Inspire, Connect, Create.

SURF
Summer Undergraduate Research Fellowship
2016

National Institute of Standards and Technology
U.S. Department of Commerce
Greetings!

On behalf of the Director’s Office, it is my pleasure to welcome you to 2016 SURF Colloquium at the NIST Gaithersburg campus.

Founded by scientist in the Physics Laboratory (PL) with a passion for stem outreach, the SURF Program has grown immensely since its establishment in 1993. The first cohort of the SURF Program consisted of 20 participants from 8 universities primarily conducting hands-on research in the physics lab. Representing all STEM disciplines, this summer’s cohort of the SURF Program includes 188 participants from 100 universities engaging in research projects in all 7 laboratories at the Gaithersburg campus. It’s expected that the program will continue to grow in the future.

During your attendance at the SURF Colloquium, I encourage you to interact with the SURF participants. Aside from asking questions during the sessions, I recommend networking with presenters in between sessions and/or lunch. The colloquium is the perfect venue to exchange findings and new ideas from the most recent and rigorous research in all STEM fields.

Furthermore, I suggest chatting with NIST staff and scientist at the colloquium. Don’t be afraid to ask questions about the on-going research in a specific NIST laboratory. Most staff and scientist love to talk about their role or research at NIST.

Moreover, I invite you to share your experience at the SURF Colloquium on the National Institute of Standards and Technology (NIST) Facebook page using the hashtag, #2016SURFColloquium.

Lastly, I could not conclude this letter without mentioning the individuals which make the SURF Program at NIST possible. Thank you to the OU SURF Directors, the SURF mentors, and all the staff at NIST who play an integral role in making the SURF participants experience valuable. Your hard work and dedication to the program is greatly appreciated.

Again, welcome to the conference. I’m glad that you are here and I look forward to your participation in the SURF Colloquium.

Warm regards,

Brandi Toliver, PhD
Managing SURF Program Director (NIST-wide)
NIST SURF Program Staff by Organizational Unit (OU)

<table>
<thead>
<tr>
<th>Organizational Unit (OU)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director's Office</td>
<td>Brandi Toliver, Managing SURF Program Director</td>
</tr>
<tr>
<td>Director's Office</td>
<td>Kara Arnold</td>
</tr>
<tr>
<td>Center for Nanoscale Science and Technology Engineering Lab</td>
<td>John Unguris</td>
</tr>
<tr>
<td>Center for Nanoscale Science and Technology</td>
<td>Kartik Srinivasan</td>
</tr>
<tr>
<td>Information Technology Lab</td>
<td>Lisa Jean Fronczek</td>
</tr>
<tr>
<td>Information Technology Lab</td>
<td>Howard Cohl</td>
</tr>
<tr>
<td>Information Technology Lab</td>
<td>Elizabeth Lennon</td>
</tr>
<tr>
<td>Information Technology Lab</td>
<td>Derek Juba</td>
</tr>
<tr>
<td>Information Technology Lab</td>
<td>Michaela Iorga</td>
</tr>
<tr>
<td>Information Technology Lab</td>
<td>David Griffith</td>
</tr>
<tr>
<td>Information Technology Lab</td>
<td>Rebecca Zangmeister</td>
</tr>
<tr>
<td>Communications Technology Lab</td>
<td>Joseph Dura</td>
</tr>
<tr>
<td>Material Measurement Lab</td>
<td>Joseph Kopanski</td>
</tr>
<tr>
<td>Material Measurement Lab</td>
<td>Richard Steiner</td>
</tr>
<tr>
<td>Material Measurement Lab</td>
<td>Darwin Reyes-Hernandez</td>
</tr>
<tr>
<td>Physical Measurement Lab-Electrical Eng</td>
<td>Cameron Miller</td>
</tr>
<tr>
<td>Physical Measurement Lab-Electrical Eng</td>
<td>Uwe Arp</td>
</tr>
<tr>
<td>Physical Measurement Lab-Physics Lab</td>
<td>Maritoni Litorja</td>
</tr>
<tr>
<td>Physical Measurement Lab-Physics Lab</td>
<td>Anita Sweigert</td>
</tr>
<tr>
<td>Physical Measurement Lab</td>
<td>Nathalie Rioux</td>
</tr>
<tr>
<td>Standards Coordination Office</td>
<td></td>
</tr>
</tbody>
</table>
Beck, Gillenhaal

Bourland, Kimberly

Scaletta, John

Sloan, Arthur

Watson, Martha

Wong, Gina
Title of Talk: Modeling of surface plasmon polariton coupling on a periodic grating and electro-optic polymer for faster spatial light modulation

Abstract:
Surface plasmon polaritons (SPPs) are optical-frequency electromagnetic excitations of free electrons in a metal, which can propagate along the metal-dielectric interface. With specific metal and dielectric geometries, we can create an SPP resonator, where the metal’s permittivity and dielectric’s refractive index influence the resonance frequency. When the wavelength of incident light matches the resonance, photonic energy is absorbed in exciting the SPP and there is a loss in the light’s reflectivity. Therefore, the wavelength where this loss occurs can be manipulated by adjusting the dielectric’s refractive index.

In many applications it is desirable to create dynamic, electrically controlled spatial patterns of light intensity or phase. This is commonly done with liquid crystals – dielectric materials with optical properties strongly dependent on applied electric field. These are widely used to form images on TV screens and to manipulate infrared optical signals in telecommunications switches, however they suffer from slow electro-optic response.

State of the art electro-optic (EO) polymer could be used to bypass this problem with a faster response time to voltage, while plasmonics can resonantly enhance the modulation strength. I have developed and numerically optimized a design for an EO plasmonic amplitude modulator, which operates on the coupling of SPP modes between a gold nanowire grating and a thin gold film, separated by a film of EO polymer. Modeling results indicate a strong plasmonic coupling between not only the film and wires, but also between pairs of wires themselves, providing for a system extremely sensitive to small changes in the polymer’s refractive index. The combination of fast modulation at low applied voltage with a feasible nanofabrication process makes this system particularly promising.
Title of Talk: High-Q Surface Plasmon Resonator for Terahertz Time-Domain Spectroscopy

Abstract:

The Terahertz frequency band lies between the microwave and infrared bands of the electromagnetic spectrum and is the subject of much current research. Terahertz radiation has a multitude of interesting properties, including being easily transmitted through many common materials, such as fabrics, rendering them transparent. In addition, much of the terahertz range of frequencies is at resonance with many molecular rotations, making it a highly effective way of obtaining information via spectroscopy. These properties make terahertz highly applicable in fields such as security systems, medical imaging in cancer research, astronomical molecular analysis, and more. However, there is a current dearth of technologies applicable to the terahertz range, as these frequencies are too high to be generated or detected by purely electronic or optical means. Terahertz time-domain spectroscopy has shown to be one of the few methods of successfully generating and detecting terahertz radiation, and as such uses terahertz to determine certain physical properties about the samples with which it interacts. In our research, we explore how the precision and Q-factor of measurements taken with time-domain spectroscopy can be improved using the surface plasmon resonance. In this project, we design a metal device consisting of multiple cups of various widths. Both photolithography and 3D polymer printing with metal deposition are employed to build these devices. Then, using a femtosecond laser with optical rectification to create terahertz pulses, we excite surface plasmons within the cups of the metal device. The plasmons resonate within the cup structure, which we then monitor by electro-optic sampling. We speculate that the resulting data will be in the form of an ultrahigh Q frequency spectrum typical of Fabry-Perot type resonators. If this is confirmed, this metal device could be used to improve the selectivity and precision of technologies that employ terahertz spectroscopy.

Title of Talk: Self-Aligned Double Patterning as a Technique to Improve the Critical Dimension of i-Line Projection Lithography

Abstract:

This research aims to explore processing conditions and other parameters essential to utilizing self-aligned double patterning (SADP) techniques in the process flow for the NIST i-line projection lithography stepper. It also aims to reduce the overall number of processing steps for the SADP process. Photolithographic techniques have an inherent feature resolution limit, termed the critical dimension (CD), determined by the wavelength of light used and the optics of the processing equipment. For the i-line stepper, this limit is approximately 280 nm. Various techniques exist to circumvent this problem, usually involving the decomposition of the final pattern into multiple exposures. While techniques that break up the pattern into multiple lithography steps are viable, they are vulnerable to alignment issues between individual exposures, and require additional intermediate processing steps, increasing the cost per device. SADP remediates the alignment issue by using a single mask to serve as a guide to deposit a spacer material. Removing the masking layer while leaving the spacer leads to an etch mask double the feature density that can then be transferred to the substrate. For this research, the substrate was exposed using line patterns in various widths (300 nm to 1 μm) on i-line projection lithography stepper and developed in tetraethylammonium hydroxide (TMAH) developer. Behaviors of two spacer materials, silicon nitride and chromium metal produced by physical vapor deposition, were characterized. The spacer material was deposited directly over the photoresist in varying thicknesses and subsequently etched back to form SADP spacers. Residual photoresist was removed using an acetone wash. A final plasma etch was performed to transfer the pattern onto the silicon substrate. Between each processing step, results were evaluated with scanning electron microscopy (SEM) to evaluate the effect of process parameters such as exposure energy, sputter time, spacer thickness, and etch time.
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Mattie Watson
Grant Number: 70NANB16H139
Academic Institution: George Washington University
Major: Mechanical Engineering

Future Plans (School/Career):
I plan to either pursue a graduate degree or go right into industry in a nanotechnology or fluids field.
NIST Laboratory, Division, and Group:
CNST, Nanofabrication, NanoFab Operations Group
NIST Research Advisor: Lei Chen

Title of Talk: Fabrication of Nano-scale High-Aspect-Ratio Structures through a Newly Devised Etching Process

Abstract:
Deep silicon etching (DSE) is a critical process step in nano-fabrication. Nano-fabrication is key to the semi-conductor industry and creating computer chips. This process becomes more difficult and longer if it is used to produce a high-aspect-ratio (HAR) etch. This type of etch is characterized by a large ratio of the height to the width. To achieve high-aspect-ratio nano-Si structures is challenging as it requires proper mask materials, high mask etching selectivity, and accurate control of the etching profile, angle and sidewall. Many approaches have been proposed and studied to fabricate HAR structures. The well-known processes include continuous cryogenic etching, alternating “Bosch” etching and atomic layer etching. However, those processes can require low temperature, cannot achieve smooth sidewall, or too slow in real application. We propose a new alternating plasma Si etching approach which separates the physical bombardment from the chemical reaction in the process. SF6 combined with C4F8, which have previously been shown to be a good etchant, alternates with Ar plasma and produces better results than the combining the three gases. By altering the plasma control parameters (gas flow, step time, upper and lower chamber power etc.), an optimized process is developed to achieve faster Si etching rate and better mask etching selectivity. Analysis of the results, which includes the etching rate, and the selectivity, are performed by scanning electron microscopy (SEM). Ultimately a clean high-aspect-ratio nano-Si structure has been demonstrated. The newly developed Si etching process will be used for the applications such as making nanoelectromechanical systems and creating a diffraction grating for x-ray phase imaging.

SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Gina Wong
Grant Number: 70NANB16H131
Academic Institution: University of Maryland - College Park
Major: Electrical Engineering, Physics

Academic Standing (Sept. ‘16): Junior
Future Plans (School/Career): Graduate school
NIST Laboratory, Division, and Group: Center for Nanoscale Science and Technology, Electron Physics Group
NIST Research Advisor: Dr. Robert McMichael

Title of Talk: Controlling a nitrogen-vacancy center diamond to measure magnetic properties at the nanoscale

Abstract:
In the Nanomagnet Dynamics lab, we are developing precise measurements of magnetic fields near the surface of nanoscale magnets. Our two main challenges are (1) finding a sensor that is small enough to get close to the nanomagnets and (2) holding that sensor in a stable position. Nitrogen-vacancy (NV) centers, a type of defect in a diamond lattice, can function as precise magnetic field sensors. Not only are NV centers extremely sensitive to magnetic fields, but they can be created within nanometers of the diamond surface to perform nanoscale detection/imaging of magnetic fields. My work focuses on the problem of sensor stabilization. I will discuss the use of a quartz tuning fork (QTF) in bringing an NV-center diamond to within nanometers of a sample surface. The effect of surface forces on the resonance frequency of a QTF can be used to determine its distance from a surface. My presentation will focus on how the piezoelectric properties of quartz crystal allow the QTF to be controlled to create an image of the surface with atomic resolution.
Aboul-Enein, Omar
Auth, Eric
Caren, Stephen
De Jesus Morales, Kenneth
Goh, Justin
Haile, Bruk
Han, Muhong
Hanson, Edward
Hoddinott, Philip
Johnson, Theodore
Kamieniecki, Daniel
Kifle, Behailu
Krueger, Christina
Leader, Robert
Li, Kevin
McIntyre, Rachel
Mennu, Matlock
Nellis, April
Parsons, Matthew
Rebrov, Kirill
Seiler, Patrick
Siddiqui, Tawsif
Springer, Adam
Stoddard, Alexander
Super, Nathan
Varma, Vaughn
Wakeman, Katrina
Weaver, Samantha
White, Shawn
Winnard, Thomas
Yeh, Malachi
Youssef, Raef
Zhang, Tony
Title of Talk: **Wind and Separation Distance Effects on Fence Fire Spread in the Wildland Urban Interface**

Abstract:

The fires that cause the most property damage annually are those that make their way to or through intersections between forests and developed areas. These zones, collectively known as the Wildland-Urban Interface (WUI), contain 46 million structures which are put at risk every year. While much is known about home ignition due to direct flame contact and radiation, firebrands and nearby auxiliary structures also play a large role in the ignition of structures and are becoming the main topic of research with regards to the WUI. These auxiliary structures include woodpiles, decks, and fences which allow the fire to spread to homes more easily.

This summer, experiments were performed to study the effects of wind speed and separation distance from fence to structure upon flame spread to the structure. The test assembly consisted of a wooden privacy fence (with or without mulch underneath) which was oriented perpendicular to a shed, and a wind machine operated at 20 mph (9 m/s) and 30 mph (13 m/s) to simulate similar WUI fire wind conditions, in a direction parallel to the fence. A bidirectional probe was located 4 ft (1.2 m) in front of the test assembly to measure the wind speeds and determine the wind's velocity profile. Separation distance between the fence and the shed was varied to study the effect of distance on structure ignition. The results from these tests will be used to provide technical foundation for mitigation strategies in WUI fire prone regions.
Abstract:
Polymeric materials exposed to weathering conditions such as solar ultraviolet (UV) radiation, heat, and moisture degrade and change their chemical and physical properties. Ductile polymers like polyethylene will become brittle after prolonged exposure to high temperature and radiation through thermolytic and photolytic degradation processes. Understanding the effects that these weathering parameters have on the speed of degradation is paramount to creating models for predicting property changes.

For this experiment, polyethylene samples were exposed in an accelerated weathering environment at 40°C and 50°C (100% UV intensity, and 90% relative humidity) by utilizing the NIST SPHERE exposure device (Stimulated Photodegradation via High Energy Radiant Exposure). Chemical and mechanical changes were characterized at different exposure times. Mechanical properties were measured via tensile test and chemical changes were monitored via FTIR/ATR (Fourier transform infrared spectroscopy – attenuated total reflection). The results at higher temperatures were compared to the previous study at 30°C exposure conditions as well as to outdoor weathered samples.

Preliminary results showed that the higher temperature the higher degradation rate in both chemical and mechanical properties. Temperature dependence of the degradation behavior of polyethylene will provide a key insight of degradation kinetics and mechanism and will be included in the weathering database for service life prediction of polymeric systems.
Title of Talk: Simulation Assisted Robot Hand and Arm Programming for Planning and Simplifying User Experience

Abstract:
With recent advances in robot technology, the number of robotic hands has grown. These hands are not your run-of-the-mill pneumatic grippers. They are bio-inspired in terms of their dexterity and sensing capabilities. Their adaptability and flexibility in manipulating different objects lowers the overhead cost associated with end-of-arm tooling, which makes them a viable option for small and medium manufacturing companies compared to conventional grippers or proprietary tooling interfaces. In support of this technology, the Manipulation & Mobility Systems Group at NIST is working on developing test metrics and benchmarks to help quantify the performance and advancement of robot hand technology. In addition, integration of robot hand technology within robotic systems is aided with the use of simulation environments. In this case, a simulation will be created using Robot Operating System (ROS) and Gazebo.

ROS is a flexible framework for writing robot software with a collection of tools, libraries, and conventions, which aim to simplify the task of creating complex and robust robot behavior across a variety of robotic platforms. Gazebo, used by DARPA and many other institutions and laboratories, is a simulator that has a robust physics engine, high quality graphics, convenient programmatic and graphical interfaces, and the capability to accurately and efficiently simulate populations of robots in complex indoor and outdoor environments.

The simulation will be a two-way street for communication. Utilizing ROS’ subscriber (receiving data) and publisher (sending data) capability and its integration with Gazebo, we will be able to send the joint states of any robot arm or hand we have available in the lab to Gazebo via TCP/IP (Transmission Control Protocol/Internet Protocol). The same can be done in reverse to control the robot in real life via sending command and joint positions by manipulating the model in Gazebo. The latter will be used to test planning algorithms. Grasp and path planning are an important part of the development of robotic hands because it automates the process for grasping a wide variety of objects in a high degree-of-freedom command space, which simplifies the programming experience for the end user.
Three different types of commercially available BFs were laminated to three types of cover fabrics with varying physical properties. Thermal protective performance of laminated BFs was assessed using cone calorimetry data. Composite specimen comprising FPUF covered with laminated BFs were exposed to external incident heat flux of 35 kW/m² in a cone calorimeter. The fire-blocking effectiveness of laminated BFs was assessed by comparing heat release rate and mass loss data for specimens with and without laminated BFs. The differences in the shape of heat release rate curves and visual observations during the cone calorimetry experiments have been used to differentiate the fire-blocking effectiveness of laminated BFs. The results indicate that the protective performance of laminated BFs is largely influenced by the structure of the barrier fabric. Gas permeability, which is mainly determined by the structural configuration of the BF, appears to be the key property in preventing the FPUF volatiles from coming in contact with heat and/or flames.

First costs associated with such preparedness may be expensive; however, considering the lifecycle costs can make resilience projects more financially feasible. Whenever a community decides to increase its resilience capacity there are clear benefits should a disaster occur. However, there are plenty of co-benefits that may be the product of increased community resilience even when a disaster has not yet occurred. Such co-benefits are rarely considered due to difficulty in valuing and quantifying indirect benefits. Certain co-benefits, such as reduced commute-time upon the creation of a new bridge, offer clear community benefits and should be considered in the disaster preparedness decision-making process.

The purpose of my project is to develop a tool that could produce a meaningful report on the benefits and costs of implementing several potential plans to improve resilience in comparison to the base case (i.e., taking no planning action). I have utilized NIST’s Economic Decision Guide (EDG) to program a tool that can accept both quantitative and qualitative input from a user and calculate present expected values for alternative community resilience plans. The program presents the user with information about the steps in the EDG by providing information on how the implementation of the EDG may benefit a given community. In addition to this tool, I also aim to find academic and policy material related to the topic of the Resilience Dividend, the state in which co-benefits arise from implementing a resiliency plan, even when a disaster is not imminent. Development of an annotated bibliography on the subject will help further the research program on this currently under-researched area.
Title of Talk: Design and Construction of Intelligent Building Agent Laboratory

Abstract:

To achieve the goal of a net zero energy building, energy consumption must be significantly reduced. At NIST the Intelligent Building Agents Project (IBAP) will lower energy consumption with the implementation of Intelligent Software Agents in commercial buildings. These Agents optimize building control systems by implementing distributed decision making to lower energy use.

The Intelligent Building Agent Simulation Program (IBAS) has already been created, and a lab for IBAP is currently under development. The lab has two systems; water and air. The air system emulates a building. The water system emulates a cooling plant for the building. The focus of my project has been working on the air system. The air system boasts over 80 sensors and a mile of wire. Careful planning went into the design and construction of the wire tracks to preserve the lab’s modularity. By tracing the wire’s path from the sensors to the data rack a “subway map” was created. This map was then used to install the wire tracks and run the wires inside those tracks. Sensors, including flow meters and Resistance Temperature Devices were installed to monitor the air system.

The air system uses dampers to control flow inside the ducts. Actuators that move were installed and control wired was connected to the data racks. One potential danger is the operation of fans with no flow path to the outside. This would over pressurize the ducts, presenting a danger to equipment and personnel. A safety program was written in LabVIEW to control flow paths. Part of this project was developing the programs that ensure safe operation of the air system.

Title of Talk: Control System Implementation for Motorized Dynamic Bending and Calibration Machine

Abstract:

The movement of manufacturing to countries featuring labor with low hourly wages over the last fifteen years has motivated the development of a new generation of industrial robots that can work side-by-side with human workers. This has created a new technology of Human-Collaboration Robotics, which combines the intelligence and dexterity of humans with the strength, repeatability and endurance of industrial robots. Since most robots are powerful programmable moving machines, the safety of workers working around these robots has become a top priority for safety standards development that will provide guidance for the development of a comprehensive risk assessment of the robot arm, its tools, its controller, and the whole operating workspace where humans might be present. We are using bio simulant materials for the construction of disposable Human-Collaboration Robotics safety testing artifacts. These testing artifacts will make possible the measurement of damage when humans and robots come into contact and the severity of injuries caused by robot static and impact pressure. In order to test and calibrate these artifacts we have constructed several simple and inexpensive testing machines, which simulate impact events and measure the mechanical properties of the artifact. The Dynamic Bending and Calibration Machine (DyBnCaM) simulates the application of programmable speed profile bending loads to human bio-simulant bone artifacts. The subject of this project is to create a control system and computer interface for a motorized version of the DyBnCaM (MoDyBnCaM) that would be able to control the instrument as well as record and analyze data about its movement.
Name: Daniel Kamieniecki
Academic Institution: Stevens Institute of Technology
Major: Mechanical Engineering

Grant Number: 70NANB16H102
Future Plans (School/Career): A career in Computer Numerical Control (CNC) and robotics.

Academic Standing (Sept. ’16): Junior
NIST Laboratory, Division, and Group: Engineering Laboratory, Materials and Structural Systems Division, Inorganic Materials Group
NIST Research Advisor: Scott Jones

Title of Talk: 3D Printing Cement: Characterization of printable cement pastes

Abstract:
Additive manufacturing processes, specifically 3D printing, are increasing in popularity as the required hardware and software become more accessible. 3D printing cement is an attractive manufacturing process for geometrically complex structures that cannot be easily produced using conventional formwork methods.

An existing paste printer prototype, which employs the CNC capabilities of a small scale polymer 3D printer, was upgraded to a state of functionality. Cement paste is extruded via syringes through a nozzle, and is deposited layer by layer to build a three dimensional object. Although both printing parameters and material properties affect the ability to print, only the material properties were explored in this experiment. Several different cement pastes were mixed with limestone powders of varying particle sizes and high range water reducing agent. A water to solids ratio of 0.22 was kept constant throughout. The “printability” of each mixture was assessed using a challenging test print (a tall, thin wall) and a print performance rubric. Material flow behavior of each paste was measured using a rheometer.

