Radiation Dose Is More Than A Number
Workshop 15-16 September 2011

Bert W. Maidment, Ph.D.
Associate Director, Radiation/Nuclear Countermeasures Program
Division of Allergy, Immunology, and Transplantation
National Institute of Allergy and Infectious Diseases
National Institutes of Health

15 September, 2011
Types of Radiation Exposure

- Radiological terrorist events
 - RDD (Dirty Bombs)
 - RED
 - Food or Water Contamination
- Nuclear detonation
- Accident
 - Power Plant Release
 - Sealed radiological sources
HHS assigned NIH/NIAID with the responsibility to identify, characterize and develop new medical countermeasure products against radiological and nuclear attacks that may cause a public health emergency.

Research priority areas of the program are to develop:

- Drugs to treat or mitigate radiation injury
- Drugs to remove radioactive materials from the body
- Biodosimetry tools to determine levels of radiation exposure received by an individual
Radiation Countermeasure Mission Space

- **ARS/DEARE**
 - Hematopoietic ARS:
 - Neutropenia
 - Thrombocytopenia
 - Anemia
 - Lymphopenia
 - GI ARS
 - CNS Injury
 - Cutaneous Injury
 - Lung Injury
 - Kidney Injury
 - Combined Radiation Injury

- **Radionuclide Threats**
 - Am-241
 - Co-60
 - Cs-137
 - I-131
 - Ir-192
 - Po-210
 - Pu-238/239
 - Sr-90
 - U-235

- **Late Effects**
 - Carcinogenesis
 - Cardiovascular Disease
 - Cataractogenesis

- **Biodosimetry Methods and Devices**
Components of NIH Strategic Plan and Research Agenda

- Basic & Translational Research
- Radiation Biodosimetry
- Focused Product Development
- Infrastructure for Research & Product Development
NIAID’s Radiation/Nuclear Medical Countermeasures Program

Build Infrastructure and Research Capacity

Basic Research and Discovery

ARS Treatments and Radionuclide Decomposition Agents Development

Biososimetry

Product Development Support Services
Radiation/Nuclear Medical Countermeasure Program Goals

- Support R&D on mechanisms of radiation injury and protection/mitigation
- Identify new radiation medical countermeasures
- Facilitate candidate medical countermeasures product development under the Animal Rule (21 CFR 314 and 601)
- Obtain licensure for radiation emergencies
- Increase the number of safe and effective radiation medical countermeasures available for Strategic National Stockpile procurement
Radiation/Nuclear Medical Countermeasure Development Programs

- **Cooperative Agreements**
 - Centers for Medical Countermeasures against Radiation

- **Specific Tissue Injury Grants**
 - Immune reconstitution
 - Oral Decorporation Agents
 - Mechanisms, Diagnostics, and Medical Countermeasures (MCMs)
 - Gastrointestinal MCMs
 - Lung MCMs
 - Skin MCMs
 - Combined Injury MCMs

- **SBIR**
 - Medical Countermeasure Development
 - NIAID Omnibus

- **Contracts**
 - Oral Forms of DTPA (2)
 - RERF
 - Product Development Support Services

- **Inter/intra Agency Agreements**
 - NCI
 - NIA
 - NIDDK
 - NIH RAID
 - AFRRI

- **Company Collaborations**
 - Contacts and presentations
 - Candidate efficacy screen
 - Candidate Optimization
 - Candidate Development

- **International Collaborations**
 - Global Health Security Initiative
 - REMPAN/WHO
 - International Symposia
Centers for Medical Countermeasures Against Radiation (CMCRs) 2010-2014

- 7 Centers awarded, 5-year cooperative agreements
- Awardees
 - Columbia University D. Brenner
 - Albert Einstein C. Guha
 - University of Rochester J. Williams
 - Dartmouth University H. Swartz
 - Duke University N. Chao
 - UCLA W. McBride
 - University of Pittsburgh J. Greenberger
Centers for Medical Countermeasures against Radiation – 2010-2014
MCM Tissue Specific Injury Mitigation Grant Programs:

- Investigator-initiated awards (R01s); 11 grants through FY2012
- Radiation Combined Injury (R21/R33s); 11 grants through FY2012
- Thrombocytopenia; 7 grants through FY2010
- Lung Radiation Injury; 9 grants through FY2010
- Cutaneous Radiation Injury; 4 grants through FY2010
- RC2 GO Grants; 5 GI and 1 Decorporation Agent through FY2010
Product Development Support Services Contractor Capabilities

