NICE Cybersecurity Workforce Framework Tutorial

Jane Homeyer, Ph.D., Deputy ADNI/HC for Skills and Human Capital Data, ODNI
Margaret Maxson, Director, National Cybersecurity Education Strategy, DHS
Outline for Today

• Introduction to NICE
• NICE Workforce Plan Overview
• Introduction to the Cybersecurity Workforce Framework
• Exercise 1: Review of the Framework
• Case Study: DHS Pilot Implementation
• Exercise 2: Linking Training to the Framework
• Call to Action
Introduction to NICE

• The National Initiative for Cyber Security Education (NICE) is a nationally coordinated effort focused on cybersecurity awareness, education, training, and professional development.

• The mission of NICE is to enhance the overall cybersecurity posture of the United States by accelerating the availability of educational and training resources designed to improve the cyber behavior, skills, and knowledge of every segment of the population, enabling a safer cyberspace for all.
NICE Component 4 – Workforce Training and Professional Development

• This component is responsible for:
 – defining the cybersecurity workforce; and
 – identifying the training and professional development required for the nation’s cybersecurity workforce.

• Lead by the DoD, ODNI and DHS, in coordination with academia, industry and state, local and tribal governments.
Understanding the Cybersecurity Workforce

We need the answers to questions such as:

• Who is a cybersecurity professional?
• Do we know in our Federal Government employee population, who works in cybersecurity and what their capabilities are?
• How many cybersecurity professionals receive annual performance awards in comparison to professionals in other occupations?
• What is the average starting salary of an System Architect within various Federal Government organizations? How does this compare to private industry?
• What are the average promotion rates of different cybersecurity specialties compared to one another and to other occupations?
• What are the attrition rates?
• Etc….
NICE Workforce Plan
Overview
Need for Standardization

• Today, there is very little consistency throughout the Federal Government and the Nation in terms of how cybersecurity work is defined, described, and how the workforce is trained.

• Establishing and implementing standards for cybersecurity workforce and training is a foundational component for every workforce plan.
Component 4 Work Plan – Task Overview

- Task 2 – Training Catalog – Identifying the Training Per Level
- Task 3 – Workforce Baseline Study – Assess the Quality
- Task 4 – Workforce & Training Analysis (Identification of gaps in capabilities and available training) – Identification of Gaps
- Task 5 – Professional Development Roadmaps – The Pipeline
- Task 6 - Communication
Federal Department and Agency Support

Over 20 Federal Departments and Agencies participated to develop the framework, including:

- Department of State
- Department of Education
- Department of Labor
- Office of Management and Budget
- Office of Personnel Management
- Department of Defense
- Department of Justice
- Information Sciences & Technologies
- Department of Homeland Security (including NPPD, TSA, USSS, Coast Guard, ICE, CBP, CIS, DHS OI&A)
- Central Intelligence Agency
- Defense Intelligence Agency
- Director of National Intelligence
- Federal Bureau of Investigation
- National Security Agency
- National Science Foundation
- Department of Defense /DC3x
- National Counterintelligence Executive
- Federal CIO Council
Non-Profit & Government Organizations

In addition, NICE has worked very closely with non-profit and governmental organizations to socialize the framework. Including, but not limited to:

• FedCIO Council IT Work Force Committee (ITWFC)
• Committee of National Systems Security (CNSS)
• FedCIO Council Information Security and Identity Management Committee (ISIMC)
• National Cybersecurity Alliance (NCSA)
• Federal Information Systems Security Educators Association (FISSEA)
• Colloquium for Information Systems Security Educators (CISSE)
• Colloquium for Advanced Cybersecurity Education (CACE)
• Washington Cyber Roundtable
• CyberWatch

• US Cyber Challenge
• National Association of State Chief Information Officers (NASCIO)
• Multi-State Information Sharing and Analysis Center (MS-ISAC)
• Information Systems Security Association (ISSA)
• National Board of Information security Examiners (NBISE)
• Cybersecurity Certification Collaborative (C3)
• Institute for Information Infrastructure Protection (I3P)
• Association for Computing machinery (ACM)
• Institute of Electrical and Electronics Engineers (IEEE)
Cybersecurity Workforce Framework
Framework Development Process

1. Conducting Internet searches and collecting documents (reports, websites, briefings, etc.) from across the government related to workforce constructs such as:
 - Computer network defense (CND) service provider organizations, Computer network operations (CNO), Cyber investigation, Cybersecurity, Counterintelligence, Counterintelligence in Cyberspace, IT infrastructure, operations, development and information assurance.

