New Frequency Domain Fiber Optic Interferometry for Advanced Wafer, Micro- and Nanostructure Metrology

Wojtek J. Walecki, Alexander Pravdivtsev, Jae Ryu, Nikos D. Jaeger, Yuen Lim, Ann Koo

Motivation and Prior Art
Typical Fabry Perot thickness tools are limited to very thin films.

Thick Layer Measurements require High Resolution Systems

![Diagram showing light interference patterns and thickness measurements.](image)

Inhomogeneous tapes heavily scatter light and complicate measurements.
Source of limitation: mechanical scanner affecting speed and accuracy.

Main Applications
- **Wafer Thickness**: backgrinding backetching process: Si or III/V wafers with or without tape, bumped wafers, bonded wafer and many other materials.
- **Bump height**
- **TSV depth**: in MEMS and 3DIC structures
- **Trench depth**

FSN 413 Echoprobe Technology
EchoProbe Technology: Principle of Operation
Fiber optic Fourier Transform Spectrometer

Limitations
When reference and signal arms are equal we observe interference fringes.

Period of fine structure ~ 0.65 μm in air, or ~ 0.2 μm in Si

Measurements on Single Layer Blanket Silicon Wafer

![Diagram showing wafer thickness measurements.](image)

Technology has no fundamental limit for Working Distance

- **Reflection from back surface**
- **Reflection from front surface**

Elimination of scanner limitations utilizing Moiré Effect:
Principle of FSM 8108 VITE

Real Space Moiré Effect:
Two small spacing patterns having similar but slightly different spacing (and frequency) are overlapped.

When the two patterns are overlapped they produce a new pattern. The resulting pattern has a large spacing component (slowly varying component).

Slowly varying oscillations corresponding to the "beat" frequency resulting from product of transmission of two filters.

FSM Effect - Frequency Space Moiré Effect
- Two thick etalons having slightly different thickness have fast oscillating transmission and reflection spectra with slightly different spacing of resonances as a function of wavelength.
- When the two such etalon filters are placed one after another the resulting transfer function has slowly varying components corresponding to the difference between optical thickness of each filter.
- **Frequency Space Moiré Effect - FSM Effect since it appears in wavelength (or frequency spectra) rather than in the real space.**
- The observation and measurement of this slowly varying component does not require high resolution spectrometer.

Measurement on thick samples with small (low resolution) spectrometer

![Diagram showing measurement setup and data.](image)

FSM 8108 VITE Application and Performance
- Everything which interferometer technology FSM 413 can do BUT
- **Faster**: about 10x faster
- **More accurately**:
- **Repeatability**: >3x better repeatability

Dynamic repeatability: Measurements on moving wafer
Scan time: 6.5 sec scan across 300mm Silicon wafer
This implies throughout
>50 wafers per hour (WPH) for typical recipe
Repeatability: +/- 0.072 um for typical 300 mm wafer

CONCLUSIONS
- New FSM Effect based FSM 8108 VITE technology improvements
 - Speed x10
 - Accuracy and reproducibility x3
- New high speed applications possible
- No polarization sensitivity

Frontier Semiconductor 2127 Ringwood Ave., San Jose CA 95131 USA Tel: 408 432 8838 Fax: 408 232 1115 Email: fsm100@frontiersemi.com