Data from the rheometer was analyzed for yield stress, thixotropic behavior, and other viscoelastic properties. It was found that a specific range of yield stresses is optimal for printing. The mix with the best performance over a long period of time is a 25:50:25 proportion μm limestone:cement:μm limestone by mass. The experiment helped develop a relation between paste yield stress and printability. Measurements and findings from the small printer provide insight and possibly scalable relationships to large scale cement printing.

Name: Behailu Kifle
Academic Institution: University of the District Columbia
Major: Civil Engineering

Grant Number: 70NANB16H128
Future Plans (School/Career): Pursue a graduate degree in Structural Engineering

Academic Standing (Sept. ’16): Senior
NIST Laboratory, Division, and Group: Engineering Laboratory, Materials and Structural Systems Division, Inorganic Materials Group
NIST Research Advisor: Paul Stutzman

Title of Talk: Phase Analysis of Portland Cement Clinker by Scanning Electron Microscopy and X-Ray Powder Diffraction

Abstract:
Concrete consumption per capita is second only to water with hydraulic cements as the “glue” that hold the aggregates of concrete together. Cement is composed of ground clinker and limestone, with gypsum added to control setting. Clinker is a sintered product from a mixture composed of ground limestone, sandstone, shale and iron, heated in kiln to 1700 °C to form agglomerates up to the size of a softball. Process control in cement manufacture requires routine testing of the clinker. The NIST Standard Reference Materials (SRM) Portland Cement Clinkers are used to develop and evaluate methods of quantitative phase analysis. They have been useful in testing laboratory analysis protocols and have assisted in the development of ASTM standard tests for microscopy and XRD.

As the SRM clinkers approach the initial estimate of their shelf life, an assessment of the composition and texture is necessary to make a decision on extending their life or replacement. Microscopy of Portland cement clinker provides a visual identification of the phase components as well as their size and distribution; useful information for monitoring kiln conditions in cement production. A set of high-resolution backscattered electron and X-ray images by scanning electron microscopy (SEM) are obtained from individual cement clinker particles. These images are evaluated for textural changes in the clinker and subjected to image processing and analysis to quantify the mass fractions of the components. The phase constituents, texture, structure, and distribution of the phases in microstructure of the clinker are digitally traced and extracted for measurement of area and mass fraction making quantitative microstructure imaging a practical method of performing phase analysis.

A set of complimentary X-ray powder diffraction (XRD) data provides a separate qualitative and quantitative phase assessment of the clinker. Applying both SEM and XRD methods to characterize a clinker can often provide a more complete and accurate analysis of the phase abundance.
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

<table>
<thead>
<tr>
<th>Name: Christina Krueger</th>
<th>Grant Number</th>
<th>70NANB16H131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution: University of Maryland College Park</td>
<td>Major: Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>Academic Standing (Sept. ’16): Senior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Plans (School/Career): A career in applied engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group: Engineering Laboratory, Intelligent Systems Division, Production Systems Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Research Advisor: Jarred Heigel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title of Talk: Seeing between the lines: Layerwise imaging for metal additive manufacturing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract:
Additive Manufacturing (AM) processes build parts layer by layer using a variety of materials, including metals. Metal AM constructs each layer employing several techniques such as: powder bed fusion (PBF), which melts each metal powder layer often with a laser, and binder jet printing, which temporarily fuses the metal powder until it is sintered during post-processing. This technology has the potential to revolutionize the manufacturing industry; however, before widespread adoption, users must have confidence that every part is created as expected. This requires a combination of pre-process modeling, process monitoring, and post-process analysis. One step towards this goal is to develop a reliable layerwise defect detection system to identify possible defects during the printing process.

This project utilizes a high resolution camera (1.67 μm/pixel) that is automatically triggered to capture images before and after each printed layer. The imaging system combines an adaptable LabVIEW program for image acquisition with two hardware assemblies customized to image a commercial binder jet printer and a commercial powder bed fusion system. The detailed designs of the imaging system setups and example results of layerwise imaging trials will be presented. This system creates a platform for automatic defect detection and supports current research that benefits from layerwise imaging.
Abstract:
Manufacturing taxonomies and accompanying metadata of manufacturing processes have been catalogued both in reference books and databases online. However, such information remains in a form that is uninformative to the various stages of the product life cycle, including the design phase and manufacturing-related activities. This challenge lies in the varying nature in how data is represented, such as through words, a single value, or a range of values. The ASTM E3012-16 (Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes) standard has formally characterized sustainability information of manufacturing processes through Unit Manufacturing Process (UMP) models. A web-based repository is under development to curate a set of such models to conduct further analysis on the processes. In this project, we apply widely accepted similarity measures that use edge-based, node-based (Information Content), and hybrid approaches to a set of manufacturing processes. Here, we develop a measure of similarity to the processes given specific attributes such as workpiece material, feasible tolerance ranges, and possible geometric properties of the product. To judge the effectiveness of these metrics, we apply permutations of them to a case study using several UMP models, i.e., drilling, milling, and reaming, that were created based on the E3012-16 standard. By experimenting with different metrics, we generalize a distance measure that effectively captures similarity between two UMPs. By linking entities within a manufacturing repository, we open up the possibility to connect the design and manufacturing phases to aid decision makers and designers. This work will eventually contribute to the development of interactive interfaces that reflect the breadth and depth of content in the UMP repository. Interfaces such as an interactive and a visual catalog can help identify alternative paths towards creating a product that can be optimized based on various performance metrics, including throughput, environmental impact, and cost.

Temperature Dependent Measurements of Photovoltaic Solar Cells

Abstract:
The photovoltaic (PV) industry has been growing. In 2015, 7.5 gigawatts of solar power were installed, which puts the total capacity installed at 29 gigawatts. About 23% of all solar power was installed last year. Greater emphasis has now been placed on PV module performance because with such a big installed volume, even a small percentage error in performance predictions can have a huge impact on the magnitude of generated power and its supply to the electric grid. Temperature has been shown to significantly affect the performance of photovoltaic cells, with higher temperatures generally resulting in lower electrical output from installed PV modules. This work quantitatively explores the effect of temperature on various solar cell parameters, including open circuit voltage and short circuit current, which are important performance indicators. First, a solar simulator was used to record the effect of temperature on solar cell parameters under a broadband light source similar to the spectrum of the sun. Then, temperature-dependent spectral effects were examined using a monochromatic light emitting diode array (LEDs) consisting of 10 or more LEDs. These results indicate that the short circuit current in silicon-based solar cells showed the most temperature sensitivity in the near infrared region close to the maximum peak sensitivity of the solar cells.
Sensor-Based Diagnostics of CNC Linear Axes

Abstract:
Computer numerical control (CNC) machine tools are essential tools in the manufacturing of various components in the automotive and aircraft manufacturing industry. Thus, degradation of machine tool linear axes has a huge impact on the quality of parts manufactured through this process. Billions of US dollars are lost every year due to degradation of machine tools during production. Currently, there are direct methods of measuring geometric errors using laser-based and other standard methods. However, these methods are time-consuming and complicated for many users. In addition, such methods halt production, which usually equates to lost revenue, so manufacturers prefer not to shut down their machines for tests. Therefore, this project focuses on using an inertial measurement unit (IMU) with relatively inexpensive sensors for measuring changes in geometric errors of linear axes efficiently and with sufficient accuracy. The IMU-based method has been tested with much success on a linear axis testbed. Now, a smaller IMU is being set up for placement and practical usage on machine tools.

The linear axis testbed relies on acquiring axis position data from the motor encoder in the system. The main challenge was to derive nominal position data from an accelerometer rather than relying on other sources, so that the IMU can be placed in a "plug and play" fashion on any machine tool without needing to acquire controller position data. This process involved writing MATLAB functions that can derive position data from acceleration data from the accelerometers in the sensor box. Once a robust method was developed, the estimated positions were compared with the measured positions (from the testbed encoder) to determine the method accuracy. After the accuracy was determined to be sufficient for analysis purposes, the function was integrated into the main analysis code that estimates linear axis errors as a function of nominal axis position. Finally, metrics were tested for their ability to distinguish various levels of degradation from the linear axis error motions.
Abstract:

Rheology, or the study of the viscoelastic properties of materials, can provide a quantitative basis on which cement past flow performance can be determined. Current rotational shear rheometry of cement paste requires large and expensive devices that use complex flow geometries, making analysis difficult, especially at the construction site. Rheological properties of cement paste are essential in applications such as 3D printing or to determine the proper dosage of chemical admixture for instance.

NIST is developing a new disposable inexpensive oscillatory rheometer for cement paste. As oscillatory rheometry is not commonly used for cement paste, new testing and interpretation methods need to be developed.

Therefore, oscillatory measurements have been compared to standard simple shear rheology data to create a framework by which the new tests can be compared to properties previously determined by shear, such as yield stress and initial set time. A series of oscillation tests using a standard rheometer were performed on a cement-like suspension to identify promising test procedures. The procedures were applied to cement paste for 3D printing applications.

Analysis of oscillatory rheology measurements were found to have correlations to useful quantitative measurements in simple shear rheology. The initial set time of several pastes, as determined using simple shear rheometry, was found to be similar to set times determined through oscillatory rheometry, among other correlations. These results indicate that oscillatory rheology can be used to predict the performance of cement paste, allowing for further studies on predicting the properties of cements, especially in applications such as pumping and 3-D printing.
Title of Talk: A correction for velocity penetration error at immersed boundaries in the Fire Dynamics Simulator (FDS)

Abstract:
This effort involves development of a 3D test problem code in an attempt to improve the accuracy and efficiency of the NIST Fire Dynamics Simulator (FDS) software. FDS is an open source, computational fluid dynamics package which models fire propagation; it outputs the numerical solution to the system of partial differential equations governing fluid flow. Manipulation of the momentum governing equation results in the pressure Poisson boundary value problem—a region of interest is characterized by the governing differential equation, with values prescribed along its external boundaries. Hence, a solution to this differential equation must satisfy its boundary conditions on the domain. This classic boundary-value problem may be further developed by means of introducing an immersed obstacle into the domain; this creates a submerged solid region within the fluid domain extension, necessitating internal boundary conditions at the obstacle-domain interface. Information on the computational domain is stored through a uniform grid definition with staggered arrangement—the problem region is discretized into square cells of equivalent size, with scalar variables stored at the center of these control volumes, and velocity variables at cell interfaces. In theory, velocity penetration at immersed boundaries should be zero (there should be no fluid flow between immersed obstacles and problem domain); however, the computational pressure field currently generates a penetration error, whereby nonzero velocities “bleed” through immersed boundaries. A pressure correction field must be added to compensate for velocity penetration error; this projection scheme also ensures the solution’s compliance with the thermodynamic divergence of the system. Multiple Poisson solver routines are investigated to assess respective efficiency savings.
<table>
<thead>
<tr>
<th>Name</th>
<th>Tawsif Siddiqui</th>
<th>Grant Number</th>
<th>70NANB16H131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution</td>
<td>University of Maryland, College Park</td>
<td>Major</td>
<td>Computer Engineering</td>
</tr>
<tr>
<td>Future Plans (School/Career)</td>
<td>Junior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group</td>
<td>Engineering Laboratory, Systems Integration Division, Information Modeling & Testing Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Research Advisor</td>
<td>Yan Lu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title of Talk</td>
<td>Schema and Ontology Development for The Additive Manufacturing (AM) Database</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract:
To promote additive manufacturing (AM) technology adoption in real production, sufficient understanding of AM geometry-material-process-structure-property relationships is required. Currently, an open Additive Manufacturing Materials Database (AMMD) is under development at National Institute of Standards and Technology (NIST) in order to collect and publish data for AM community to identify material process-structure-property relationships. This database is built using the NIST Material Data Curation System (MDCS) as a backend with structure provided by NIST's AM schema. In this project, first I helped the project team to enhance the data schema, annotate the data schema and populate the database with the data from NIST AM tests. A preliminary draft of the schema annotations has been created, which makes the schema more understandable for the general users. With a web based tool provided by MDCS, NIST AM test data are captured in the AM material database. Another important part of my involvement in the project is to create an ontology for the AM database navigation. A well designed AM data navigation pane is very important for users to explore and search data. Furthermore, as an open database, both the AM navigation schema and data schema could be modified in the future. Hence NIST AM database system is designed to allow future changes. The flexibility of the navigation comes from an ontology based configuration tool. The ontology is being developed using Protégé, where AM data navigation schema is defined by the class hierarchy and the data query is provided by the annotation. My contribution in the AM database navigation ontology development plays critical role in the first release of the NIST AM material database. The openly accessible database is set to evolve through sharing of the AM schema and pedigreed material data among the stakeholders in the AM community.