2. Sample reviewed documents included: Some of the reviewed documents were:
 - Office of Personnel Management’s occupational standards (OPM, 2010), Job descriptions from the Department of Labor’s O*NET database (2010), DoD 8570.01-M Information Assurance Workforce Improvement Program (DoD, 2010), DoD Cybersecurity Workforce Framework, DoD Counterintelligence in Cyberspace Training and Professional Development Plan, Federal Cybersecurity Workforce Transformation Working Group Report on Cybersecurity Competencies

3. Refine existing definitions of cybersecurity specialty areas based on collected information

4. Conduct focus groups with subject matter experts to identify and define specialty areas not noted in previous documents

5. New specialty areas included Investigation, Technology Demonstration, Information Systems Security Management, etc.

6. Review existing task and KSA statements that define the work within specialty areas.

7. Identify, collect, write new task and KSA statements where appropriate.

8. Gather SME input on task and KSA statements.

9. Refine framework as necessary through workshops, meetings, and stakeholder input. (ongoing)
Framework Categories

The **Framework** organizes cybersecurity into **seven** high-level categories, each comprised of several specialty areas.
7 Categories – Each Comprising Several Specialty Areas

<table>
<thead>
<tr>
<th>Specialty Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Securely Provision</td>
<td>Specialty areas concerned with conceptualizing, designing, and building secure IT systems.</td>
</tr>
<tr>
<td>Operate and Maintain</td>
<td>Specialty areas responsible for providing the support, administration, and maintenance necessary to ensure effective and efficient IT system performance and security.</td>
</tr>
<tr>
<td>Protect and Defend</td>
<td>Specialty area responsible for the identification, analysis and mitigation of threats to IT systems and networks.</td>
</tr>
<tr>
<td>Investigate</td>
<td>Specialty areas responsible for the investigation of cyber events or crimes which occur within IT Systems and networks.</td>
</tr>
<tr>
<td>Operate and Collect</td>
<td>Specialty areas responsible for the highly specialized and largely classified collection of cybersecurity information that may be used to develop intelligence.</td>
</tr>
<tr>
<td>Analyze</td>
<td>Specialty area responsible for highly specialized and largely classified review and evaluation of incoming cybersecurity information.</td>
</tr>
<tr>
<td>Support</td>
<td>Specialty areas that provide critical support so that others may effectively conduct their cybersecurity work.</td>
</tr>
</tbody>
</table>
Example Category and its Specialty Areas

“So…What else do I get?”
Category: Operate and Maintain

Specialty Area: Systems Security Analysis

Responsible for the integration/testing, operations and maintenance of systems security

Typical OPM Classification: 2210, Information Technology Management *(Actual information provided by OPM)*

Example Job Titles:
- Information Assurance Security
- Information Systems Security
- Information System Security
- IA Operational Engineer

Job Tasks
1. Implement system security measures that provide confidentiality, integrity, availability, authentication, and non-repudiation.
2. Implement approaches to resolve vulnerabilities, mitigate risks and recommend security changes to system or system components as needed.
3. Perform security reviews and identify security gaps in security architecture resulting in recommendations for the inclusion into the risk mitigation strategy.
4. Etc.....