- Evaluate efficacy of candidate countermeasures
 - Acute Radiation Syndrome
 • Rodent hematological and gastrointestinal models
 • NHP hematological models
 • Developing canine hematological model (Thrombocytopenia)
 • Developing NHP gastrointestinal model
 - Radionuclide Decorporation Agents
- cGMP manufacturing support and stability studies
- GLP toxicology and safety pharmacology studies
- GLP pivotal animal efficacy studies (Animal Rule)
 - NHP and rodent models for efficacy in ARS
- Phase I clinical safety and pharmacokinetic studies
- FDA submission support for p-IND
Identified 98 medical countermeasure candidates for further evaluation and development.

9 MCM candidates and 5 Biodosimetry concepts have been awarded funds from HHS/BARDA.
Radiation/Nuclear Medical Countermeasures

- Mechanisms of Action
 - Anti-oxidants
 - Anti-inflammatories
 - Anti-apoptotics
 - Growth factors and cytokines
 - Cell-based therapies
 - Others

- Radionuclides
 - Blocking agents
 - Decorporation agents
 - Enhancement of mucociliary clearance
Hematopoietic Syndrome

- Cytokines (filgrastim, pegfilgrastim, epoietin, ARA290)
- Combination cytokine therapy (Flt3L, IL-7, G-CSF)
- TPO receptor agonists (Romiplostim, PegTPOmp, Alx4100, TPIAO)
- Cell-based therapies (MPCs, cord blood, HSCs, endothelial cells)
- HGH
- P38 MAPK inhibitor (SB203580)
- KGF
- WW85
- Ethyl pyruvate
- HDAC inhibitors
Lethal Dose Response Curves for Hematopoietic and Gastrointestinal Acute Radiation Syndrome in NHPs

LD50(Co60) = 6.4

LD50(GI) = 11.3

LD50(Linac) = 7.52
LD50/30 of Mini-pigs Exposed to 1.6 – 2 Gy Co-60 Radiation

![Graph showing mortality vs dose with LD50=1.73 and 95% confidence intervals for different dose levels.]

<table>
<thead>
<tr>
<th>Gy</th>
<th>LCL</th>
<th>UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD5</td>
<td>1.56</td>
<td>1.64</td>
</tr>
<tr>
<td>LD10</td>
<td>1.59</td>
<td>1.67</td>
</tr>
<tr>
<td>LD15</td>
<td>1.62</td>
<td>1.68</td>
</tr>
<tr>
<td>LD20</td>
<td>1.64</td>
<td>1.70</td>
</tr>
<tr>
<td>LD25</td>
<td>1.65</td>
<td>1.71</td>
</tr>
<tr>
<td>LD30</td>
<td>1.67</td>
<td>1.73</td>
</tr>
<tr>
<td>LD35</td>
<td>1.68</td>
<td>1.74</td>
</tr>
<tr>
<td>LD40</td>
<td>1.70</td>
<td>1.76</td>
</tr>
<tr>
<td>LD45</td>
<td>1.71</td>
<td>1.77</td>
</tr>
<tr>
<td>LD50</td>
<td>1.73</td>
<td>1.80</td>
</tr>
<tr>
<td>LD55</td>
<td>1.74</td>
<td>1.81</td>
</tr>
<tr>
<td>LD60</td>
<td>1.75</td>
<td>1.83</td>
</tr>
<tr>
<td>LD65</td>
<td>1.76</td>
<td>1.86</td>
</tr>
<tr>
<td>LD70</td>
<td>1.78</td>
<td>1.89</td>
</tr>
<tr>
<td>LD75</td>
<td>1.79</td>
<td>1.93</td>
</tr>
<tr>
<td>LD80</td>
<td>1.81</td>
<td>1.97</td>
</tr>
<tr>
<td>LD85</td>
<td>1.83</td>
<td>2.02</td>
</tr>
<tr>
<td>LD90</td>
<td>1.86</td>
<td>2.09</td>
</tr>
<tr>
<td>LD95</td>
<td>1.90</td>
<td>2.20</td>
</tr>
</tbody>
</table>
Hematopoietic Medical Countermeasure
GLP Non-Pivotal Efficacy Study in NHPs

- Administered daily starting 24 hours after lethal irradiation (LD_{50/30})
- Increased survival (80%) vs. control (41%) (p=.004)
- Accelerated neutrophil recovery
Neutrophil Recovery in NHPs

