The Economics of Transactive Energy

Lynne Kiesling
Department of Economics
Northwestern University

lynne@knowledgeproblem.com

NIST Transactive Energy Challenge Workshop, 2015
Outline

• **Motivation**: what does transactive technology make possible?
 – Reduces the transaction costs that can prevent mutually-beneficial exchange
• Conceptual-theoretical **economic** framework for transactive energy networks
• Movement toward a distribution **platform**
• Modeling and simulation **methodologies**
• What **questions** should we prioritize?
New, different consumer value propositions-1

- ... because the value proposition is not only the kwh
- **Product differentiation**
 - Making more money by selling less power is possible
 - Conservation, satisfying green preferences
 - Examples
 - TOU
 - Dynamic pricing
 - Time differentiated: RTP, CPP, PTR
 - Green/grey mix
 - Service bundles – home entertainment, home security, home health care
 - Price discrimination’s mutual benefits to consumers and producers
 - Apps – innovation at the edge of the network
- **Digital transactive technology enables automation** – reduces transaction costs
New, different consumer value propositions-2

• Small-scale DER **interconnection**
 – Examples: residential solar, electric vehicles
 – **Market-connected** DER as a network of distributed storage

• **Microgrids**

• Agent **heterogeneity**: scale, location, identity
 – Agents can be **buyer or seller** depending on context, prices, opportunity costs at that time and place with that local knowledge

• **Reliability/supply security** as a **differentiated product**, not a uniform administrative definition
Conceptual-theoretical framework

• Market design for a retail market
 – **Who** can exchange – what entities can buy/sell?
 – **How** do they exchange – units, definition of the item being bought/sold
 – **Time** delimiters matter in electricity
 – Elasticity is dynamic, not static, and a function of enabling technology
Example: Olympic Peninsula retail double auction
Conceptual-theoretical framework

• Market design for a retail market
 – Who can exchange – what entities can buy/sell?
 – How do they exchange – units, definition of the item being bought/sold
 – Time delimiters matter in electricity
 – Elasticity is dynamic, not static, and a function of enabling technology

• Organizational economics & theory of the firm
 – What are the transactional boundaries of the distribution company?
Digital innovation at the edge of the network

SMART GRID
A vision for the future — a network of integrated microgrids that can monitor and heal itself.

- Solar panels
- Officess
- Wind farm
- Central power plant
- Industrial plant
- Generators: Energy from small generators and solar panels can reduce overall demand on the grid.
- Processors: Execute special protection schemes in microseconds.
- Storage: Energy generated at off-peak times could be stored in batteries for later use.
- Smart appliances: Can shut off in response to frequency fluctuations.
- Sensors: Detect fluctuations and disturbances, and can signal for areas to be isolated.
- Demand management: Use can be shifted to off-peak times to save money.

YOU SPEAK. YOUR HOME LISTENS.
A techno-economic electricity distribution platform

Source: EPRI (2014), p. 31
Conceptual-theoretical framework

• Market design for a retail market
 – **Who** can exchange – what entities can buy/sell?
 – **How** do they exchange – units, definition of the item being bought/sold
 – **Time** delimiters matter in electricity
 – Elasticity is **dynamic**, not static, and a function of enabling technology

• Organizational economics & theory of the firm
 – What are the **transactional** boundaries of the distribution company?

• Regulatory economics
 – **Institutional** design for regulating a 21st century distribution company
 – Evolve from rate determination to consumer **protection** and market **monitoring**
Modeling methodologies in economics

• **Experimental** economics
 – Laboratory environment with human subjects
 – Cash payment provides salient reward
 – Can illuminate effects of individual cognitive effects such as perception and tacit knowledge
Modeling methodologies in economics

• **Experimental** economics
 – Laboratory environment with human subjects
 – Cash payment provides salient reward
 – Can illuminate effects of individual cognitive effects such as perception and tacit knowledge

• **Agent-based** modeling
 – Program individual computer agents
 – Focus on effects/patterns arising from interaction
 – Can improve agent programming by incorporating results of economic experiments
Modeling methodologies in economics

- **Experimental economics**
 - Laboratory environment with human subjects
 - Cash payment provides salient reward
 - Can illuminate effects of individual cognitive effects such as perception and tacit knowledge

- **Agent-based modeling**
 - Program individual computer agents
 - Focus on effects/patterns arising from interaction
 - Can improve agent programming by incorporating results of economic experiments

- **Computer simulation**
 - Closed system (but not always), equation based
 - Often used to simulate a formal theoretical equilibrium model
 - Can use experiments and ABM to improve the model
Some questions to prioritize

• How engaged are consumers under different market designs and with transactive technologies?

• What are the implications of automation for price elasticity of demand in retail markets?

• What effect does incumbent vertical market power have in transactive retail markets?

• What are the economic implications of designing a transactive platform for the interconnection and exchange of distributed energy?