<table>
<thead>
<tr>
<th>Competency</th>
<th>KSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Assurance:</td>
<td>Skill in determining how a security system should work.</td>
</tr>
<tr>
<td>Knowledge of methods and</td>
<td>Knowledge of security management</td>
</tr>
<tr>
<td>procedures to protect</td>
<td>Knowledge of Information Assurance principles and tenets.</td>
</tr>
<tr>
<td>information systems and data</td>
<td></td>
</tr>
<tr>
<td>by ensuring their availability, authentication, confidentiality and integrity.</td>
<td></td>
</tr>
<tr>
<td>Risk Management:</td>
<td>Knowledge of risk management processes, including steps and methods for assessing risk.</td>
</tr>
<tr>
<td>Knowledge of the principles,</td>
<td>Knowledge of network access and authorization (e.g. PKI)</td>
</tr>
<tr>
<td>methods, and tools used for</td>
<td>Skill in, assessing the robustness of security systems and designs.</td>
</tr>
<tr>
<td>risk assessment and mitigation,</td>
<td></td>
</tr>
<tr>
<td>including assessment of failures and their consequences.</td>
<td></td>
</tr>
<tr>
<td>System Life Cycle:</td>
<td>Knowledge of system lifecycle management principals.</td>
</tr>
<tr>
<td>Knowledge of systems life cycle</td>
<td>Knowledge of how system components are installed, integrated and optimized.</td>
</tr>
<tr>
<td>management concepts used to</td>
<td>Skill in designing the integration of hardware and software solutions.</td>
</tr>
<tr>
<td>plan, develop, implement,</td>
<td></td>
</tr>
<tr>
<td>operate and maintain</td>
<td></td>
</tr>
<tr>
<td>information systems.</td>
<td></td>
</tr>
</tbody>
</table>
Exercise 1: Review of the Cybersecurity Workforce Framework
Overall Framework Review

General Overview

• What does the NICE Cybersecurity Workforce Framework cover?
• What is a specialty area?

Let’s Begin Part 1:

• Take 5-10 minutes to independently review the “paint chip” booklet
 – Look at the overall structure of categories and the specialty areas within them
 – Read the definitions of the each specialty area and consider how well it fits into the category
Questions to Consider

• Can you identify a specialty area that describes your primary job responsibilities?
• Are the specialty areas appropriately grouped within each major category (i.e., Securely Provision, Operate and Maintain, Protect and Defend, etc.)?
• What specialty areas are missing?
• Should any specialty areas should be deleted?
Part 2 – Specialty Area Deep Dive Review

• Group 1 – Independent review of Tasks/KSAs
• Group 2 – Group discussion of Information Systems Security Management, Security Program Management, and Strategic Planning and Policy Development
• Group 3 – IT Program Management

Small Group Facilitators will provide additional Guidance
Case Study: DHS Pilot Implementation
The Secretary of the Department of Homeland Security has identified the acquiring, growing, and sustaining of a cyber workforce as one of the Department’s priorities.

- The cyber security mission of DHS will require a federal workforce that possesses the necessary skills to lead cybersecurity missions and solutions, while ensuring the future security of the national critical infrastructure.

- In response, the Office of the Chief Human Capital Officer (OCHCO) and the National Protection and Programs Directorate (NPPD) has established a cross-component team responsible for the development of this initiative.
“Eating a Pack of Elephants”

With all the organizational considerations in building and sustaining a Cyber Workforce for DHS, where should we start?

• Strategic Plan – 4 Major Goals
 – Identify parameters for building an effective, mission-focused cybersecurity workforce;
 – Recruit highly qualified cybersecurity workforce professionals and leaders;
 – Grow individual and organizational capabilities to promote a highly-qualified workforce; and
 – Sustain an engaged cybersecurity workforce and leadership cadre by sharing institutional knowledge and promoting a unified DHS culture

• Implementation
Implementation: First Steps

To start, Cyber Workforce Development is focused on defining Capability needs, which is accomplished by building competency models

- Why Cyber Competency Models?
 - Objective: Competencies define the skills/capabilities critical for successful job performance across Cyber roles, and the behaviors that exemplify the progressive levels of proficiency associated with these competencies
 - Impact: Provides a solid foundation upon which targeted recruitment, selection, and employee development (learning and training) initiatives can be built to increase Cyber Workforce capabilities

What makes a Competency Model?

