>0.1</td>
</tr>
<tr>
<td>HD-CRDS</td>
<td>Long et al.</td>
<td>6E-14</td>
<td>ECDL</td>
<td>60</td>
</tr>
<tr>
<td>HD-CRDS</td>
<td>Ye and Hall</td>
<td>3E-13</td>
<td>cw-Yb:YAG</td>
<td>~0.5</td>
</tr>
<tr>
<td>CRDS</td>
<td>Spence et al.</td>
<td>1E-12</td>
<td>cw-Nd:YAG</td>
<td>0.14</td>
</tr>
<tr>
<td>FARS-CRDS</td>
<td>Long et al.</td>
<td>2E-12</td>
<td>ECDL</td>
<td>60</td>
</tr>
<tr>
<td>NICE-OHMS</td>
<td>Ehlers et al.</td>
<td>6E-12</td>
<td>Fiber laser</td>
<td>1</td>
</tr>
</tbody>
</table>

Heterodyne measurements: Rapid scanning

- Able to record a 26 GHz-wide spectrum in 17 ms with 50 GS/s AWG
- Observed a weak CO$_2$ hot band transition (3.5E-25 cm molec.$^{-1}$) in an air sample

Outline

• A series of new spectroscopic techniques
 • They offer a range of complexity, speed, and sensitivity

• Specifically I will discuss:
 • Photoacoustic sensor
 • Ultrasensitive cavity ring-down instruments
 • Multiplexed detection with optical frequency combs
What if I don’t want to scan?

• Then multiplex!
Multiplexed measurements: OFCs

OFCs have been used with a variety of detection schemes for spectroscopic measurements.

Dispersive (VIPA)

Fourier Transform

Multiheterodyne
Mode-locked femtosecond OFCs

Advantages:
- Wide bandwidth (octave-spanning)
- Can be self-referenced (absolute freq. axis)

Disadvantages:
- Essentially fixed repetition rate
- Low power per tooth (nW to µW)
- Large and expensive
An alternate approach: electro-optic modulators

Ideal for targeted measurements of selected species

Dual-drive MZM allows for power-leveling of the comb

Variable pitch

Pitch can be changed in <100 µs

Optical Power (10 dB/div.)

Detuning (GHz)

Multiheterodyne spectroscopy

Common mode (no need for phase locking)

Referencing

Multiheterodyne spectra

Acquired in 30 s (average of 10,000 spectra)

Where are we headed?

- The mid-infrared
- Probing the strongest molecular transitions allows for the lowest detection limits
Cavity ring-down spectroscopy in the mid-IR

- Instrument is up and running!

Detection limit of 3 ppt for N_2O
Conclusions

- Presented several new techniques for rapid, ultrasensitive detection of GHGs

 - Photoacoustic spectroscopy (PAS)
 - Relatively simply instrument allows for routine sensing

 - Frequency-agile, rapid scanning (FARS) spectroscopy
 - Use an EOM to step scan the laser frequency
 - Scanning rates limited only by the cavity response time

 - Heterodyne-detected cavity ring-down spectroscopy (HD-CRDS)
 - Make the measurement well above DC
 - Leads to quantum-noise-limited sensitivity

 - Multiheterodyne spectroscopy with EOM-generated optical frequency combs
 - Allows for multiplexed detection of several trace gases
 - Far lower costs and complexity than with femtosecond lasers
 - Inherently common-mode
Acknowledgements

• Joseph Hodges, David Plusquellic, Adam Fleisher, Zachary Reed, Gar-Wing Truong, Szymon Wojtewicz, Katarzyna Bielska, Hong Lin, Qingnan Liu, Kevin Douglass, Stephen Maxwell, Roger van Zee
 – NIST

• NIST Greenhouse Gas Measurements and Climate Research Program

• NIST Innovations in Measurement Science (IMS) award