Semiconductor Metrology: Past Present and Future

This report has been reproduced for NIST’s 2017 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics.

It is approved for public release with attribution to VLSIresearch.

g dan hutcheson
Metrology Time Machine: Dawn of the IC

• Microscopes dominate
 • Wafers handheld under lights for film thickness uniformity
• SEMs used for off-line FA
• Demand first driven by military/aerospace
 • A computer w/tubes would be Empire State building sized for a moon shot

Wafer Inspection in the 60’s at Fairchild Semiconductor
The Leading Edge: ~1980
Metrology Time Machine: 1980’s

Two Philosophical Approaches:

- Inspect to Cull
- Make it Perfect
Breaking the 1μ Barrier

Move from 100 to 125 to 150mm

SPC, CD, and Overlay Control enter the scene

Optical dead Electrons & X-rays on the way

Move from Automated Microscopes to Inspection

Ramp yields go from 20% to 60%
History of Inspection

Defect focus is on coarse particles (1-100 Microns)

Automated Material Handling

1980’s → 1990’s → 2000’s → 2010’s → Beyond
Yield shifts gear in the 80’s

- **It started in memory**
 - And would follow in logic
 - By the 90’s
- **Metrology** and steppers
 - made it possible
- **Japan**’s great chip makers of the day brought a **live or die incentive** to the battlefield.
Metrology Time Machine: 1980’s

KLA 2020, Circa 1984

The tool that sparked the yield management revolution
Metrology Time Machine: 1980’s
The Leading Edge: ~1985
Yield dividend would drive metrology

- Ramp yields went from 20% to 60%
 - Between 1980 and 2000
- Yield added an additional kick to Moore’s Law
 - Only possible with process diagnostic tools
A New Paradigm Emerges:

Metrology Time Machine: 1990’s

Inspect to Cull

Make it Perfect

Inspect to Manage
The Leading Edge: ~1990
The Leading Edge Issues: 1990’s

- Getting to “deep-sub-micron”
- Move from 150mm to 200mm
- SPC rises to the top of the control issues
- Optical dead for metrology… Electrons on the way
- Threat of Japan
- Rise of the Tigers: Korea & Taiwan
@ ISS Europe 1992:

There was a …

- Can’t beat Japan attitude
 - They “won by cheating”
- But Europe was holding its own ground
 - Doing a much better job than America

Why such a Dark Outlook?

Source: ISS 1992, Hartwig Reull
What some said @ ISS Europe 1992:

- Fabs getting too expensive
- That Europe lacked:
 - Strategic Planning
 - Critical Scale
 - Lacked a modern economic policy
 - Adam Smith vs. Keiretsu

Source: ISS 1992, Hartwig Reull
History of Inspection

1980’s: Defect focus is on coarse particles (1-100 Microns) with Automated Material Handling.

1990’s: Emergence of Yield Management with Defect focus on tools.

2000’s: Machines replace Humans.

2010’s: Beyond.
Metrology Time Machine: 1990’s
Hitachi S6000

Features

1. Outstanding high resolution of 8 nm at 1 kV operation.
 The S-6100 allows a high resolution image of 8 nm or better at a low operating voltage of 1 kV and at a back-lit TV monitor rate on a CRT monitor. This high performance allows CD measurement at deep submicron patterns of VLSI which is moving from the present 4M bits to 96M bits or even 64M bits. Demonstrated at the right photo typical images of deep submicron processed patterns.

2. Software compatibility with the S-6000.
 The S-6100 has the same operating controls and measurement software as the S-6000. Operators who have been trained on the S-6000 can operate the S-6100 without any problem. Built-in instruments use the same operating commands so that there will be no confusion among multiple operators.

3. Optional accessory compatibility with the S-6000.
 Most optional accessories for the S-6000 are available for the S-6100 also. These options include data transfer, remote control via external computer, raster function, edge roughness measurement, photo CRT unit, recording camera, etc.

