DISCLAIMER

Certain trade names and company products are mentioned in the text or identified. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.
Outline

- Overview of computer forensics at NIST
- Description of CFTT and NSRL projects
- Questions and answers
Outline of an Investigation

- Get proper authorization
- Seize evidence (Hard drives, floppies …)
- Create duplicates for analysis
- Analyze the duplicates
 - Exclude known benign files
 - Examine obvious files
 - Search for hidden evidence
- Report results
Investigators Need ...

Computer forensic investigators need tools that …

- Work as they should,
- Produce results admissible in court, and
- Reference data to reduce analysis workload
Goals of CF at NIST

- Establish methodology for testing computer forensic tools (CFTT)
- Provide international standard reference data that tool makers and investigators can use in an investigations (NSRL)
Project Sponsors

- NIST/OLES (Program management)
- NIJ (Major funding)
- FBI (Additional funding)
- DCCC (Equipment and support)
- Homeland Security (Technical input)
- State & Local agencies (Technical input)
Why NIST/ITL is involved

• Mission: Assist federal, state & local agencies
• NIST is a neutral organization – not law enforcement or vendor
• NIST provides an open, rigorous process
Computer Forensics in ITL

Located in Software Diagnostics and Conformance Testing (SDCT) Division
– Includes development of specifications and conformance tests for use by agencies and industry
– Work is funded by Federal agencies and NIST internal funds

• Homeland Security support of agencies investigating terrorist activities
A Problem for Investigators

Do forensic tools work as they should?

- **Software tools must be ...**
 - Tested: accurate, reliable & repeatable
 - Peer reviewed
 - Generally accepted

- **... by whom?**

- **Results of a forensic analysis must be admissible in court**
CFTT Presentation Overview

- Project Tasks
- Current activities
- Challenges
- Testing Hard Drive Imaging Tools
- Benefits of CFTT
Project Tasks

- Identify forensics functions e.g.,
 - disk imaging,
 - hard drive write protect,
 - deleted file recovery
- Develop specification for each function
- Peer review of specification
- Test methodology for each function
- Test Tools (by function) & Report results
Current Activities

- Hard drive imaging tools
- Software hard drive write protect
- Hardware hard drive write protect
- Deleted file recovery
- String Searching
Challenges

- No standards or specifications for tools
- Arcane knowledge domain (e.g. DOS, Windows drivers)
- Reliably faulty hardware
- Many versions of each tool
Overview of Methodology

- CFTT directed by Steering Committee
- Functionality driven
- Specifications developed for specific categories of activities, e.g., disk imaging, hard drive write protect, etc.
- Test methodology developed for each category
Developing a Specification

After tool function selected by SC …

- Focus group (law enforcement + NIST) develop tool function specification
- Spec posted to web for public comment
- Comments incorporated
- Develop test environment
Tool Test Process

After SC selects a tool …

- Acquire tool & review documentation
- Select test cases
- Execute test cases
- Produce test report
Disk Imaging Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>Copy, Image, Verify</td>
</tr>
<tr>
<td>Source interface</td>
<td>BIOS to IDE, BIOS to SCSI, ATA, ASPI, Legacy BIOS</td>
</tr>
<tr>
<td>Dst interface</td>
<td></td>
</tr>
<tr>
<td>Relative size</td>
<td>Src=Dst, Src<Dst, Src>Dst</td>
</tr>
<tr>
<td>Errors</td>
<td>None, Src Rd, Dst Wt, Img R/W/C</td>
</tr>
<tr>
<td>Object type</td>
<td>Disk, FAT12/16/32, NT, Ext2</td>
</tr>
<tr>
<td>Remote access</td>
<td>Yes, no</td>
</tr>
</tbody>
</table>
Capabilities to test disk imaging

- Accuracy of copy
 - Compare disks
 - Initialize disk sectors to unique content
- Verify source disk unchanged
- Corrupt an image file
- Error handling: reliably faulty disk
Test Case Structure: Setup

