Helium Ion Microscope (HIM)
- 5-35 keV He/Ne ion beam with sub-nm spot size
- Contrast generation by number of secondary electrons
- Modifications on the nm-scale
- So far: Limited analytical information!

Motivation and Challenges
- Motivation
 - Elemental analysis by backscattering spectrometry and secondary ion mass spectrometry with lateral resolution < 100 nm
 - Correlative microscopy
- Challenges
 - Small interaction volume → high local fluences (damage)
 - Small fraction of charged BS particles
 - Limited available space
 - Minimum reduction of imaging capabilities

Theory and Simulation
- Backscattering yields and sputter yields for He and Ne according to TRIM
- For neon sputtering exceeds backscattering yield (for all Z)
- Size of collision cascade defines minimal spatial resolution
- Smaller cascade at low energies but worse microscope performance
- Fraction of sputtered ions can be enhanced by oxygen flooding

ToF Backscattering Spectrometry
- Start signal: chopping primary beam
- Pulse width: 17-250 ns (@max 500 kHz)
- Stop signal: multi channel plate @ d=36 cm
- Sensitive to charged & neutral particles
- Standard-free quantification
- Ions energy loss → depth information on elemental concentrations

ToF BS images and spectra of a carbon sample covered with squared patches of Si, Ni and Au
- Lateral resolution <55 nm
- Data acquisition in list mode allows post-processing (post-analysis) of ToF-BS images

ToF SIMS
- Biasing the sample (500 V) enables ToF-SIMS
- 250 ns pulse width transfers to a mass resolution of 1/64
- Mass filtered imaging allows direct element mapping on the nm scale [2]
- Intended improvements:
 - Add an extraction system
 - Use oxygen flooding
 - Increase mass resolution

Acknowledgement: This project is financially supported by Carl Zeiss Microscopy and Bundesministerium für Wirtschaft und Technologie (BMWi): Grant 03ET7016.