Sub-Nanometer Probe Helium Ion Microscope with Time of Flight Elemental Identification

Viacheslav Manicheva,b, Alexander Livernoisa, Eric Garfunkelb, Leonard Feldmana,b, Torgny Gustafssona.

aDepartment of Physics and Astronomy, bInstitute for Advanced Materials, Devices and Nanotechnology, Rutgers University, NJ

Helium Ion Microscopy

- 35keV He ions, 0.3nm beam spot
- Imaging via secondary electrons.

Advantages over a SEM:
- Smaller spot size < 0.3 nm
- High secondary yield
- Large depth of field
- Ability to image non-conducting samples directly (no metal overlayer)
- Large field of view
- Patterning capability

Elemental Identification: New Detection System

Nano-RBS detection system for simultaneous imaging and elemental analysis.
- Time resolution ~ 200 ps (0.1 KeV)
- Flight length ~ 130 mm
- Beam current ~ 1 pA
- Depth Resolution: 0.7 nm

Elemental Identification: Sample Structures

Multilevel metallization

Dielectric stack

Spherical Au nanoparticles

Supported by the Rutgers Institute for Advanced Materials, Devices and Nanotechnology, NSF grant DMR-1126468