1. Record details of source disk setup.
2. Initialize the source disk to a known value.
3. Hash the source disk and save hash value.
4. Record details of test case setup.
5. Initialize a destination disk.
6. If the test requires a partition, create and format a partition on the destination disk.
7. If the test uses an image file, partition and format a disk for the image file.
Test Case Structure: Run Tool

8. If required, setup I/O error
9. If required, create image file
10. If required, corrupt image file
11. Create destination
Test Case Structure: Measure

12. Compare Source to Destination
13. Rehash the Source
Test Logging

- Log everything, automatically if practical
- Hardware, Software, Versions
- Time/date
- Operator
Compare Logging I

- Tool version
- Date/time compiled
- Command line
- Run date/time

Z:\ss\DISKCMP.EXE @(#) diskcmp.cpp Version 3.1 Created 10/11/01 at 12:40:22
compiled on Oct 11 2001 at 12:45:27
@(#) support lib zbios.cpp Version 3.1 created 10/11/01 at 12:40:23
support lib compiled Oct 11 2001 at 12:45:36
@(#) zbios.h Version 3.1 Created 10/11/01 at 12:40:24
cmd: Z:\ss\DISKCMP.EXE 01 Cadfael 80 F6 81 92 /new_log /comment SN
run start Sat Oct 19 13:09:25 2002
run finish Sat Oct 19 15:16:06 2002
elapsed time 2:6:41

5/8/2017
Compare Logging II

Drive documentation

Source Drive 0x80, BIOS: Extensions Present
Interrupt 13 bios 1023/254/63 (max cyl/hd values)
Interrupt 13 ext 16383/016/63 (number of cyl/hd)
4018960 total number of sectors from the BIOS
IDE disk: Model (IBM-DTLA-307020) serial # (YHDYHLD2691)
Max number of user addressable sectors 4018960

Destination Drive 0x81, BIOS: Extensions Present
Interrupt 13 bios 1023/254/63 (max cyl/hd values)
Interrupt 13 ext 16383/016/63 (number of cyl/hd)
58633344 total number of sectors BIOS
IDE disk: Model (WDC WD300BB-00CAA0) serial # (WD-WMA8H2140350)
Max number of user addressable sectors 58633344
Compare Logging III

- Note sectors compared, match & differ
- State of excess sectors (dst fill => undisturbed)

Sectors compared: 40188960
Sectors match: 40188960
Sectors differ: 0

Source 18444384 fewer than destination
Zero fill: 0
Src Byte fill (F6): 0
Dst Byte fill (92): 18444384
Dst fill range: 40188960-58633343
Legacy BIOS Quirks

- Some may under report drive size
- Example, Quantum SIROCCO1700A has 3,335,472 sectors 3309/16/63 spc 1008
- BIOS: 3,330,432 sectors with geometry 826/64/63 spc 4032
- BIOS under reports by 1.25 logical cyls and 5 physicals
Compare Logging IV

Source Drive 0x80, BIOS: Legacy
Interrupt 13 bios 0825/063/63 (max cyl/hd values)
Interrupt 13 ext 00826/064/63 (number of cyl/hd)
3330432 total number of sectors reported via interrupt 13 from the BIOS
IDE disk: Model (QUANTUM SIROCCO1700A) serial # (111610113604)
Max number of user addressable sectors reported by ATA identify device command 3335472

Destination Drive 0x81, BIOS: Legacy
Interrupt 13 bios 0825/063/63 (max cyl/hd values)
Interrupt 13 ext 00826/064/63 (number of cyl/hd)
3330432 total number of sectors reported via interrupt 13 from the BIOS
IDE disk: Model (QUANTUM SIROCCO1700A) serial # (111615915652)
Max number of user addressable sectors reported by ATA identify device command 3335472

Sectors compared: 3335472
Sectors match: 3334463
Sectors differ: 1009
Bytes differ: 494363
Diffs range 36460, 3334464-3335471
Bad Sector Error Log