Specifications

1. **PERFORMANCE**
 - **WATER SIZE:** 4.5" x 6" diameter (130 x 150 mm)
 - **Electron Gun:** Single filament, linear position controlled
 - **Accelerating Voltage:** 1 kV
 - **镊子 Type:** Cross type (both horizontal and vertical directions)
 - **Measurement range:** 0.1 - 100 nm
 - **Repeatability:** ± 3% of 100 nm (one hundred nm)

2. **SAMPLE STAGE**
 - ** Movement:** X: 150 mm, Y: 150 mm
 - **Drive:** CPU control (both X and Y)

3. **SAMPLE LOADING**
 - **WATER Holder:** One 4", 5", or 6" holder (additional holders of option)
 - **Proof of Circuit:** Automatic (diameter < 0.01 mm) or optional (standard)
 - **Water transfer:** Automatic (diameter < 0.01 mm) or optional (standard)

4. **ELECTRON OPTICS**
 - **Electron Gun:** Cold field emission source
 - **Accelerating Voltage:** 0.1 - 13 kV (13 kV fixed)

5. **DISPLAY SYSTEM**
 - **Screen:** 12" flat panel, 190 x 190 mm x 1 (optional)
 - **Screen Mode:** Averaging mode

6. **VACUUM SYSTEM**
 - **Vacuum Pump:** Dual type, turbo molecular pump 0.5 m³/s for atomic layer deposition

7. **SECURITY**
 - **Remote Control:** Emergency power-off switches provided

Optional Accessories

- Photo CRT
- 4" x 6" camera (optional)
- Printer (optional unit)
- Water holder (x 2 units)
- Cross section holder
- Arc compressor
- Electron gun
- Edge roughness measurement

For further information, please contact your nearest sales representative.
Metrology Time Machine: 1990’s

Even KLA got on the e-beam bandwagon

• Optical would die out after 200nm …

• But we still were not in the nanochip era
 • They were microchips
Metrology Time Machine: 1990’s

The big change was the KLA’s concept of…

Yield Management

Developed in Korea with Samsung, it would upend the memory market

Samsung was trying to get the most **good die-out-per-wafer**
by inspecting to cull out the yield killers

Japan was stuck on the old **make-it-perfect**
philosophy: they were after **the perfect cleanroom**
Metrology Time Machine: 1990’s

We were starting to **put it all together** with **data visualization** tools linked to distributed inspection and metrology platforms.

It may not have worked well, but it was **visionary** – this was **the future**.
Metrology Time Machine: 1990’s

Lithography was rising to the top of the issues

Overlay Control broke into the fab and became an in-line process step
Metrology Time Machine: 1990’s

In the 90’s

- Process diagnostic tools used across …
 - 12 production areas
 - 11+ critical applications
- Versus 1 and 2 before 1980
The Leading Edge: ~1995
Metrology Time Machine: As the 1990’s close, you still see it as **humans clustered around a tool** … but it’s data not images that are being looked at
Yield dividend continues to drive metrology

- But it’s no longer the good-die, bad-die, and ugly story
- Profits now come from sort yields
 - Better performance yields better prices
- It’s now a good, better, best focus
Cleanroom Particles were no longer the problem. *Tools were the problem*
The Leading Edge Issues: 2000’s

- Microchips become Nanochips
 - The first mass-produced nantecnology

- Move from 200mm to 300mm

- CDU, LER, and Overlay Control become big contributors to profitability

- Electrons learn to live with their bigger brother: Optics

- Millennium mania, the dot-com bust, and the Great Recession = the lost decade

- Ramp yields go from 60% to 80% for memory
History of Inspection

- **Defect focus is on coarse particles (1-100 Microns)**
- **Emergence of Yield Management**
- **Yield Excursions drop to hours**
- **Fab costs rise from $1B to $5B by EoD**
- **3D enters the fab with AFMs**