- Competencies
- Behavioral Indicators

<table>
<thead>
<tr>
<th>Competency</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration Testing</td>
<td>Designs, simulates, and executes attacks on networks and systems. Leverages existing and emerging methods to attack systems and exploit vulnerabilities. Documents penetration testing methodology, findings, and resulting business impact.</td>
</tr>
</tbody>
</table>
Implementation: Challenges

• How do we minimize the time impact on the managers, supervisors and SMEs?
• How do we ensure consistency in terminology across all agencies and components?
• Who are the DHS Cybersecurity professionals?
• What competency work has been accomplished?
• With so many Occupational Series involved with Cybersecurity, how should the models be built?
A NICE Solution

Although we still have some outstanding challenges, the NICE Framework presented an exceptional solution for time and consistency. Using the framework as a foundation, DHS can

• Compile initial technical competency models in a compressed timeframe
• Maintain consistency in terminology across all agencies and components, as well as alignment with NICE and OPM
The Comprehensive National Cybersecurity Initiative – Initiative #8 – requires building a national Cyber Workforce and serves as the foundation for the National Initiative Cybersecurity Education (NICE)

National Initiative for Cybersecurity Education (NICE) Relationship to President’s Education Agenda
19 April 2010

The National Initiative for Cybersecurity Education (NICE) represents the continued evolution of Comprehensive National Cybersecurity Initiative (CNCI) 8, as its scope has recently been expanded from a Federal focus to a broader National focus. The National Institute of Standards and Technology (NIST) has assumed the overall coordination role for the effort and is currently identifying resources to be applied to this initiative, reviewing all related previous activities, and developing a strategic framework and a tactical plan of operations to support that framework. This expansion and the new overall coordination role by NIST in response to the President’s priorities is expressed in Cyberspace Policy Review and result from decisions made by the National Security Staff’s (NSS) Cybersecurity Directorate and the Office of the Director of National Intelligence’s (ODNI) Joint Cyber Task Force (JCTF).

NICE will focus on the coordination, cooperation, focus, public engagements, technology transfer, and sustainability of NICE in order to achieve its objectives. NICE will also implement an operational sustainable, and continually improving cybersecurity education program for multiple segments of the nation to ensure application of sound cyber practices. Success for this effort will be seen the enhancement of the overall security posture of the United States.

To meet NICE objectives, efforts have been structured into the following four tracks:

2. Formal Cybersecurity Education (Co-Leads: Department of Education and DoD): Education programs accompanying K-12, higher education, and vocational programs related to cybersecurity, with a focus on the science, technology, engineering, and math disciplines to provide a pipeline of skilled workers for private sector and government.
3. Federal Cybersecurity Workforce Structure (Lead: OPM): Personnel management framework to include defining cybersecurity jobs in the federal government and skills and competencies required. New strategy to assure federal agency staff, recruiters, and retain skilled employees to accomplish cybersecurity missions.

Subtrack 1: General IT Use (Co-Leads: DHS, Federal CIO Council)
Subtrack 2: IT Infrastructure, Operations, Maintenance, and Information Assurance (Co-Leads: DoD, DHS)
Rollout Experience: The story we had to tell

Helpful to highlight the comprehensive nature of NICE Framework

Made up of multiple components, NICE Component 4 focuses on the standards and development of the Federal Cyber Workforce

Component 4: Cybersecurity Workforce Training and Professional Development

- Functional Area 1: General IT Use
 - Functional Area 2: IT Infrastructure, Operations, Maintenance, and Information Assurance
 - Functional Area 3: Domestic Law Enforcement and Counterintelligence
 - Functional Area 4: Specialized Cybersecurity Operations

This effort reaches across the Federal Government with included support from DHS, OSTP, ODNI, NSA, DoD,
What are Competency Models? – Nuts and Bolts

CYBER ROLE

Cybersecurity Tester: The Cybersecurity Tester provides compliance-based security testing leveraging automated tools. The Cybersecurity Tester assists in the preparation, development, modification, and management of security products in support of the C&A process. The Cybersecurity Tester provides technical analysis and automated scans to assess their completeness and identify system vulnerabilities and weaknesses.

SYSTEMS REQUIREMENTS ANALYSIS: Translates functional security requirements into secure design technical and operational specifications. Covers requirements allocation and interface definition studies to translate customer requirements into hardware and software specifications. Distinguishes testable requirements and non-testable. Verifies security requirements through assessment analyses to detect weaknesses and depth/breadth of security controls needed. Monitors current state of security systems, processes, and controls. Performs gap analyses and makes recommendations for gap mitigation.