Make sector at LBA 36460 appear bad
return code 00010 on command 00002 from disk 00080
at address 00009/00002/00047
Bios disk geometry: 00825/00063/00063
Monitor BIOS interrupt 13h (disk service)
baddisk compiled on 10/11/01 at 12:43:50
@(#) Version 3.1 Created 10/11/01 at 12:41:45
Now (10/16/01 at 15:21:01) Going . . . TSR

return code 00010 on command 00010 from disk 00080
at address 00009/00002/00047
Bios disk geometry: 00825/00063/00063
Monitor BIOS interrupt 13h (disk service)
baddisk compiled on 10/11/01 at 12:43:50
@(#) Version 3.1 Created 10/11/01 at 12:41:45
Now (10/16/01 at 15:21:02) Going . . . TSR
Evaluating Test Results

If a test exhibits an anomaly …
1. Look for hardware or procedural problem
2. Anomaly seen before
3. If unique, look at more cases
4. Examine similar anomalies
Refining the Test Procedure

- During `dd` testing some results seemed to indicate that the Linux environment was making a change to the source disk.
- After investigation we found that the problem was actually the test procedure.
Hard Drive Write Protect

- Can be done either in hardware or software
- Software write protection limited to specific environment: BIOS access or device driver
- Hardware write protection more general
Hard Drive BIOS Access

- Application program
 - issue int 0x13 cmd

- BIOS interrupt 0x13
 - issue cmd to drive
 - return

- Disk drive & controller
SWB Tool Operation

Application program

issue int 0x13 cmd

SWB tool

block

allow

return

BIOS interrupt 0x13

issue cmd to drive

return

Disk drive & controller
Test Harness Operation

Test harness

- issue int 0x13 cmd
- query result

SWB tool
- block
- return
- allow
- interrupt 13 monitor
- tally
- query
- allow

BIOS interrupt 0x13

- issue cmd to drive
- return

Disk drive & controller
HWB Testing

CPU

Send I/O CMD to Device

HWB

Send I/O CMD to Device

PROTOCOL ANALYZER

Monitor Bus Traffic

Device

Return result to CPU
Impact

- Release 18 (Feb 2001) - A US government organization was doing some testing and uncovered an issue under a specific set of circumstances.
- Linux doesn’t use the last sector if odd
- Several vendors have made product or documentation changes
- CFTT cited in some high profile court cases
Available Specifications

- Hard Drive Imaging (e.g., Safeback, EnCase, Ilook, Mares imaging tool)
- Write Block Software Tools (e.g., RCMP HDL, Pdblock, ACES)
- Write Block Hardware Devices (A-Card, FastBlock, NoWrite) – not final
Specifications Under Development

- String Searching
- Deleted File Recovery
- Revised Disk Imaging
Available Test Reports

- Sydex SafeBack 2.0
- NTI Safeback 2.18
- EnCase 3.20
- GNU dd 4.0.36 (RedHat 7.1)
- FreeBSD 4.4 dd
- RCMP HDL V0.8
Test Reports in Production

- RCMP HDL V0.4
- RCMP HDL V0.5
- RCMP HDL V0.7
Available Testing Software

- FS-TST – tools to test disk imaging: drive wipe, drive compare, drive hash (SHA1), partition compare. (DCCI uses these tools)
- SWBT – tools to test interrupt 13 software write blockers
Benefits of CFTT

Benefits of a forensic tool testing program

– Users can make informed choices
– Neutral test program (not law enforcement)
– Reduce challenges to admissibility of digital evidence
– Tool creators make better tools
Contacts

Jim Lyle
www.cftt.nist.gov
cftt@nist.gov

Doug White
www.nsrl.nist.gov
nsrl@nist.gov

Mark Skall
Chief, Software Diagnostics & Conformance Testing Div.
www.itl.nist.gov/div897
skall@nist.gov

Sue Ballou, Office of Law Enforcement Standards
Steering Committee Rep. For State/Local Law Enforcement
susan.ballou@nist.gov

5/8/2017