1980’s
- Automated Material Handling
- Defect focus is on coarse particles

1990’s
- Emergence of Yield Management
- Machines replace Humans

2000’s
- Yield Excursions drop to hours
- Fab costs rise from $1B to $5B by EoD
- 3D enters the fab with AFMs

Beyond
Irwin Jacobs is trying to merge these two

is a book store

is a start-up and like 1000’s of other internet startups ... it has no Business Model
The 2000’s: the Lost Decade

- Focus shifted to M&A
- Rationalization to control cost
Microchips become Nanochips
The first mass-produced nanotechnology

We flirt with 450mm

New materials and devices

CDU, LER, Overlay Control are the biggest contributors to profitability

3D emerges everywhere

Yields are expected
Fast ramps and time-to-market
The Leading Edge: ~2010
History of Inspection

- **1980’s:** Defect focus is on coarse particles (1-100 Microns)
- **1990’s:** Emergence of Yield Management
 - Defect focus on tools
 - Automated Material Handling
 - Machines replace Humans
- **2000’s:** Yield Excursions drop to hours
 - Fab costs rise from $1B to $5B by EoD
 - 3D enters the fab with AFMs
- **2010’s:** HKMG & finFET
 - Deep Learning 1st applied
 - Fab costs >$15B by EoD
 - 3D goes in-line
- **Beyond:**

Copyright © VLSI Research Inc. All rights reserved. Distribution rights contained in T&Cs.
The Leading Edge: Today

VLSI research ... intelligence to make better decisions faster
Metrology Technologies are Complementary

Proof: Share of optical relative to e-beam is slightly higher than it was 35 years ago

Both core technologies have not lost their usefulness. They have enhanced it with many new applications.
Why Complementary Metrology Technologies are Triaged in the Fab

<table>
<thead>
<tr>
<th>E-beam</th>
<th>Brightfield</th>
<th>Darkfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Affordability</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Resolving Power</td>
<td>Low</td>
</tr>
<tr>
<td>Low</td>
<td>Coverage</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Throughput</td>
<td>High</td>
</tr>
</tbody>
</table>
Every nanometer matters in 3D patterning

You can’t fix what you can’t find
You can’t control what you can’t measure

Smaller Process Window

Metrology / Performance

Source: KLA-Tencor

Metrology provides comprehensive data to decipher pattern issues

FinFET key parametric measurements
Non-Litho Errors Dominate Patterning

Emergence of Non-Litho Errors leads to more complex patterning control

Process control inside and outside the litho cell is critical for meeting patterning requirements

LELE CDU/Overlay budget example
Source: KLA-Tencor

CDU = Critical Dimension Uniformity
PPE = Pattern Placement Error
Dimensions of Process Control

• x, y & z

• **Feed-forward** in addition to Feedback
 – Optimized algorithms
 – Ability to correct process backward and forward

Source: KLA-Tencor’s 5D™ Patterning Control
SpectraFilm Capabilities
supports a diverse range of film applications

- **BBSE**
 - Broadband Spectroscopic Ellipsometer

- **SWE**
 - Single Wavelength Ellipsometer

- **IRSE**
 - Infrared Spectroscopic Ellipsometer

Targeted Applications

<table>
<thead>
<tr>
<th>Thin Multi-Layer Films</th>
<th>Thick Single Layer Films</th>
<th>Thick Multi-Layer Films</th>
<th>Extreme Multi-Layer Films</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO, ONO, SiGe</td>
<td>Oxide, Photo Resist, α-Carbon</td>
<td>DARC/Oxide, OPO, ULK Stack</td>
<td>3D NAND</td>
</tr>
</tbody>
</table>

Source: KLA-Tencor
Fab-Wide Process Control

Metrology data drives feedback and feed forward control loops

Address fab-wide sources of pattern variation
• Optimize processes that can affect patterning
• Augment information available for scanner corrections