BEHAVIORAL INDICATORS

<table>
<thead>
<tr>
<th>Proficiency Level</th>
<th>INT</th>
<th>EXP</th>
<th>FEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Requirements Analysis</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Testing</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Vulnerability Assessment</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Threat Assessment</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Penetration Testing</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Certification & Accreditation</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Secure Network Design</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

PERFORMANCE STANDARDS

- Systems Requirements Analysis
- Testing
- Vulnerability Assessment
- Threat Assessment
- Penetration Testing
- Certification & Accreditation
- Secure Network Design

Example

Performs technical planning, system integration, verification and validation, and supportability and effectiveness analyses for total systems

- Analyzes all levels of total system products to include: acquisition, concept, design, test, installation, operation, maintenance, and disposal
- Translate operational requirements into technical requirements
- Organizes and analyzes stated requirements into categories throughout the system lifecycle such as functionality, usability, performance, operational, security, etc.
- Proficient at using a requirements management tool (e.g., DOORS)
- Identifies and documents security requirements

Leads the definition and flow-down functional, performance, and design requirements

- Performs functional analysis, timeline analysis, requirements allocation, and interface definition studies to translate customer requirements into hardware and software specifications
- Conducts gap analyses between requirements and proposed architecture to identify security performance and other weaknesses in the system
- Verifies security requirements through collaboration with DAA/IA/Engineering & Systems Administration
- Conducts vulnerability & risk assessment analyses

Advises on new techniques and estimated costs associated with new or revised programs and utilities, taking into consideration personnel, time, and hardware requirements

- Interprets mission objective and applies knowledge to requirements and implementations
- Advises customer of gaps in security policy and guidance; provides recommendations
- Monitors industry developments and evolving instruction/policy/guidance on IT security concerns
- Oversees large-scale requirements development and management efforts to include the definition of new requirements and the implementation of changes to existing requirements.
Applying the NICE Framework

DHS SPECIFIC CYBER ROLE

Cybersecurity Tester: The Cybersecurity Tester provides compliance-based security testing leveraging automated tools. The Cybersecurity Tester assists in the preparation, development, modification, and management of security products in support of the C&A process. The Cybersecurity Tester provides technical analysis and automated scans to assess their completeness and identify system vulnerabilities and weaknesses.

SPECIALTY AREAS

- Systems Requirements Planning
- Test and Evaluation
- Investigation
- Computer Network

Selected by Component SMEs from NICE Framework Specialty Areas

BEHAVIORAL INDICATORS

- Performs technical planning, system integration, verification and validation, and supportability and effectiveness analyses for total systems
- Analyzes all levels of total system products to include: acquisition, concept, design, test, installation, operation, maintenance, and disposal
- Translate operational requirements into technical requirements
- Organizes and analyzes stated requirements into categories throughout the system lifecycle such as functionality, usability, performance, operational, security, etc.
- Proficient at using a requirements management tool (e.g., DOORS)
- Identifies and documents security requirements

PERFORMANCE STANDARDS

<table>
<thead>
<tr>
<th>CYBER SKILL & PROFICIENCY STANDARDS</th>
<th>PERFORMANCE LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Requirements Planning</td>
<td>INT</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Test and Evaluation</td>
<td>2</td>
</tr>
<tr>
<td>Investigation</td>
<td>1</td>
</tr>
<tr>
<td>Computer Network Defense</td>
<td>2</td>
</tr>
</tbody>
</table>

Built by SMEs with alignment to respective NICE Framework KSAs

- Translates functional security requirements into secure design to include the definition of new requirements and the implementation of changes to existing requirements.
- Leads the definition and flow-down functional, performance, and design requirements
- Performs functional analysis, timeline analysis, requirements allocation, and interface definition studies to translate customer requirements into hardware and software specifications
- Distinguishes testable requirements
- Conducts gap analyses between requirements and proposed architecture to identify security performance and other weaknesses in the system
- Verifies security requirements through collaboration with DAA/IA/Engineering & Systems Administration
- Conducts vulnerability & risk assessment analyses
- Advises on new techniques and estimated costs associated with new or revised programs and utilities, taking into consideration personnel, time, and hardware requirements
- Interprets mission objective and applies knowledge to requirements and implementations
- Advises customer of gaps in security policy and guidance; provides recommendations
- Monitors industry developments and evolving instruction/policy/guidance on IT security concerns
- Oversees large-scale requirements development and management efforts to include the definition of new requirements and the implementation of changes to existing requirements.
Impact of DHS use of NICE Framework

- Accelerated role specific model development cycle time
- Establishing consistency in terminology across all DHS agencies and components
- Alignment with NICE efforts and future NICE related programs
- Real time feedback from field on framework back to NICE
Exercise 2: Linking Training To the Framework
Why map competencies to training courses?

