Digital Engineering in Complex Systems: From Leadership Understanding Through Application

Mr. Rob Gold
ODASD(SE) Director, Engineering Enterprise

MBE Summit
Apr 5, 2017
DASD, Systems Engineering

Acting Deputy Assistant Secretary of Defense and Principal Deputy, Systems Engineering
Kristen Baldwin

Homeland Defense Capability Development
Robin Hicks

Major Program Support
James Thompson

Engineering Enterprise
Robert Gold

Supporting USD(AT&L) Decisions with Independent Engineering Expertise

- Engineering Assessment / Mentoring of Major Defense Programs
- Program Support Assessments
- Overarching Integrated Product Team and Defense Acquisition Board Support
- Systems Engineering Plans
- Systemic Root Cause Analysis
- Development Planning/Early SE
- Program Protection

Leading Systems Engineering Practice in DoD and Industry

- Systems Engineering Policy and Guidance
- Technical Workforce Development
- Specialty Engineering (System Safety, Reliability and Maintainability, Quality, Manufacturing, Producibility, Human Systems Integration)
- Security, Anti-Tamper, Counterfeit Prevention
- Standardization
- Engineering Tools and Environments

Providing technical support and systems engineering leadership and oversight to USD(AT&L) in support of planned and ongoing acquisition programs
DDR&E Strategy:
• Mitigate current and anticipated threat capabilities
• Enable new or extended capabilities affordably in existing military systems
• Create technology surprise through science and engineering

SE Challenges:
• Flexible designs that adapt with innovation, and are resilient to unknown missions and threats
• Ability to quantify cost and affordability attributes of the design and lifecycle trade space
• Responsive, and able to balance agility with rigorous analysis and data

IAWG MBSE Benefits:
• Informed decision making through increased transparency and greater insight
• Enhanced communication
• Understood flexibility/adaptability in the capability
• Increased confidence that the capability will perform as expected
• Increased efficiency

(Interagency Working Group for Complex Systems)
Current State
- Our workforce uses stove-piped data sources and models in isolation to support various activities throughout the life-cycle.
- Current practice relies on standalone (discipline-specific) models.
- Communication is through static disconnected documents and subject to interpretation.

Future State
- Digital Engineering moves the engineering discipline towards an integrated model-based approach.
 - Through the use of digital environments, processes, methods, tools, and digital artifacts.
 - To support planning, requirements, design, analysis, verification, validation, operation, and/or sustainment of a system.
- Digital Engineering ecosystem links our data sources and models across the lifecycle.
 - Provides the authoritative source of truth.

Current: Stove-piped models and data sources

Future: Digital Engineering Ecosystem
Digital Engineering Scope

DE includes both SE Technical Processes and SE Technical Management Processes.

The Digital System Model provides stakeholders a structure for the types of data that should be considered across the life cycle.

The Digital Thread includes manufacturing, and provides cross-process, cross-domain connectivity/traceability.

Digital Twins link probabilistic engineering models with test, operational, and maintenance data to simulate elements of system performance and reliability on a serial-number-specific basis.

The Digital Thread includes manufacturing, and provides cross-process, cross-domain connectivity/traceability.

IV. STRATEGY DEVELOPMENT

Identify strategies to close gaps

NEAR TERM
1-2 yrs out

MID TERM
2-5 yrs out

FAR TERM
5-15 yrs out

I. CURRENT STATE/AS-IS

Current policy, guidance, and workforce capability based on BoK

II. FUTURE STATE/TO-BE

Required critical processes based on best practices and policy/guidance

III. GAP ANALYSIS

Comparison of As-Is and To-Be state

IV. STRATEGY DEVELOPMENT

Identify strategies to close gaps

V. EFFECTIVENESS

Assess strategy effectiveness and program execution
Assess Health of the Enterprise
Mfg. Activities by Program Phase

First Draft Complete

II. FUTURE STATE/TO-BE

- Tasks Defined and Described
- Metrics
- Tools
- References
Effectiveness

• Iterative process to evaluate manufacturing activities
• Initial analysis included:
 – Manufacturing issues in Acquisition Decision Memorandums
 – Defense Acquisition Executive Summary assessments (Production)
 – Manufacturing trends in major program engagements
 – Acquisition document comments for Systems Engineering Plans and Acquisition Strategies
• Information will be used to assess effectiveness
 – Policy & Guidance Coverage/Voids
 – Program Performance
 – Workforce Metrics
Each Decision Point of the Framework Identifies:

- **Decision** – The decision to be made
- **Decision Point** – Where the decision points are in the acquisition life cycle
- **Decision Maker(s)** – Who will be making the decision (i.e. approval to proceed)
- **Questions to be Asked** – What questions should be asked by decision makers
- **Information Required to Answer the Questions** – Supported answers to the questions

Source: DoDI 5000.02
Summary

- Digital Engineering requires change to cultural, historical and business processes to realize a Digital Model-Based Engineering Vision

- We need to highlight crisp examples to facilitate broad change, emphasizing how programs have benefitted from Digital Engineering

- Some challenging areas requiring further exploration for full Digital Engineering Transition
 - Where do we have MODEL gaps? At what level of fidelity, and trust?
 - Have we properly divided tasks between humans and computers?
 - How do we implement practices without becoming overly dependent on the tools?
 - How do we adapt legal and procurement regulations to fully enable digital engineering?
 - How do systems engineering processes transition information to manufacturing losslessly?
 - How do we effect, across the acquisition lifecycle, configuration management, security, technical reviews, etc.
 - What is the full scope of opportunity from digital engineering? What are the impacts realized when bridging across design, prototyping, test and evaluation, manufacturing and sustainment activities?
Systems Engineering: Critical to Defense Acquisition

Defense Innovation Marketplace
http://www.defenseinnovationmarketplace.mil

DASD, Systems Engineering
http://www.acq.osd.mil/se
For each Decision Point

- Models and simulation results are selected, by asking:
 - What analysis is required by the question?
 - What data needs to be provided?
 - Who does analysis/generates data?
 - How to share/collaborate?
 - How to assess quality/fidelity of analyses, data, models? (UQ/V&V)
 - How to use results to plan next steps?
Leveraging Multiple Activities to Advance Digital Engineering Within DoD

Infusion in Policy & Guidance

- DoDI 5000.02, Enclosure 3, Section 9: Modeling and Simulation
- Defense Acquisition Guidebook Chapter 4
- DoD Digital Engineering Fundamentals

DoD Initiatives

- Digital Engineering Working Group
- DSM Taxonomy: Defining categories of data across acquisition
- SERC: Model Centric Collaborative Environment
- HPCMP CREATE: Physics Based Modeling
- Engineered Resilient Systems: Adapting to changing requirements

Other Partnerships

- USAF Own the Technical Baseline
- NDIA: Essential Elements of the System Model
- Inter-Agency Working Group on the Engineering of Complex Systems
- Inter-Agency Working Group
- Additive Manufacturing

Advancing the state of practice for Digital Engineering within DoD

http://www.acq.osd.mil/se/pg/guidance.html

http://www.acq.osd.mil/se/pg/guidance.html

March 2017 | Page 13

Distribution Statement A – Approved for public release by DOPSR. Case # 17-X-#### applies. Distribution is unlimited.
Digital Engineering Strategy

1. Develop and maintain a **culture** and **workforce** that adopts, supports and applies Digital Engineering across the lifecycle.

2. Formalize development and use of models for providing an enduring **authoritative source of truth**.

3. Foster the integration of models and data sources across functional disciplines to inform enterprise and program decision making.

4. Establish supporting **infrastructure & environments** to perform engineering activities, collaborate, & communicate across stakeholders.

5. Leverage advanced tools, computing power, and advanced capabilities to improve system capabilities, automate workflow processes (as applicable) and generate digital artifacts and deliverables using models.

DIGITAL ENGINEERING ECOSYSTEM

1. Culture/ Workforce
2. Authoritative Source of Truth
3. Integrates Models & Data Sources
4. Infrastructure & Environments
5. Technological Innovation
A Holistic View of Digital Engineering Support to DoD Acquisition

Digital Engineering Ecosystem

Analysis of cost, schedule, and performance, affordability, risk, and risk mitigation

End to End Single, Digital Twin

Probabilistic analysis of margins, uncertainties, and risks

CAPE/CADE aligned analysis of Total Ownership Costs

Engineering Standards

Requirements Data

Design & Mfg Data

Test Data

Supply Data

Operational Data

Maintenance Data

Engineering Competence Data Base

Assembly of multi-domain, multi-physics, multi-level, constructive and virtual component and system analysis tools operating on engineering data to support acquisition and sustainment

Engineering Knowledge Management

TECHNICAL DATA MANAGEMENT

Enabling S&T

Pre-acquisition

Material Solutions Analysis

Technology Maturation & Risk Reduction

Engineering & Manufacturing Development

Production and Deployment

Operations and Support

Systems Engineering Technical Reviews

COST ANALYSIS, REQUIREMENTS, DEFENDABLE OT/SP TRADES

ACQUISITION MILESTONE DECISIONS

Digital Engineering Ecosystem
Transition to Digital Engineering