Source: KLA-Tencor
Metrology Time Machine: 2020 & Beyond

Tackling the 3rd Dimension

Information Turns

Jump from Deep Learning to Cognitive AI

Process diagnostics will be much more about how the machines learn.
History of Inspection

Value

- **Defect focus is on coarse particles**
 1-100 Microns

- **Automated Material Handling**

- **Emergence of Yield Management**

 Defect focus on tools

- **Machines replace Humans**

- **Yield Excursions drop to hours**

 Fab costs rise from $1B to $5B by EoD

- **3D enters the fab with AFMs**

- **Yield Excursions drop to minutes**

 Fab costs >$15B by EoD

- **3D goes in-line**

- **HKMG & finFET Deep Learning 1st applied**

- **More Innovation Needed**

Beyond
Growth has come back

While it won’t be the go-go era before 2000, it will still be solid growth

As long as we continue to deliver on new technology
The Leading Edge: Tomorrow

Amazon
Microsoft
Google
Facebook
Tesla
IBM

And???
Metrology Time Machine: What’s After Tomorrow?

Cognitive Computing
• The wave after IoT/Cloud
• Watson is 5 years old
 – Won Jeopardy in 2001
 – Now it’s working with Doctors to solve cancer
 – It is a decision making tool
 • Not a replacement for decision makers

Watson knows what …
you don't know,
what you forgot,
or forgot that you forgot.
Cognitive and Process Diagnostics

- **AI as the Next Big Thing. It’s that and more**
 - The reason is similar to our history of NBTs
- **Cognitive is going to require completely new types of device structures and architectures.**
 - More compute performance that uses less power
 - That is the inalienable truth of the history of silicon.
 - That means better ways to move that data between memory and processor
- **Cognitive will be as disruptive as what’s come before,**
 - Smart is not good enough, Smart is the new dumb
 - Things have to think ahead
 - They have to anticipate
 - They have to decide and act
 - *And that’s the future of silicon*
- **The question is …**
 - **What to do in the cognitive fab?**
 - *Metrology on steroids with FF & FB*
 - *How to apply the new technology?*
 - *IoT + Big Data + Cloud + …*
VLSI research Web sites

VLSI research.com
- Award-winning market research and analysis
- For research on semiconductors, manufacturing, and photovoltaics

Chip History.org
- Preserving the history of semiconductors for future generations
- Virtual history museum
- Based on industry donations

weSRCH.com
- Where Technology = Opportunity
- A virtual science & engineering conference
- Ads reach > 1M visitors per month
 - 15-20 mins/visit, >1 visit/week
 - High signature authority and income viewership
 - High Yield on Targets for your business
VLSIresearch is an award-winning provider of market research and economic analysis on the technical, business, and economic aspects of the semiconductor supply chain. Providing intelligence for faster and better decision making, seasoned executives in high technology, government, and finance rely on VLSIresearch’s insights to guide them to the right decisions. The formula is simple: **Better intelligence leads to better decisions which deliver better results.** Founded in 1976, VLSIresearch is the leading technology research and advisory company focused on semiconductor related manufacturing. The company’s website is www.vlsiresearch.com.

Research and Services

- **The Chip Insider®**
 - The trusted advisor
- **The ForecastPro**
 - The semi ecosystem
- **Equipment Databases**
 - Semi Equipment
- **Semiconductor Analytics**
 - Know when it’s turning as it turns
- **Critical Subsystems**
 - Eq Supply Chain
- **Industry Pulse Pro®**
- **Customer Satisfaction**
 - Brand management
- **Test Consumable Markets**
- **Photovoltaics**
- **Consulting**
Terms and Conditions, Notices, and Disclaimers, etc.

By accepting this report, opening it, or using it you are agreeing to these terms. This report contains valuable proprietary information developed or acquired by VLSI Research at great expense. You have a limited license to hold these materials but do not become the owner of any material. The materials provided are protected by copyright, trade secret, and trademark law. This presentation has been approved by VLSI Research for public release with attribution. The information in the materials may be used by you on a limited basis in your own documents provided that those documents are not-for-sale; VLSI Research’s name, brand, or trademarks are not used to endorse a product or company for sales purposes; VLSI Research is clearly referred to as the source of such information; and you obtain written approval prior to use.