![Graph showing neutrophil recovery](image)

- **ANC x 10^3/uL**
 - **Test Article LD50**
 - **Control LD50**
 - **Grade 3 Neutropenia**
 - **Grade 4 Neutropenia**

Time (days) After Irradiation
Hematopoietic Acute Radiation Syndrome
MCM Candidate (TPO)

30% increase in survival in mice after 7.9 Gy
Combination with G-CSF and MCM

1 mg/kg MCM (+12 h, sc) and three once-daily doses of 0.34 mg/kg G-CSF (+6 to +48 h, sc)

Survival (%) vs. Time post-irradiation (Days)

- Naïve
- Dextrose
- Control Ab
- Dextrose + Control Ab
- G-CSF
- TA
- TA + G-CSF
Evaluation of Candidate MCM in GI-ARS Rodent Screen after 15 Gy

1500 cGy

Animal Survival

(p=0.04)

NIAID: EpiStem Ltd.
TA mitigates GI death at +24 hours after IR

Effects of TA on survival of NIH-Swiss mice after 15.6 Gy Sub-TBI

Rx100 shows a DMF of 1.2 when given +26 hours after IR

For Official Use Only
Radionuclide Medical Countermeasures
Development Programs

- **Background**
 - Oral administration for mass casualty use
 - Enhanced decorporation efficacy
 - Increase range of radionuclides

- **Contract and Grant Programs**
 - Oral Form of Diethylenetriaminepentaacetate (DTPA)
 - Oral Radionuclide Decorporation Agents
Pro-Drug -- Plasma Levels of DTPA

IV Administration of DTPA
5 mg

Oral Administration of Pro-drug DTPA
7 mg (equivalent dose)
Biodosimetry Program

- **Technical Requirements of a Biodosimetry Architecture**
 - Capability for rapid screening of large populations
 - Sufficiently accurate to guide clinical decision-making
 - Sufficiently flexible to address different needs for different types of radiation exposures

- **Medical / Operational Impact**
 - Identification of patients requiring urgent medical assessment/triage
 - Optimization of resource allocation
 - Reassurance for anxious individuals
 - Improved risk assessment for delayed or late effects of radiation exposure
 - Identify specific tissue/organ injuries
 - Monitoring of therapy (bioassays)
Biosdosimetry Architecture

- Immediate Triage
 - Biomarkers of exposure
 - POC dosimetry

- Significant Exposure
 - Dose Estimation
 - High-throughput biosdosimetry

- Insignificant Exposure
 - Risk Assessment
 - Cytogenetics
 - Other markers of cancer risk

- Contamination
 - Committed dose calculation
 - Decomposition monitoring

- Predictive Biosdosimetry
 - Genomics
 - Proteomics
 - Metabolomics

- OSL
 - EPR
- Bioassay
- Hematology
 - N/L ratio
 - qRT-PCR

\[\gamma H2AX \]
Micronuclei
Bridging the Radiation/Nuclear Medical Countermeasure “Animal Rule Pathway”

Government, Academia, Corporate Partnerships

Food and Drug Administration – CDER, CBER, and CDRH

National Institute of Allergy and Infectious Diseases

HHS/Biomedical Advanced Research and Development Authority

Discovery, Research, and Development

Licensure and Procurement
NIAID Radiation/Nuclear Medical Countermeasures Development Program Team

- Bert Maidment, Ph.D., Associate Director for Product Development
- Narayani Ramakrishnan, Ph.D., Program Officer
- Andrea DiCarlo, Ph.D., Program Officer
- David Cassatt, Ph.D., Program Officer
- Mai-Kim Norman, Health Specialist
- Francesca Macchiarini, Program Officer
- Erika Davies, Ph.D., AAAS Research Fellow
- Christine Czarniecki, Ph.D., Chief, Regulatory Affairs
- Jui Shah, Ph.D., Senior Regulatory Affairs Officer
- Lawrence Prograis, M.D., Special Programs and Bioethics
Radiation/Nuclear Medical Countermeasures Product Development Program

- Bert W. Maidment, PhD
 Associate Director, Radiation/Nuclear Countermeasures Program
 NIH/NIAID/DAIT
 6610 Rockledge Drive, Room 5321
 301-594-0641 (Voice)
 maidmentb@niaid.nih.gov

- http://www3.niaid.nih.gov/research/topics/radnuc/