<table>
<thead>
<tr>
<th>Name</th>
<th>Adam Springer</th>
<th>Grant Number</th>
<th>70NANB16H087</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution</td>
<td>Northern Illinois University</td>
<td>Major</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Academic Standing (Sept. '16):</td>
<td>1st year Graduate School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Plans (School/Career):</td>
<td>Master’s of Science in Mechanical Engineering at Northern Illinois University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group</td>
<td>Engineering Laboratory, Intelligent Systems Division, Production Systems Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Research Advisor</td>
<td>Justin Whiting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title of Talk</td>
<td>Dynamic Characteristics of the Recoater Arm used in the Direct Metal Laser Sintering Process</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract:
Additive Manufacturing, dubbed 3D printing by the media, is making large advancements in the manufacturing world. This push for additive manufacturing is because of additive manufacturing’s ability to quickly and easily produce complex geometries. One of the biggest problems preventing additive manufacturing from replacing traditional, subtractive methods is the lack of repeatability. It can be very difficult to reliably replicate a part with the same properties. Having accurate models that can show what is occurring during the building process would be a big step forward to gaining the consistency that is needed. Researchers are currently creating DEM (Discrete Element Method) models of the powder spreading present in the DMLS (direct metal laser sintering) process. The damping and stiffness characteristics of the recoater arm would help substantially in creating these DEM models. The ability to visualize and understand how powder is spread and how this spreading is affected by vibrations and deflections in the recoater arm are essential to controlling the process. The research being conducted will use a dynamometer and dial indicator to measure the deflections of the recoater arm as a function of the applied load along the length of the arm. These measured deflections and loads will be used to calculate the stiffness of the recoater arm as a function of location. Also, multiple accelerometers and an impact hammer will also be used to perform modal analysis which will result in the natural frequency and damping of the recoater arm. The stiffness and damping, along with other characteristics acquired from the data, will be used to model the spreading of powder in the DMLS process. These models will help in understanding and eventually controlling the process.
Name: Alexander Stoddard
Grant Number: 70NANB16H078
Academic Institution: Davidson College
Major: Mathematics, minor in Experimental Physics
Academic Standing (Sept. ’16): Senior
Future Plans (School/Career): I aspire to pursue a career either in engineering industry or in math education. I am passionate about the STEM fields and hope to make useful my knowledge and skills in them.
NIST Laboratory, Division, and Group: Engineering Laboratory, Intelligent Systems, Production Systems
NIST Research Advisor: Gregory Vogl
Title of Talk: Squareness - Numerical Errors in The Utilization of Machine Tools for Engineering Processes
Abstract: When a production facility uses a machine tool, such as a mill or lathe, to manufacture a new product, seemingly negligible errors in the positional accuracy of the tool can severely damage the integrity and precision of the produced part. An error of a few micro-meters (an extremely short length) or micro-radians (an extremely acute angle), if not properly considered and adjusted for, can detrimentally impact the manufacturing process, causing the part to fail in quality. Squareness refers to the variations in the angle between two axes that are oriented to form a 90 degree angle between them. This can be measured through the use of an experimental setup that involves a ball-bar; then, the squareness can be compensated within the machine controller. However, squareness errors change with time, and ball-bar tests are not typically used with regular frequency to track these errors that impact part quality.

In an attempt to measure squareness errors very quickly with minimal experimental setup, manufacturers could potentially use accelerometers to measure the squareness along the x-, y-, and z-axes of the machine tool. These accelerometers can be attached to the machine tool to track its position during testing. However, such sensors unavoidably produce noise, which can itself impact the precision and accuracy of this method. We performed numerical simulations to determine the impact of noise on the precision of this proposed method. Specifically, the squareness is included in a set of nonlinear kinematic equations that model the collected data. Newton’s method was used to solve these nonlinear equations from a least-squares approach. Finally, the relationship between the squareness and the noise level was determined based on these simulations.

Name: Vaughn Varma
Grant Number: 70NANB16H091
Academic Institution: Rochester Institute of Technology
Major: Mechanical Engineering
Academic Standing (Sept. ’16): Graduate Student at RIT
Future Plans (School/Career): MS in Mechanical Engineering, MS in Computer Science, Robotics R&D (Automation, Synthetic Intelligence), Battlebots
NIST Laboratory, Division, and Group: Engineering Lab, Systems Integration Division, Information Modeling and Testing
NIST Research Advisor: Yan Lu
Title of Talk: The Internet of Things on the Shop Floor: Design and Implementation of a Service-Oriented Architecture in Manufacturing Systems utilizing B-SCADA’s Status Enterprise
Abstract: The goal of this project is to implement a Service-Oriented Architecture (SOA) system on a manufacturing shop floor; such a system has the potential to provide substantial benefits to production lines, improving versatility, flexibility, and robustness. This investigation is specifically to explore the capabilities of Status Enterprise, an Open Platform Communication – Unified Architecture (OPC-UA) compliant data modeling and industrial automation software made by B-SCADA, in the context of implementing a distributed network of manufacturing machines which communicate with one another to accomplish a common goal (SOA). Similar systems have been implemented at a test-scale, using various other software, and the objective of this investigation was to implement a similar system using a software with a stronger rapport in industry, Status Enterprise. Two major issues arose, such as the challenge of handling multiple concurrent client requests, and the challenge of automatic device registration. To test solutions to these issues, a mock-up use case was developed. In the end, it was discovered that Status Enterprise serves as a suitable software suite for the purposes of this project. This consequently warrants further investigation into the synthesis of an SOA system based on Status Enterprise.
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Katrina Wakeman
Grant Number: 70NANB16H097
Academic Institution: American University
Major: Public Health

Future Plans (School/Career): After graduating, I plan on working for a few years before continuing on to get a graduate degree.

NIST Laboratory, Division, and Group: Engineering Laboratory, Fire Research Division, Wildland Urban Interface Fire Group

NIST Research Advisor: Erica Kuligowski

Title of Talk: Alerting the Public in Community-wide Disasters: A Literature Review on Outdoor Warning Sirens

Abstract:
In May 2011, Joplin, Missouri was hit by an EF-5 tornado which caused 161 fatalities and more than 1,000 injuries, making it the deadliest single tornado on record since official record-keeping began in 1950. NIST completed a technical investigation of the tornado, and recommended that national codes, standards, and guidance be created for tornado alerts and warnings. Alerts are used to grab the public’s attention, while warnings are meant to provide information about the incoming hazard. In tornado prone areas, outdoor warning sirens are one of the most heavily relied upon alerting systems. However, there is almost no standardization with regards to the use of these systems. While guidance does currently exist on siren usage, many lack specifics and/or documentation of the basis upon which the guidance was developed.

The purpose of my project was to gain a comprehensive understanding of the available research regarding how people respond to alerting systems (in general), to eventually inform a set of standards and guidance for tornado outdoor warning sirens. Studies from multiple disciplines, including acoustics, crisis management, human factors, sociology, and education were reviewed and synthesized. The findings from these various disciplines allow for conclusions to be drawn regarding best practices on the use of siren systems.

Overall, this literature review answered many questions, including which sounds are best at grabbing the attention of the public, which sounds evoke perceived urgency, whether or not information needs to be provided with the sirens, how often sirens should be sounded, which demographics are more vulnerable to tornadoes, what methods are available to educate a community about disaster protocol, and what are the benefits of standardization. This literature review will be used to inform a guidance document for tornado-prone communities on the creation and provision of public alerts via outdoor siren systems in tornado emergencies.

SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Samantha Weaver
Grant Number: 70NANB16H131
Academic Institution: University of Maryland College Park
Major: Chemical Engineering

Future Plans (School/Career): Career in alternative energy

NIST Laboratory, Division, and Group: Engineering Laboratory, Materials and Structural Systems Division, Polymeric Materials Group

NIST Research Advisor: Dr. Xiaohong Gu

Title of Talk: Impacts of temperature, relative humidity, and UV source on EVA degradation in accelerated weathering tests

Abstract:
Photovoltaic (PV) products have experienced great growth in recent years; however, to become a staple of the energy infrastructure, PV products must prove their long-term durability. Solar panels, in particular, are complex and rely heavily on polymers as encapsulants, back sheets, and edge sealants. Ethylene Vinyl Acetate (EVA) is the most commonly used encapsulant, but it does experience severe degradation due to environmental conditions. This weathering stressors compromise the solar panel and can lead to module failure. Despite the environmental aging studies conducted, the mechanism of EVA's photodegradation is still not well understood, and there is no standard aging test to determine the field viability of EVA formulations.

Working with NREL and multiple industry partners, three different EVA formulations were aged and examined. This work sought to better understand the photodegradation mechanism of EVA and how it is effected by temperature, relative humidity, and ultraviolet (UV) light source. Using UV-Visible spectroscopy, FT-IR, and other tests the EVA's chemical and mechanical properties were characterized and compared. The intent was to find the driving factors of degradation, which could then, ultimately, contribute to determining the optimal accelerated weathering test.
Title of Talk: Dynamic and Mechanical Properties of Metal Powder

Abstract:
While there are many ways to investigate the properties of different metal powder particles, the most standard way is to use a funnel system called a hall flowmeter. This project focuses on using a high speed camera in an experimental apparatus with a hall flowmeter to observe gravity-fed powder flow and its collisions with a horizontal observation plate. Using this set up to record the powder flow one can use image analysis algorithms to calculate and measure the powders flow velocity, coefficient of restitution (COR) for bouncing particles, Rayleigh flow instabilities, angles of repose, and shear collapsing on the powder pile. The collected data can be used as quality metrics for the powder or provided to collaborators to calibrate their multi-physics simulations of the powder flow for discrete element modeling.
Title of Talk: BIRDS: Quantifying Sustainability in Commercial Buildings

Abstract:

The Building Industry Reporting and Design for Sustainability (BIRDS) combines whole building energy simulations with life-cycling cost and life-cycle economic assessment to develop an extensive building performance database. The BIRDS database includes cost, energy, and environmental measurements for 16 commercial building types in 229 cities across the United States. Each building can be compared over four building standard editions, location, and investor time horizon to determine the effect of energy efficiency on sustainability performance.

My work on the BIRDS Commercial database was threefold. First, extract data from whole building energy simulation results files containing information on the various building types over the four standards editions. Second, calculate the initial construction costs, annual operating energy costs, future maintenance, repairs, and replacement cost, and residual value of each building design over a 40-year study period to determine the total costs of a building over the investor’s time horizon. Third, calculate the environmental impacts associated with constructing, operating, and maintaining each building.

