Dosimetry for Small Animal Studies

Patricia Lindsay, Ph.D.

Radiation Medicine Program, Princess Margaret Hospital
Department of Radiation Oncology, University of Toronto
Disclosure

I am a part of a commercialization agreement with Precision X-Ray, Inc. for XRad225Cx.
Acknowledgments

PMH XRad Team

• Steve Ansell
• Richard Clarkson
• Paul DeJean
• Richard Hill
• David Jaffray
• Salomeh Jelveh
• James Stewart
• Graham Wilson

Users and Collaborators

• Bristow Lab (Christina Schutze and Carla Coackley)
• James Chow
• Caroline Chung
• Ralph DaCosta Lab
• Hill Lab (Naz Chaudary)
• Andrew Hope
• Doug Moseley
• Taylor Lab (Livia Garzia)
• Robert Weersink
Outline

- Systems for small animal irradiation
 - Image-guided, conformal irradiation
- Dosimetric guidelines for small animal irradiation
 - Input data/system characterization
 - Examples of small animal irradiations & dose calculations
 - Sources of Error
 - Validation
 - Monte Carlo studies
Small Animal Irradiation Experiments

Whole Body

Gammatron 40
(Best Theratronics)

Hind Leg

In house x-ray irradiator

Conformal, orthotopic, image-guided, multi-beam
Systems for Animal Irradiation

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Complexity</th>
<th>Precision</th>
<th>Field Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137/Co-60 Irradiators</td>
<td>x-ray Irradiators</td>
<td>Linac</td>
<td>Conformal micro-IGRT</td>
</tr>
</tbody>
</table>

Conformal micro-IGRT
Pre-clinical imaging modalities

μCT

μSPECT

μPET

μMR – 7T

Gruene et al., Gamma Medica, Nature Medicine
Pre-clinical imaging modalities

μUS

μOptical

Images courtesy of Visualsonics, Xenogen
SARRP
(XStrahl/Johns Hopkins)

XRad225Cx (Precision X-Ray/Princess Margaret Hospital)

Washington University - microRT

Stojadinovich et al, Med Phys 34 (12), 2007, MicroRT—Small animal conformal irradiator
Stanford – GE RS120 microCT

Zhou et al, IJROBP 2010, DEVELOPMENT OF A MICRO-COMPUTED TOMOGRAPHY–BASED IMAGE-GUIDED CONFORMAL RADIOTHERAPY SYSTEM FOR SMALL ANIMALS
Systems for Conformal Image Guided Small Animal Irradiation

Technical Requirements

• Depth of irradiation ≤ 5 cm
• Small field sizes (0.5 mm – 5 cm)
• High dose gradients (penumbra < 1mm)
• High dose rate (>1 Gy/min, < 15 min treatment)
• High precision and accuracy of field placement

System Commissioning

• Dosimetric
• Mechanical
• Image-guidance

Kilovoltage Radiation Sources (100-320 kVp)
Absolute Dosimetry

- Absolute dosimetry following AAPM TG-61 protocol
- 0.6 cc farmer chamber, calibrated at NRCC
- Chamber placed in air at isocenter
- Measuring exposure (air kerma) in air
- Output depends on kVp (HVL) and mA
- Calculate dose at surface of water under full scatter conditions

<table>
<thead>
<tr>
<th>10 x 10 cm field, at isocenter (30 cm from the source)</th>
<th>225 kVp, 13 mA</th>
<th>4.2 Gy/min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 kVp, 29 mA</td>
<td>4.0 Gy/min</td>
</tr>
</tbody>
</table>
Dosimetric verification - RDS TLDs

Irradiated April 6 and 7th, 2011
Results Read April 20th, 2011

<table>
<thead>
<tr>
<th>System</th>
<th>Energy</th>
<th>MDACC/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HVL</td>
<td></td>
</tr>
<tr>
<td>PMH</td>
<td>100 kVp</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>3.1 mm Al</td>
<td></td>
</tr>
<tr>
<td>PMH</td>
<td>225 kVp</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>0.9 mm Cu</td>
<td></td>
</tr>
<tr>
<td>STTARR</td>
<td>100 kVp</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>2.93 mm Al</td>
<td></td>
</tr>
<tr>
<td>STTARR</td>
<td>225 kVp</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>1.02 mm Cu</td>
<td></td>
</tr>
</tbody>
</table>
Relative Dosimetry

- Percent depth dose (PDD) and relative output factors (ROF)
 - Small volume (0.07 cc) ion chamber in water, and water-equivalent plastic (solid water)
 - Radiochromic film (EBT/EBT-2) in solid water
Film Dosimetry

Profiles for 3 collimator sizes

Profiles vs depth for 1.0 cm collimator

80-20 penumbra
<1 mm
Relative Dosimetry – percentage depth dose (PDD)

- Plane parallel chamber in small water tank
- Comparison with Monte-Carlo calculations using EGSnrc

Chow et al, Med phys 37(10), 2010
System Output/Stability over time

- Tube output decreases over time
System Use: Irradiations

<table>
<thead>
<tr>
<th>Period</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>May - August 2008</td>
<td>301</td>
</tr>
<tr>
<td>August - Dec 2008</td>
<td>276</td>
</tr>
<tr>
<td>Jan - April 2009</td>
<td>93</td>
</tr>
<tr>
<td>May - August 2009</td>
<td>314</td>
</tr>
<tr>
<td>August - Dec 2009</td>
<td>485</td>
</tr>
<tr>
<td>Jan - April 2010</td>
<td>665</td>
</tr>
<tr>
<td>May - August 2010</td>
<td>535</td>
</tr>
<tr>
<td>August - Dec 2010</td>
<td>403</td>
</tr>
<tr>
<td>Jan – April 2011</td>
<td>395</td>
</tr>
</tbody>
</table>