This report is provided on an "AS IS," "WHERE IS," "WHERE AVAILABLE," "WITH ALL FAULTS" basis. VLSI Research does not warrant these materials or the information provided therein, either expressly or impliedly, for any particular purpose and VLSI Research specifically disclaims any express or implied warranties, including but not limited to, any express or implied warranties of TITLE, ACCURACY, NON-INFRINGEMENT, MERCHANTABILITY or FITNESS FOR ANY PARTICULAR PURPOSE OR USE.

The sources of the information in this report include numerous individual reports, memos and bulletins from various segments of the industry, annual reports, financial reports, interviews, questionnaires, surveys, technical symposia, trade journals, technical journals and individual assessments by knowledgeable company or industry representatives as well as our own analysis and judgment. Some companies are more cooperative about providing information than others and some companies decline to provide or validate the accuracy of any information. Although the information provided is obtained or compiled from sources VLSI Research believes to be reliable given the oftentimes difficult circumstances under which it is collected, VLSI Research cannot and does not warrant or guarantee the accuracy, validity, truthfulness, timeliness, or completeness of any information or data made available to you for any particular purpose. In no event will VLSI Research be liable to you or any third party, whether in contract, tort or under any other legal theory, for any direct, indirect, special, consequential or incidental damages, or any other damages of any kind even if VLSI Research has been advised of the possibility thereof.

We receive letters and e-mails on current topics covered in our services and/or reports that are of interest to our subscribers, as well as comments on our reports. We value that subscriber input and like to use it. By submitting such material to us, unless you tell us specifically not to publish it, or except to the extent that you give us an embargo date before which you instruct us not to publish it, you authorize us to publish and republish it in any form or medium, to edit it for style and length, and to comment upon or criticize it and to publish others’ comments or criticisms concerning it, as the case may be.

This report may contain information concerning stocks that is obtained from the opinions of industry analysts. Quoted past results are not necessarily indicative of future performance. None of the information should be seen as a recommendation to buy or sell any securities. We are not stock analysts or investment advisors. You should contact a registered investment advisor as to the nature, potential, value or suitability of any particular investment action. No information provided is investment advice and any such information is just an opinion and is not tailored to the investment needs of any specific person. Certain statements in this report, other than statements of historical fact, and other written or oral statements made by VLSI Research may be forward-looking. In some cases, you can identify forward-looking statements by terminology such as “may”, “will”, “should”, “expects”, “intends”, “plans”, “anticipates”, “believes”, “thinks”, “estimates”, “seeks”, “predicts”, “potential”, and similar expressions. Although VLSI believes that these statements are based on reasonable assumptions, they are subject to numerous factors, risk and uncertainties that could cause actual results and outcomes to be materially different from those stated or projected. Those factors, among others, could cause actual results and outcomes to differ materially from the results and outcomes stated or projected in, or implied by, the forward-looking statements. You should understand that forward-looking statements are not guarantees of results or outcomes. New risks and uncertainties arise from time to time, and VLSI Research can not predict those events or how they may affect you, the reader. VLSI Research Inc does not have any intention or obligation to update forward-looking statements after the date of this report.

No part of this report may be used in any legal proceedings nor may any of these materials or the information contained therein be disclosed to any third party, including investors or affiliated firms belonging to investors, outside directors or to your affiliated companies, or reproduced or transmitted to any third party, in any form or by any means – mechanical, electronic, photocopying, duplication, microfilming, videotape, verbally or otherwise – without the prior written permission of VLSI Research.

The Chip Insider®, The Industry Pulse Pro®, and the CSS 10 BEST logo are registered trademarks of VLSI Research Inc. All other trademarks, service marks, and logos are the property of their respective owners.