This database will be incorporated into the BIRDS software to allow the comparison of different types of commercial building designs and how that would impact their cost, environmental impacts, and energy efficiency. Engineers and architects can use this database when designing a building while policymakers can use it to make better building standards.
Name: Tony Zhang
Grant Number: 70NANB16H131
Academic Institution: University of Maryland, College Park
Major: Electrical Engineering
Academic Standing (Sept. ‘16): Senior
Future Plans (School/Career): Graduate School in Electrical Engineering
NIST Laboratory, Division, and Group: Engineering Laboratory, Intelligent Systems Division, Cognition & Collaboration Systems Group
NIST Research Advisor: Jeremy Marvel
Title of Talk: Onboard Location Tracking for Collaborative Robot Applications

Abstract:
As automation technology becomes more commonplace in manufacturing, the need for advanced, integrated monitoring equipment and algorithms becomes increasingly vital. Through improvements made to external and onboard tracking system (e.g., motion sensors and cameras), a workspace may be protected without requiring safety fences, barriers, or other physical safeguards. In the field of robotics, it is crucial to know the location of both the human workforce and the robotic equipment to ensure a safe working environment. This project investigates the performance of networked, small-scale tracking sensors that will be integrated into parts and equipment for localization and environment observation. Integrating tracking capabilities into equipment is expected to reduce localization uncertainty, as it is not subject to occlusion or environmental influences such as temperature or changes in lighting. Moreover, such tracking abilities would promote workforce safety and security and increase productivity of both people and robots in warehouse, manufacturing, and construction facilities.

This project developed and evaluated an embedded small-scale sensor suite that can be integrated into robotic configurations and wearable technologies to facilitate human-robot interactions. The sensor suite is responsible for reporting three-dimensional positions and rotations within the Collaborative Robotics Laboratory. Small, robot-mounted platforms consisting of microcontrollers obtain raw data from inertial measurement units (IMUs), light monitors, and distance sensors. Individual platforms are networked via wireless technologies, and sensor data is transmitted to a host computer that maintains a model of the world as measured by the sensors. The raw data being fed into the world model is noisy, so probabilistic noise models are used to compensate for measurement uncertainty. Filtered pose information is then transmitted to an Android tablet held by a human operator. Performance of the tracking system prototype was verified using an evaluative suite of test methods using industrial, collaborative robots through a motion capture system.
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addo, Derrick</td>
<td>Hockley, Stephen</td>
<td>Ratliff, Zachary</td>
</tr>
<tr>
<td>Aliakbar, Soheil</td>
<td>Indictor, David</td>
<td>Reed III, Carroll</td>
</tr>
<tr>
<td>Collazo-Martis, Ramon</td>
<td>James, Bruce</td>
<td>Rodriguez, Jr., Jose</td>
</tr>
<tr>
<td>Cooper, Samuel</td>
<td>Kasner, Jillian</td>
<td>Rogers, James</td>
</tr>
<tr>
<td>Dare, Christopher</td>
<td>Lamp, Curtis</td>
<td>Smith, Ryan</td>
</tr>
<tr>
<td>Dash, Aditya</td>
<td>Laurenceau, Harry</td>
<td>Smith, Steven</td>
</tr>
<tr>
<td>Davila, Ian</td>
<td>Massey, Joshua</td>
<td>Sriram, Vinay</td>
</tr>
<tr>
<td>de la Vega, Jose</td>
<td>Mayer, Justin</td>
<td>Strange, Sean</td>
</tr>
<tr>
<td>Deng, Myra</td>
<td>McGovern, Emily</td>
<td>Sutton, Kyle</td>
</tr>
<tr>
<td>Dougherty, Eric</td>
<td>McHugh, Sean</td>
<td>Tilva, Rohan</td>
</tr>
<tr>
<td>Dunkers, Dan</td>
<td>Murphy, Joie</td>
<td>Vargas, Daniel</td>
</tr>
<tr>
<td>Fulton, Kelsey</td>
<td>Pan, Jane</td>
<td>Wilkes, Matthew</td>
</tr>
<tr>
<td>Henrich, Janelle</td>
<td>Patel, Ankur</td>
<td>Xiong, Xinyu</td>
</tr>
</tbody>
</table>
Title of Talk: Synchronizing Video Playback on a Tiled Display Wall

Abstract: Video walls are, by nature, illustrious and eye-catching. Applications of video walls include mobile dashboards or presentations (e.g., for disaster resilience/emergency response—staging areas for large scale disasters). In airports, flight times and status reports become easier to spot and read when spaced out over multiple monitors. Video walls aid in displaying data because it is able to show large amounts of information. The project strives to develop low-cost, flexible approaches in synchronizing a video display wall. However, it is difficult for separate video players on separate machines to operate at the exact same frame rate. You can use a single centralized server to drive the display but if the network is slow it might cause the displays to go out of sync. Another way to solve this problem is to have the videos play at a specific time on each system. But with this method, the display may still go out of sync since the timing on each system is not synchronized. The overview of this research is to propose methods to solve the issue with video playback synchronization. My research investigates methods such as synchronization using the network time protocol (NTP) and the Scalable Amplified Group Software (SAGE2).

The NTP is a protocol that is used to synchronize computer clocks in a network of computers. NTP uses a symmetric architecture in which a distributed subnet of time servers operating in a self-organizing, hierarchical configuration that synchronizes clocks within the Local Area Network and to national time standards such as the real-time clock (UTC) via radio, wire, or GPS. For synchronizing a cluster of nodes on a network, all nodes in the cluster must have their clocks synchronized, even when the cluster is isolated from the internet and global time sync servers. To accomplish this, the NTP daemon is installed on each Ubuntu/Linux node and configured; one node will act as the master time server, while the other nodes act as clients to the main time server.

In order to setup the display for video synchronization, we used SAGE2. SAGE2 is a cluster-based HTML viewer used for displaying elements across multiple screens. The SAGE2 browser software, based on Node.js, uses web sockets for synchronization and data sharing between clients. Unfortunately, videos and WebGL-based applications did not work in SAGE2. Since this research is based on streaming videos for testing, we used the VLC player as an alternative. In this method, the cron utility software or at command is used to schedule a video playback at a particular time, where time is already synchronized by means of NTP.

<table>
<thead>
<tr>
<th>Name: Derrick Addo</th>
<th>Grant Number: 70NANB16H151</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution: Bowie State University</td>
<td>Major: Computer Science</td>
</tr>
<tr>
<td>Future Plans (School/Career):</td>
<td>I had the opportunity to meet people who were working with machine learning algorithms to solve problems and I thought it was interesting. I would like to find a career where I can combine machine learning with precision time synchronization</td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group: Information Technology Laboratory, Software and Systems Division, Information Systems Group</td>
<td></td>
</tr>
<tr>
<td>NIST Research Advisor: Derek Juba, Ya-Shian Li-baboud</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: Sonny Aliakbar</th>
<th>Grant Number: 70NANB16H095</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution: Towson University</td>
<td>Major: Computer Information Systems</td>
</tr>
<tr>
<td>Future Plans (School/Career):</td>
<td>Apply to a pathways program at NIST and attend a graduate school</td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group: Information Technology Laboratory, Information Access Division, Visualization and Usability Group and Image Group</td>
<td></td>
</tr>
<tr>
<td>NIST Research Advisor: Mary Frances Theofanos and John M. Libert</td>
<td></td>
</tr>
</tbody>
</table>

Title of Talk: Can’t Touch This: Usability of Contactless Fingerprint Acquisition Devices

Abstract: Biometric authentication has become a vital part of ensuring U.S. national security. Traditional biometric devices used today include contact-based fingerprint acquisition devices. However, there are several risks linked with these systems which include the transmission of pathogens by the contact surface and the lengthy process of the biometric collection. To address these issues, industry has begun research to capture fingerprints without physical contact. Some challenges associated with this new technology are related to the usability factors as well as the accuracy and reliability when compared to the traditional devices used today. Prior to these contactless devices being adopted as the new norm for biometric authentication, there must be numerous forms of testing done which include: accuracy, reliability, repeatability, and usability. This study focused on usability, specifically the efficiency, effectiveness, and user satisfaction of three different contactless fingerprint acquisition devices. The purpose of this project is to study whether individuals with minimal fingerprint capture experience are able to walk up and successfully self-capture their fingerprints without assistance. A sample size of 30 volunteers is used. To reduce possible order effects, participants are assigned to a counterbalanced order for the touchless fingerprint scanners. Each participant has a barcode scanner that he or she presents to a barcode scanner to signal they are ready to start the session capture and to record the collection time for a capture transaction. The testing takes place under three conditions: 1) the participant is asked to self-capture their prints on each of the three touchless scanners without assistance; 2) the participant watches an instructional video demonstrating how to capture their fingerprints prior to attempting to self-capture their fingerprints on each device; 3) the participants are assisted in successfully capturing their fingerprints for each of the devices. After each fingerprint capture attempt, participants answer questions about their experience with the scanner. After the three conditions are completed, participants answer a post-test questionnaire about their overall experience with the touchless fingerprint scanners. Finally, the participants have their fingerprints captured on a contact fingerprint scanner, similar to that currently used at NIST for image comparison purposes.

For this study, the measurements made are as follows: efficiency, defined as how quickly a participant can capture their fingerprints; effectiveness, defined as a low error rate referring to how many successful capture attempts are made with the satisfactory quality of all four fingers based on the number of capture attempt; and user satisfaction, defined as user preferences. Ideally, a positive combination of all three of these usability factors will influence the next generation contactless biometric authentication.
Title of Talk: Strong Key Generation on Conventional Computer Systems Enabled by a Remote Entropy Source

Abstract:

An essential concept in the cyber world is the Cybersecurity. Especially when we want to communicate via internet and do not want anyone to intercept the message and be able to read it. This problem has been mitigated by the use of encryption methods such as the asymmetric encryption, which uses a pair of cryptographic keys to encrypt and decrypt the data being exchanged or used. In modern cryptography the secret is the cryptographic key, not the algorithm. Thus, it is very important for users of cryptography to be able to generate hard-to-guess keys and to keep them secret. However, keeping these keys secret could also be considered a challenge because, even though it is computationally infeasible, with enough time and powerful resources, a key could be guessed by clever attacks exploiting weaknesses in the generation of keys or in leaking information about them. Entropy [1] helps with the generation of strong keys by providing random data to client computers. The clients communicate with EaaS using a simple protocol utilizing asymmetric encryption.

A Trusted Platform Module (TPM) is a cryptographic co-processor that can securely store and generate encryption keys and is used mostly in commercial personal computers and client systems to authenticate the platforms. A TPM is also the ideal place to store important key material, such as the asymmetric key used to access the EaaS. Even though the TPM supports encryption algorithms that can generate good keys, it needs certain amount of entropy to make these keys impossible to guess. We worked with a client that uses a TPM which assists the system to obtain entropy from EaaS and enable generation of strong keys. We implemented the client so it re-generates the key pair for accessing EaaS after each update with new random data, so that it becomes even more complex for attackers to guess and compromise it.

The emerging concept of Internet of Things (IoT) allows everyday devices to have network connectivity, transmitting and receiving data via a private or public host. When sending these data packets, the raw data becomes vulnerable in its plain state, such that one could simply read the plaintext if it was acquired. Cryptographic algorithms provide a methodic way of encryption by converting the plaintext into ciphertext, which can be extremely difficult to translate without a unique key.

Typically, microcontrollers embedded in everyday objects are much smaller than the Central Processing Units (CPUs) found in a computer, or even a smart phone. Thus, with a smaller processor and significantly fewer registers, there is greater need for efficiency in both latency and memory usage when encrypting data on an 8-bit microcontroller. The latency of such algorithms is compared based on the total number of clock cycles the encryption, decryption, and key schedule undergo on a given microcontroller with a set clock frequency. Currently, the Advanced Encryption Standard (AES) is the industry standard for encryption due to the cipher's strength and relatively small hardware footprint, though the cipher was designed primarily for desktops and servers. Other ciphers, such as SIMON and SPECK, were designed specifically for hardware and software applications, respectively.