Normal Tissue
- Lung
- Brain
- Liver
- Bone

Tumour Models
- Sub-cutaneous
- Brain
- Craniospinal
- Pelvis (prostate, cervix)
- Bone metastasis

Almost 3500 fractions of irradiation
~ 100 irradiation/month (on average)
Examples of Small Animal Irradiation
Example 1 – Sub-cutaneous tumour

- Hind leg
- No-image guidance
- Standard field size for all animals (2-2.5 cm diameter)
- Parallel-opposed pair geometry
 - Prescribed to 5 mm depth
- Dosimetric sources of error
 - Tumor size
 - Scatter conditions
Example 1 – Sub-q tumour
Depth Dose – 2.5 cm field
Single Field – inverse square

- Nominal 30 cm SSD
- Variation of 0.5 cm (30.5 cm SSD)
 - Dose decreases by 3.3%
- Variation of 1.0 cm (31 cm SSD)
 - Dose decreases by 6.8%
Parallel Opposed Pair (POP) vs Single beam

![Graph showing relative dose vs depth for 100 kVp and 225 kVp with and without POP pair.]
Field Size and Scatter Conditions
Scatter Conditions

[Diagram showing scatter conditions with dimensions 40 cm, 10 cm, and 4 cm]
Backscatter vs Field Size

From AAPM TG-61

<table>
<thead>
<tr>
<th>Field Size</th>
<th>1 cm</th>
<th>2 cm</th>
<th>3 cm</th>
<th>5 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Al HVL</td>
<td>1.063</td>
<td>1.120</td>
<td>1.164</td>
<td>1.221</td>
</tr>
<tr>
<td>1 mm Cu HVL</td>
<td>1.044</td>
<td>1.096</td>
<td>1.139</td>
<td>1.211</td>
</tr>
</tbody>
</table>
Example 2 – Focal Brain Irradiation

• 5 mm circular collimator
• Parallel-opposed pair geometry
 • Prescribed at 5mm depth
• Image-guided set-up
 • With multi-modality image fusion
• Sources of error
 • Tissue heterogeneity
 • Surface curvature
Example 2 – Focal Brain Irradiation
Single Beam Dose Display
Example 3 – Orthotopic soft-tissue irradiation

- 0.5 – 1.5 cm circular collimator
- Multi-beam geometry
 - Prescribed to the center of the tumor
- Image-guided set-up
 - With multi-modality image fusion
- Fractionated delivery
- Sources of error
 - Target localization and contouring
 - Set-up reproducibility
Example 3 – Orthotopic soft-tissue irradiation

Richard Hill, Naz Chaudary, Salomeh Jelveh
Star Axial distribution, corrections ON

5 mm collimator
Contouring of the tumor volume
1 cm collimator
1.5 cm collimator
3D Dosimetric Evaluation

Dose volume histograms

- tumor1 (1cm Collimator)
- tumor1 3D+ 0.15 (1cm Collimator)
- tumor1 (1.5cm Collimator)
- tumor1 3D+ 0.15 (1.5cm Collimator)

Fractional volume vs Dose (Gy)
Dosimetric Calculations and Validation

- Calculations
 - Treatment planning
 - Monte-Carlo Simulations
- Validation with Measurements
 - Custom Geometries
 - Biological end-points
 - γH2AX staining
 - In-vivo measurements
 - TLD, OSL, Mosfets
- Transit Dosimetry
 - Flat-panel detector/Film
Dose Calculations and Treatment Planning

- Hand calculations of the dose at isocenter based on tabulated data (current method)
- Pencil beam/ray tracing based method
- Superposition-convolution
 - Valid for kilovoltage energies?
- Monte Carlo
 - Image data-sets may be as large as 1024x1024x1024 voxels
- Small field dosimetry and dose calculations
Surface dose enhancement

Monte Carlo Results

100 kVp

225 kVp

Single beam

360 arc

Chow et al, Med phys 37(10), 2010
Ford et al, Rad Research 175: 774-783 (2011), Localized CT-Guided Irradiation Inhibits Neurogenesis in Specific Regions of the Adult Mouse Brain
“Mouse-fet” project at the Dana-Farber Cancer Institute

- MOSFETs surgically implanted in organs of interest in newly expired mice
- Irradiated with 220 kVp, 13 mA, 0.15 Cu, 5x5 mm, from above (PA) only
- Compared calculated dose with measured dose
- Results indicate effect of homogenous assumption in 2D planning
- Overall, no more than 6% difference for any site

Ngwa, Korideck, Chin, Makrigiorgos, and Berbeco, “MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP)”. Radiation Research. *In Press*
Dosimetric and Image-Guidance Intercomparison

AAPM Working Group on Conformal Small Animal Irradiation

• Members from ~15 different institutions
• Intercomparison of dosimetry and image-guidance capabilities across member institutions
• Will look at small (1-5mm) and moderate (1-2cm) fields
• Using EBT-2 Film and solid water phantoms
Summary

• Systems for image-guided animal allow individualized treatments for specific animals/animal models
• Extensive characterization of the dosimetric (and mechanical and imaging) properties of the system are necessary
• Dosimetric sources of error include
 • Irradiation geometry
 • Scatter conditions
 • Tissue heterogeneities
 • Target identification
 • Set-up reproducibility