• Effectiveness
 – ensure that training has “right” content at right level to support needed competencies
 – optimize usefulness of training – enable a robust number of variables to be used for search capabilities to enable very targeted searches to identify applicable/relevant training

• Efficiency – allocate training resources to most benefit
 – eliminate unnecessary redundancy in courses
 – facilitate use of courses to greatest extent possible
Guiding principles

• Competencies and other job-related information to course mappings, in addition to all other required training course information, are an important foundation
• Completing the mapping according to common lexica and taxonomies adds exponentially greater value
• Ideally mapping is done by Subject Matter Experts
• Mapping is not just an exercise – especially in time of increasing scarcity of resources
Process - Mapping Existing Courses to Job Information

• 1st Identify courses to be mapped. May start with a mission critical occupation (e.g., cybersecurity) or by IC element (e.g., DIA)

• 2nd Ensure information about the course is available so that it can be accurately mapped (e.g., has learning objectives documented)

• 3rd Process of successive approximations - - map all fields to the greatest extent possible and with the highest level of consistency/accuracy

• 4th Review and establish a quality assurance process
Session Format

• Linking Courses: What You’ll Need
• Example
• Group Exercise
What do you need?

“Things”

• The Cybersecurity Workforce Framework
 – Must have
 • Specialty areas with complete descriptions
 • KSAs/Competencies
 • Job titles (helpful for SMEs)

• Training Courses
 – Must have
 • Title
 • Description
 • Other data considered in aggregate
 – Objectives
 – Target audience
 – Pre-requisites
 – Number in a series (e.g., 1 of 6)

• Worksheets to record linkages
What do you need?

“People”

• Subject Matter Experts
 – *Must have*
 • Knowledge of course content OR
 • Can become expert in course content through
 – Review of materials
 – Audit course
 – Ideal SME is the ISD or instructor of that training
 – Preferably 2-3 SMEs
 • Supports reliability & validity of linkages

• Facilitator
 – *Must have*
 • Familiarity with the process, purpose
 • Ability to guide SME, either
 – In person
 – Remotely
Example from a Facilitated Session

The output shown here came from a facilitated SME session with a cybersecurity training provider from academia.

These samples illustrate a portion of the populated worksheet from Step 1 of the process.

Links are shown between six courses and four specialty areas (formerly “work roles”)

Note: SMEs were also asked to indicate the level of the intended audience for each course, and type of learning.
Example from a Facilitated Session continued...

This is an example of the populated framework completed during Step 2 of the process.

This sample illustrates that several of the provider’s courses support the KSAs within the Specialty Area “Education and Training”

Note: Several of these courses support multiple KSAs within this specialty area.

These linkages, captured in this worksheet, are then entered into the online Cybersecurity Training Catalog.
Now Let’s Try It…

• Your Table Group Will Test the Linkage Process
• Scenario-based Exercise
• Supporting Materials
• We’ll Answer Questions
• Time
Task Guidance

• To begin, focus on 1 specialty area
• Using the Framework, take a close look at the KSAs that comprise that specialty area
• Apply your “expertise” (the course information provided) to identify those KSAs that you think are covered in the course
• On the worksheet, write in the KSAs you have identified
• Repeat the process, selecting KSAs for the remaining 2 specialty areas
Wrap up

• How did you do?
• The actual linkages are...
Call to Action

- Help advance the Framework!
 - Provide your input for what we missed, either current or future-oriented

- Adopt the Cybersecurity Workforce Framework
 - If you have existing competency data for cybersecurity within your organization, first map to the framework and then adopt the new labels and definitions

- Volunteer to be a Linkage Expert for Cataloging Cybersecurity Training
 - Work with us to get your courses cataloged and linked to the Framework

- Spread the Word
 - Promote awareness and adoption across the federal government and the Nation