After testing 10 different block ciphers (optimized to both on-the-fly key generation and precomputed keys), the results follow closely to the Fair Evaluation of Lightweight Cryptographic Systems (FELICS) - that SPECK operates with the lowest latency and memory footprint on mid-range 8-bit microcontrollers for software applications. Though the strength of each cipher is not compared, this evaluation allows certain ciphers to be more fit for consideration in software applications.
Name: Ian Davila Morales
Grant Number: 70NANB16H161
Academic Institution: University of Puerto Rico
Major: Computer Science
Academic Standing (Sept. '16): Junior in Computer Science, Senior in University
Future Plans (School/Career): Pursuing a graduate degree in Cybersecurity
NIST Laboratory, Division, and Group: Information Technology Laboratory, Advanced Network Technology Division, Internet & Scalable Systems Metrology Group
NIST Research Advisor: Douglas Montgomery
Title of Talk: Test and Measurement of Software Defined Virtual Networks

Abstract:
Software Defined Networking (SDN) moves away from traditional architectures which physically decouples the network’s control plane and data plane. The control plane can now be directly controlled through software. This project entails in the development of a testbed for research in the application of software defined network technology to the domain of machine to machine networking. In particular, we researched security, robustness, and performance of emerging commercial and open source implementations for SDN controllers and switches. The Ixia Network Test System was used to benchmark the performance of the testbed. Multiple SDN controller implementations emerging from industry open source efforts were tested and measured.

Name: Jose de la Vega
Grant Number: 70NANB16H161
Academic Institution: University of Puerto Rico, Rio Piedras
Major: Computer Science
Academic Standing (Sept. '16): Senior (5th year)
Future Plans (School/Career): Get a Master’s degree in Computer Engineering at the University of Puerto Rico, Mayagüez campus
NIST Laboratory, Division, and Group: Information Technology Laboratory, Advanced Network Technologies Division, Internet & Scalable Systems Metrology Group
NIST Research Advisor: Douglas Montgomery
Title of Talk: Test and Evaluation of Network Anomaly Detection Technologies

Abstract:
Network-based protection systems are vital to the security of most enterprises. Some tools used to examine network behavior are the network intrusion detection (NID) and the network anomaly detection (NAD) systems. NIDs focus on searching for known attacks on the network. This is not the best way to protect your network since attackers will have the advantage because while NID developers discover, reverse engineer and develop signatures for a new attack, the attackers will already be developing another attack. NAD systems focus on monitoring the usual behavior of your network, and detecting anything that is an anomalous outlier from what is normal. This is better than searching for specific attacks since you may not yet know a new attack, but you do know your network.

While promising, commercially viable network anomaly detection systems are still under research and development. One of the challenges of their use is that they require training to learn how the network behaves, but the training data that is given to them is often very limited or contains sensitive information. The goal of this research is to generate fully synthetic network flows based on real flows so that the different NAD tools can be evaluated for their accuracy and efficiency. Also, we are evaluating the performance of these NAD and NID tools for various sets of test traffic.
Name: Myra Deng
Grant Number: 70NANB16H081
Academic Institution: Columbia University in the City of New York
Major: Computer Science/Operations Research
Academic Standing (Sept. ’16): Sophomore
Future Plans (School/Career): Master's degree in Computer Science/Operations Research, followed by a career in the tech industry
NIST Laboratory, Division, and Group: Information Technology Laboratory, Applied and Computational Mathematics Division, Computing and Communications Theory Group
NIST Research Advisor: Dr. Isabel Beichl
Title of Talk: A Probabilistic Method for Counting the Number of Linear Extensions in a Partially Ordered Set
Abstract:
Optimization of scheduling and construction planning has become increasingly significant in the modern campaign for efficiency. Developing a novel method for approximating the number of linear extensions in a partially ordered set, which is synonymous with counting the number of topological sorts in a directed acyclic graph (DAG), provides a measure of the options available when comparing possible decisions.

A topological sort is defined to be a linear ordering of vertices where for all directed edges \(u \rightarrow v \), vertex \(u \) comes before \(v \). Therefore, the number of topological sorts in a DAG represents the number of valid orderings of vertices. Counting the number of topological sorts exactly has been proven to be NP-hard. Thus in this project, we use Monte Carlo methods (methods that use repeated random sampling to obtain numerical results) to estimate this measure. Specifically, we use importance sampling techniques, which are relevant because of their ability to reduce the variance of a sample. The importance function that we will use for this sampling technique sets the probability of selecting a node to be proportional to the number of descendants of that node. A recursive algorithm was implemented in C to estimate the total number of topological sorts in a given DAG. Variances with and without recursion were then compared.

Name: Eric Dougherty
Grant Number: 70NANB16H100
Academic Institution: Millersville University
Major: Computer Science
Academic Standing (Sept. ’16): Senior
Future Plans (School/Career): Research/work in artificial intelligence
NIST Laboratory, Division, and Group: Information Technology Laboratory, Applied and Computational Mathematics Division, High Performance Computing and Visualization Group
NIST Research Advisor: Sandy Ressler
Title of Talk: Virtual Reality on the World Wide Web
Abstract:
Rapidly growing in availability and sophistication, virtual reality technology immerses users in computer simulated space. This project entails using the Oculus Rift and a web browser to explore how virtual content can be consumed on the world wide web.

In this project we use 360 degree cameras to record and produce equirectangular video that can be displayed natively in a web browser. We utilize A-Frame, a JavaScript framework built on THREE.js that enables creation of virtual reality scenes using Hyper Text Markup Language. Using A-Frame, we also test rendering 3-dimensional COLLABorative Design Activity (COLLADA) models in the browser.

Virtual reality requires new methods of interaction that move beyond the traditional keyboard and mouse. There are a variety of controllers and motion detectors that are currently being developed. We explore some methods of interaction within the virtual content itself using gaze detection to display textual information or allow movement between video-sphere environments.
Title of Talk: Using the CIE-LAB color space to improve the analysis of tests across system differences for the CAVE (Computer Assisted Virtual Environment)

Abstract: Virtual and augmented realities are new technologies designed to immerse the user in what they are seeing. Systems that utilize this technology are designed to incorporate the user’s hand and head-movement to add to the experience. The CAVE [Computer Assisted Virtual Environment] is an augmented reality device that is being developed to visualize data in a new environment, giving the user a feeling of immersion and a level of manipulation that a normal desktop screen cannot provide. The CAVE system uses OpenGL to render 2D and 3D graphics. OpenGL does not guarantee identical output for the same input of code, especially with different hardware and drivers. This variance that can be caused by OpenGL is acceptable for rendering objects that do not need to be precise, such as objects in games and movies. On the other hand, variance in what you are looking at from system to system may not be acceptable while visualizing data. Current tests that challenge the reproducibility of OpenGL for the CAVE were developed to evaluate test images pixel by pixel using the sRGB color space. These tests break each pixel into its respective RGB channels and evaluate the channels one by one. This method of evaluation can lead to images that look the same but do not pass the current tests because they differ in a manner which someone looking at the two images could not perceive.

In order to improve these tests, I am exploring the use of the CIE-LAB color space in an effort to give the test’s success a threshold instead of being a binary pass or fail. The CIE-LAB color space is preferred over sRGB because the Euclidean distance of two points in the color space directly correlates to the difference of the two colors perceptually. By using this color-space, we can set a threshold of how different two supposedly identical color are before they look different, and also the percentage of pixels that have to be different for a test to fail. This testing method also allows for in-depth analysis of each frame, and the comparison of multiple systems against each other.
Title of Talk: Finding the Matching Pair: The Use of Graph Theory in Forensic Footwear Analysis

Abstract:
Footwear marks are often the most common form of evidence present at crime scenes. However, according to a Department of Justice publication, less than 0.3% of requests for services received and completed in 2009 by publicly funded forensic crime labs were for footwear and tire impressions. Footwear is underutilized for two fundamental reasons. First, with the possible exception of a small number of cases where randomly acquired characteristics are present, this type of evidence results in weaker associations of suspects to crime scenes than DNA or fingerprints. Furthermore, there are no reliable and accurate statistical models to determine the strength of footwear evidence, making it difficult to communicate the weight of the evidence during testimony. However, a team at NIST aims to change that by creating a prototype software system that will provide a platform for practitioners to get hands-on experience with the calculation and use of Likelihood Ratios or related measures in the context of actual footwear case work. This talk focuses on just one step towards the creation of this tool, which involves the matching of shoeprint images. Graph theory can be utilized in order to find the best mapping from one shoeprint to another, and provide measures on the quality of that mapping. This can be accomplished by finding the maximal cliques in a graph where the nodes specify a mapping from a feature in the first image in the comparison to a like feature in the second. Then, the Kabsch algorithm is utilized to find the rotational matrix and translation necessary to align the two images. This provides the ability to easily match shoeprint images that have very little noise, and partial prints. Application to noisy images will be investigated in the near future.

Title of Talk: Building a Cloud Forensic Reference Architecture: Leveraging AWS CloudTrail to Identify Forensics Artifacts

Abstract: The Use of API logging to Assess Forensics in the Cloud
The use of Cloud Computing by both enterprises and individuals is growing at an exponential rate. As a result, there is an increasing need to provide forensic capabilities to investigate cybercrime, cyberattacks, compliance, and related issues. Towards this end, NIST is developing a Cloud Forensic Reference Architecture to promote greater development, implementation, and use of cloud forensic capabilities. This architecture builds upon the NIST Cloud Security Reference Architecture (SRA) that leverages the comprehensive set of functional capabilities identified by the Cloud Security Alliance (CSA) in their Enterprise Architecture. Our approach in developing the Cloud Forensic Reference Architecture is to identify the functional capabilities that can potentially provide forensic artifacts. This talk focuses on how this can be done using Amazon Web Services’ (AWS) CloudTrail, a framework that supports logging of API calls.

CloudTrail API logging capabilities are assessed against six AWS services that obtained provisional authorization to operate from FedRAMP, allowing AWS to offer these services to Government agencies. These services include Simple Storage Service, Redshift, Elastic Compute Cloud, Virtual Private Cloud, Elastic Block Store, and Identity and Access Management. CloudTrail logs provide specific information regarding the user’s identity, request time, request action, and related information. For each of the functional capabilities, we ask: “Does AWS CloudTrail facilitate performing forensics on the functional capability?” If the answer is yes, then we determine, for each of the six AWS services, exactly how forensic artifacts can be obtained through the CloudTrail logs, including which actions in the services are relevant.
Title of Talk: Machine Learning for Spectrum Prediction

Abstract:
The proliferation of wireless communications technologies has created wide demand for additional spectrum. Since spectrum is inherently limited, spectrum usage is governed by the Federal Communications Commission (FCC) and the National Telecommunications and Information Administration (NTIA). In order to allow for more spectrum to be available for use by non-governmental parties, a 150 MHz band of spectrum at 3.5 GHz infrequently used by the Navy has been designated for shared use as part of the Spectrum Sharing Project. Controlled by a Spectrum Access System (SAS), such a dynamic access system would grant commercial carriers the use of the band in the absence of Navy spectrum activity. In the absence of Navy and commercial carrier activity, third party users would be allowed to use the band.

Since commercial carriers have paid for use of the spectrum space, their communications must not be hindered by third party activity. Prediction of spectrum space occupancy is useful to this effect by attempting to minimize the number of instances where third parties are allowed to start transmitting but are interrupted by the SAS due to a request for higher priority transmission from commercial carriers.

Machine learning utilizes algorithms that find patterns and relationships in data and is a strong contender for many prediction problems. The problem presented here is the use of machine learning to predict whether spectrum space will be occupied by a commercial carrier. An overview of the project is presented, as is a brief overview of machine learning in the context of our prediction problem and the specific prediction algorithms we tested on our data. A comparison of the performance of the algorithms we used is also presented. The overall viability of machine learning as a means of predicting spectrum activity will be discussed.
Simulation study of an automated threshold selection for Poisson process extreme value models

Abstract:
The design of reliable yet economic structures requires an accurate characterization of the extreme wind induced stresses they must withstand. Those stresses are deterministically related to speed, so predictions of extreme wind speeds in the field and in wind tunnels are important inputs to structural design. Recently, the Information Technology Laboratory (ITL) and the Engineering Laboratory (EL) at NIST have been collaborating to promote the use of peaks-over-threshold extreme value models over classical extreme value models. One reason for the preference is that they generally admit more data for estimation purposes, reducing uncertainty. Classic extreme value models have historically been preferred to peaks-over-threshold models by wind engineers, in part, because the latter requires the selection of an appropriate threshold. Further, the chosen threshold can have a nontrivial impact on the final predictions. Part of the ITL/EL collaboration has involved the development of a criterion on which the automatic selection of an optimal threshold can be based. My project was aimed at evaluating, through simulation, the accuracy of peaks-over-threshold model predictions that incorporate this automatic selection procedure. Since the estimation of the parameters in peaks-over-threshold models is driven by the largest observations, simulations were conducted under various distributional assumptions, loosely based on the distributional properties of real data from the field and wind tunnel. For the cases most closely resembling the real data, the results are very encouraging showing the absolute error percentage is between 5% and 20%, depending on the amount of extrapolation required.
<table>
<thead>
<tr>
<th>Name: Matthew Landen</th>
<th>Academic Institution: University of Maryland, Baltimore County</th>
<th>Major: Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Number</td>
<td>Academic Standing (Sept. '16): Senior</td>
<td>Future Plans (School/Career): Obtaining a PhD in Computer Security</td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group: Information Technology Laboratory, Computer Security Division</td>
<td>NIST Research Advisor: Michaela Iorga</td>
<td>Title of Talk: Chaining the Cloud, The C-Force's Cryptographic Hash-Chaining Logging Approach</td>
</tr>
<tr>
<td>Abstract:</td>
<td>Cloud computing is the new paradigm that rapidly evolved in the past years to offer a utility-based model for enabling convenient, on-demand network access, from anywhere, to a shared pool of configurable computing resources. Businesses are taking advantage of this new technology by building scalable and cost-effective cloud-based services. Our C-Force Enterprise’s team modified an open source variation of Minecraft, a video game that allows users to build structures out of textured cubes in a 3D world, to explore, gather resource, interact and communicate in a multiplayer environment that shares a single world. To secure the service – the Minecraft video game - we selected an Infrastructure as a Service (IaaS) VMWare cloud where we implemented secured logging, insider threat continuous monitoring system, user behavior analytics system, system metrics and operational monitoring system. To ensure the integrity of the log files, the enterprise implemented Hash-Chaining, a cryptographic approach proposed by ITL’s John Kelsey. This method leverages hash functions which are used to prove data integrity by applying a one-way function to data of arbitrary length and output a unique, fixed stream of bites. The chaining and validation leverages a property of hash functions which ensures that two distinct inputs will produce distinct outputs. Each logged information (or payload) is put into a chain where the hash of the previous payload is included in the current record linking the last record to all previous records. By creating logs in this manner, we can verify that there were no malicious modifications of the logs. The verification approach can be employed by a continuous monitoring module that can periodically verify the hash chain and detect, in real time, an insider threat event when any part of the log was tampered with. This logging system proves that the hash chaining approach defends against tampering of log files in cloud environments.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: Harry Laurenceau</th>
<th>Academic Institution: Bowie State University</th>
<th>Major: Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Number</td>
<td>Academic Standing (Sept. '16): Senior</td>
<td>Future Plans (School/Career): Upon graduating, I hope to start my career in software engineering and eventually own a technology-based startup aimed at developing solutions to some of the world’s toughest problems</td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group: Information Technology Laboratory, Applied & Computational Mathematics, High Performance Computing and Visualization Group</td>
<td>NIST Research Advisor(s): Judith E. Terrill, Terrence Griffin, Paul Patrone (Collaborating Scientist)</td>
<td>Title of Talk: Investigating the mechanics of failure through visualization</td>
</tr>
<tr>
<td>Abstract:</td>
<td>Thermoset polymers are integral to the composite materials utilized in the manufacturing of advanced aircraft, such as Boeing’s iconic 787. However, the mechanisms by which these materials fail are not entirely understood. Due to this deficiency in understanding, parts are often over-engineered to compensate for the uncertainty in the design, thus adding extraneous weight and bulk to aircraft. The goal of this research is to better identify the cause of the material’s failure under extreme loads, thus allowing engineers to design and develop materials more efficiently without compromising safety. There is collaboration going on between industry and NIST to try to improve the materials simulations of these polymers such that they can be used to pinpoint the cause of failure. These simulations, however, generate large quantities of numerical data and figures that, by themselves, would render data examination both useless and counter-intuitive. In an effort to ameliorate data analysis, my team and I are using the data to create useful visualizations and visual analytic tools so that the collaborating scientists can better examine the data as well as find any flaws in the simulations, and ultimately gain better insight towards a solution.</td>
<td></td>
</tr>
</tbody>
</table>

| Name: | | Grant Number | 70NANB16H151 |
|---------------------|--|-------------------------|
| Academic Institution: Bowie State University | Major: Computer Science | Future Plans (School/Career): Upon graduating, I hope to start my career in software engineering and eventually own a technology-based startup aimed at developing solutions to some of the world’s toughest problems |
| NIST Laboratory, Division, and Group: Information Technology Laboratory, Applied & Computational Mathematics, High Performance Computing and Visualization Group | NIST Research Advisor(s): Judith E. Terrill, Terrence Griffin, Paul Patrone (Collaborating Scientist) | Title of Talk: Investigating the mechanics of failure through visualization |
| Abstract: | Thermoset polymers are integral to the composite materials utilized in the manufacturing of advanced aircraft, such as Boeing’s iconic 787. However, the mechanisms by which these materials fail are not entirely understood. Due to this deficiency in understanding, parts are often over-engineered to compensate for the uncertainty in the design, thus adding extraneous weight and bulk to aircraft. The goal of this research is to better identify the cause of the material’s failure under extreme loads, thus allowing engineers to design and develop materials more efficiently without compromising safety. There is collaboration going on between industry and NIST to try to improve the materials simulations of these polymers such that they can be used to pinpoint the cause of failure. These simulations, however, generate large quantities of numerical data and figures that, by themselves, would render data examination both useless and counter-intuitive. In an effort to ameliorate data analysis, my team and I are using the data to create useful visualizations and visual analytic tools so that the collaborating scientists can better examine the data as well as find any flaws in the simulations, and ultimately gain better insight towards a solution. |
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Joshua E. Massey
Grant Number: 70NANB16H159
Academic Institution: University of Maryland, Baltimore County (UMBC)
Major: Computer Engineering
Academic Standing (Sept. ’16): Senior
Future Plans (School/Career): Graduate School
NIST Laboratory, Division, and Group: Information Technology Laboratory, Advanced Network Technologies Division
NIST Research Advisor: Frederic J. de Vaulx and Lotfi Benmohamed
Title of Talk: C-Force Enterprise: Towards an Implementation of NCCP Cloud Metrics Model

Abstract:
Cloud computing is the new paradigm that offers a utility-based model for enabling convenient, on-demand network access, from anywhere, to a shared pool of configurable computing resources. Incorporating an open-source version of the popular video game Minecraft, our C-Force Enterprise implemented secured logging, an insider threat continuous monitoring system, a user behavior analytics system, a system metrics database, and an operational monitoring system to secure Minecraft on an Infrastructure as a Service (IaaS) VMware cloud.

Cloud-based services are typically delivered to users through various Cloud Service Providers. Although most services have similar underlying characteristics, a large challenge end users face is comparing similar services from different providers. Additionally, metrics used to describe and measure cloud services can also vary among providers. Using the structure of a Cloud Service Metric (CSM) as defined by NIST, we standardize the way metrics are stored and how they are continuously monitored.

In the NIST-defined CSM model, a cloud service metric is broken down into four main components – the Metric itself (what is being measured) and its underlying Rules (constraints), Parameters, and an Expression. This model allows for metrics to be easily organized and stored in a manner accessible to users who wish to monitor them.

For storage of our metrics, we deployed a MongoDB database, a NoSQL alternative to the traditional relational database. Our database is interacted via an application programming interface (API) which allows the user to create, read, and update stored information. A web-based graphical user interface was developed using AngularJS, a dynamic web application framework, to provide information to the API.
Abstract:
Random numbers are used in cryptography for many different purposes. Noise sources (e.g., radioactive decay or atmospheric noise) are used to generate these random numbers and the amount of entropy (uncertainty) produced by a noise source is very important because it determines how effective that noise source is. NIST Special Publication 800-90B outlines a method for calculating entropy for noise sources. An important part of this method is a test to see whether noise source output sequences are independent and identically distributed (IID), because this determines the track with which to test the entropy source. We will test the effectiveness of the permutation testing method described in this publication by running various tests written in Python. We tested sequences that were both known to be IID and known to be non-IID and compared the results, as well as seeing what effect sample space size and sequence length had on the results of the tests. We used both real world noise source outputs and sequences generated by the random.randrange function in Python. We noticed, among other things, that the number of distinct values generated by a particular test statistic affected the overall effectiveness of the test.
Implementing distributed interfaces: tools from natural language and mathematics

Abstract:

This project builds on previous work in which a rule and root based method was developed for generating a reusable and standardized terminology for the semantic web. The root and rule based approach is a general method for generating sets of terminologies from documents containing natural language with the goal to avoid ambiguity and normalize semantically similar phrases. In collaboration with SURF student Matthew Morse, we have developed an improved interface tool to make use of this method to increase the search power on document repositories. With the addition of semantic searching on keywords generated from both the content and metadata of a document, a user is able to query a database on more than one term and receive more significant search results. The interface, now available on the NIST INet, allows users to search on NIST Publication repositories using this approach. The web application has been constructed on a modular database system, allowing for reuse of code for similar document repositories.

In root and rule based systems, we use structured and natural language to organize queries and data in a consistent and normalized manner. For more general systems, we can extend our ability to organize information through the introduction of category theory. Category theory is a branch of mathematics that links different conceptual ideas for representing and comparing information. However, current software based on category theory has limitations which restrict the use of categorical methods in teaching, research, and engineering applications. To begin addressing this gap, we conducted a survey of individuals who use of category theory in their own disciplines (e.g., mathematicians, software engineers), asking about their past or present use of category theory software and their ideal uses of such software. Based on the requirements collected, we have begun the development of use cases and designs for future software based on category theory.

Impact of Model Uncertainty on Statistical Inferences

Abstract:

Statistical models are effective tools that can be used to estimate values of unknown quantities based on measurements which are subject to random errors. An estimate, by itself, is of little or no value unless it is accompanied by a statement of its margin of error, which is the result of sampling variability of data and choices of distributional models. Typically, the component of uncertainty arising from modeling choices is ignored, resulting in underestimation of uncertainty. A common way to measure the goodness-of-fit of a statistical model is by using a statistical test known as the Kolmogorov-Smirnov test (KS-test), which is a nonparametric statistical test for judging the plausibility of a proposed theoretical distribution as the source of the sample data. Any cumulative distribution which falls entirely within the associated Kolmogorov-Smirnov (KS) confidence band may be considered as a plausible distribution to represent observed sample data.

The main objective of my project is to develop an algorithm that can randomly generate a distribution whose cumulative distribution function (cdf) falls within the KS-band. Such distributions may be regarded as possible models for the observed data. The algorithm should also be capable of accommodating the constraint that the generated distributions are unimodal. With the help of this algorithm we are able to assess the impact of modeling assumptions on uncertainty characterizations. We will illustrate the application of this algorithm using NIST data on Standard Reference Materials (SRMs).
Name: Ankur Patel
Grant Number: 70NANB16H131
Academic Institution: University of Maryland, College Park
Major: Mathematics
Academic Standing (Sept. '16): 1st year Graduate Student
Future Plans (School/Career): Graduate School at University of North Carolina, Chapel Hill
NIST Laboratory, Division, and Group: Information Technology Laboratory, Statistical Engineering Division, Statistical Design, Analysis & Modeling Group
NIST Research Advisor: Dr. John Lu
Title of Talk: Evaluation of a Plenoptic Camera for Capturing 3D Footwear Impressions

Abstract:
Latent prints from footwear and tire treads are common evidence collected during crime scene investigations. Currently, impressions are captured using 2D digital single-lens reflex (DSLR) photography, and 3D impression evidence can only be recovered either by casting and lifting. However, the physical process of casting and lifting destroys the original impression and is time-consuming and tedious to execute properly. Plenoptic cameras, which have a microlens array in front of the sensor, can provide both all focus 2D photography as well as 3D depth map which quantifies the wear pattern and allows dimensional measurements of randomly acquired characteristics such as cuts, holes, and tears in the sole of footwear. I will demonstrate the results using a high resolution Raytrix camera and associated software to capture and to reconstruct the 2D and 3D impressions from a pair of shoes which made those impressions. I will evaluate the quality of the measurement results from the Raytrix camera through existing image processing software packages to assess the presence and correlation of individual characteristics that were captured in the measured images from impressions and soles that may help define the uniqueness of a sole.

Name: Zachary Ratliff
Grant Number: 70NANB16H129
Academic Institution: Texas A&M University
Major: Computer Science
Academic Standing (Sept. '16): Junior
Future Plans (School/Career): I plan to attend graduate school as well as pursue a career in either Cybersecurity or Software Engineering
NIST Laboratory, Division, and Group: Information Technology Laboratory, Computer Security Division, Security Components & Mechanisms Group
NIST Research Advisor: Rick Kuhn
Title of Talk: Measuring the Combinatorial Coverage of Software in Real Time

Abstract:
Combinatorial testing methods provide a cost-effective approach to achieving high assurance in mission and life critical software systems. Previous research investigating the number of factors involved in software failures showed that most failures are induced by a single factor fault or by the joint combinatorial effect of two factors, with progressively fewer failures induced by interactions between three or more factors. By testing up to 3-way or 4-way combinations of inputs and configurations, we can be reasonably confident that our system will not fail. This confidence is nearly equivalent to that of exhaustive testing when we increase our covering arrays to cover all 6-way combinations of these parameters. In many existing models however, test suites have already been generated that likely cover a significant portion of various t-way combinations. Measuring the t-way coverage of these existing test suites can allow us to determine which combinations have not yet been tested as well as determine approximately how reliable the current system is. Tools have been developed to measure this coverage but are limited to measuring static input files.

This project aimed to expand the existing, "Combinatorial Coverage Measurement Tool" to a command line version with capabilities to measure combinatorial coverage in real time. Applications of this functionality are wide ranging and include various areas of software reliability. By hooking input from live systems into the tool, organizations can determine how much of the input domain has been tested at any given time by the current users. This can be useful in determining the efficiency of testing teams and their methods, as well as deciding when a system has been thoroughly tested and is ready for launch. Another interesting area of applicability for the tool is in covering array optimization, which could be very useful in minimizing testing costs.
Title of Talk: Scan and Analysis of HTTPS Certificates Used in the .gov Domain

Abstract:
In recent years there has been a major surge in the number of cyberattacks perpetrated against governments, business, and personal computer networks. These attacks can result in the theft of sensitive data and incur significant cost due to fraud or network downtime. One such cyberattack is to monitor Internet traffic for private information to websites not being configured to only allow for secure connections through Secure Socket Layer/Transport Layer Security (SSL/TLS) protocols and settings. The goal of the project was to develop a tool to scan through a list of web URL's and attempt to establish a secure connection with the web server. If a secure connection was available (or the tool was redirected to a secure service), the tool obtained the X.509 certificate and certificate information associated with the web site. Once the list was processed, the collection of certificates was analyzed and statistics were compiled such as the number and names of major Certificate Authorities used, the algorithm and key length stored in the certificate as well as relevant X.509 header fields. From this data, an assessment was drawn on the state of SSL/TLS implementation within the various regions of the United States. The ratio of secure to insecure connections was found to be about even but certain regions were found to have a much higher amount of insecure websites. We plan to conduct further tests with the tool by switching our SSL/TLS algorithm to see if different connection results and vulnerabilities can be found.
Name: Ryan Smith
Academic Institution: Binghamton University, SUNY
Major: Mathematics
Grant Number: 70NANB16H150
Future Plans (School/Career): Attend graduate school to pursue a PhD in Mathematics or Applied Mathematics, followed by a career in mathematical research.

Name: James Rogers
Academic Institution: University of Maryland Baltimore County
Major: Mathematics
Grant Number: 70NANB16H159
Future Plans (School/Career): Graduate school for computer science.

Title of Talk:
Injection Preservation: Testing Code with Injected Vulnerabilities for Expected Results

Abstract:
When designing new methods for software quality analysis, we desire certainty that they are able to detect known classes of bugs. To this end, we have datasets comprised of programs with known vulnerabilities to test new methods on. One such dataset is the Intelligence Advanced Research Projects Activity (IARPA) Securely Taking On New Executable Software of Uncertain Provenance (STONESOUP), a suite of 7720 cases where industry programs written in C or Java had known vulnerabilities injected into them. These vulnerabilities are self-contained “cysts” of about one page of source code each.

One generalized method of analyzing programs like these is static analysis. This method focuses on examining source code for possible bugs without limiting the possible executions to a finite number of runtime tests, and is aided by the use of tools such as Fortify and Frama-C. These tools are examples of static analyzers that, like most, use bug-finding heuristics. As such, they catch or don’t catch bugs for seemingly explained reasons.

We want to gain some assurance that injecting stand-alone code with known vulnerabilities, as with IARPA STONESOUP, is a good approach to estimate how well an analyzer does in reporting existing, real bugs. Our plan was to first run the tools on all the cysts as standalone code, to get baseline results. Second, we run the tools on all the test cases, which have the cysts injected. Third, we compare the results.

We found that running the tools on the full test cases required far more work than expected, and required at least 5 hours per test case. Thus we ran only a couple dozen examples. For these cases, we found that they yielded expected results, indicating that it is reasonable to assume that, given its cysts, IARPA STONESOUP can produce intended results.
In April 2015, the Federal Communications Commission (FCC) issued a Report and Order (R&O) in FCC Docket 12-354 regarding future spectrum sharing between US Navy radar and non-radar systems in the frequency band (3530-3530) MHz (3.5 GHz band). This necessitated the development of an Environment Sensing Capability (ESC) system to monitor and protect off-shore radar receivers from harmful interference from on-shore Citizens Broadband Radio Service Device (CBSD). My task was to assist my mentor in reproducing Exclusion Zones using an approach developed in the NTIA Report TR-15-517. This framework will be used for further development and implementation of algorithms to dynamically compute Protection Zones.

Exclusion Zones are geographical areas where CBSD deployed inside the zone needs to be turned off or to vacate to another channel in the presence of the incumbent. The borders of these zones are determined by the implementation and simulation of the radar and CBSD’s characteristics as well as ITM and extended Hata propagation models. Ideally, the limit of any given transmitter-to-receiver distance is found when the aggregate interference caused by CBSDs to the radar receiver is less than a certain threshold (i.e., 6 dB Interference-to-Noise ratio (I/N)).

My initial work was the implementation of two correction factors for the extended Hata propagation model. The correction factors augment the median attenuation using the details of the terrain profile between the transmitter and receiver. The correction factors detect when the terrain has unique features that the base model has difficulty accounting for, such as hills, mountains and portions of open water, etc. The factors I worked on covered the cases for when the affected terrain included isolated mountains and general slopes. After those were finished, my next assignment was to assist in acquiring and incorporating a collection of more detailed, higher resolution terrain elevation files of the continental United States’ coastline for the simulation to use, allowing us even more accurate predictions of the Exclusion Zone boundaries.
Abstract:
The Federal Communications Commission (FCC) has recently announced opening up of 150 MHz bandwidth in the 3.5 GHz band for commercial use with a tiered access scheme. A Spectrum Access System (SAS) will be responsible for arbitrating access to the spectrum as per rules set forth by FCC in its report and order. One of the highest tier (priority) users of the spectrum is the US Navy Radar who has to be protected from interference from the lower tier users. Hence, the SAS and the Citizen Broadband Radio Service Devices (CBSDs) operating in this band have to be certified by the FCC. Thus, testing of SAS is an important task.

In order to test a SAS, a CBSD emulator is a useful tool which can issue various requests to the SAS and validate that the responses from the SAS are compliant. As part of this project, we developed a CBSD Emulator which implements the state machine specified by the Wireless Innovation Forum (WinnForum), which is the standardization body for this technology. We have carefully designed the CBSD emulator such that it is easy to specify values of parameters of various messages, including invalid and wrongly formatted parameters, which are essential in testing robustness of a SAS. These message parameters are read in from JavaScript Object Notation (JSON) formatted files and command-line input. The user interface of the CBSD emulator is a text-based menu which makes it easy to issue various requests which may be valid or invalid when the CBSD is in a given state. We also modified the SAS state machine to conform to WinnForum specification such that it can handle multiple spectrum grant requests from the CBSD.

Once this project is complete, we envision that the developed system will be helpful in designing some of the test cases required for SAS certification. Specific test scripts for various test cases to test and validate SAS can easily be created based on the CBSD emulator software developed as part of this project.

Title of Talk: Developing and Testing the Spectrum Access System: Path to Effective Spectrum Sharing
Title of Talk: C-Force Enterprise: A Model-based Definition and Management of Cloud Metrics

Abstract:
Cloud computing is the new paradigm that offers convenient, on-demand network access to a shared pool of computing resources as a service. The Cloud Service Model (CSM) is an attempt to standardize existing metrics and simplify new metrics. The CSM Model is composed of four classes (Parameter, Rule, Expression, Metric), which enable easy, uniform definition and interpretation of cloud services. Uniform metrics could someday be used to monitor and quantify cloud services such as that used by C-Force.

First, common low-level (hardware) metrics were compiled in one module using the data modeling language YANG (Yet Another Next Generation) model, which was developed as a standard for describing network equipment. YANG models are used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YANG models can be used to describe the behavior of network devices and services. YAN.
Matthew Wilkes

Grant Number: 70NANB16H084
Academic Institution: George Mason University
Major: Cyber Security Engineering
Academic Standing (Sept. '16): Junior
Future Plans (School/Career): Finish my undergraduate degree in Cyber Security Engineering at George Mason University followed by the pursuit of a master's degree in Cyber Security.
NIST Laboratory, Division, and Group: Information Technology Laboratory, Advanced Network Technologies Division, Internet & Scalable Systems Metrology Group
NIST Research Advisor: Yang Guo and Doug Montgomery
Title of Talk: Developing a Mininet Test Suite for Software Defined Internet Exchange (SDX) Research

Abstract:

The Internet exchange point (IXP) is a network infrastructure through which different networks exchange their traffic. Software defined Internet exchange (SDX) employs a Software Defined Network (SDN) enabled switch as the IXP. At the SDX, Internet Service Providers (ISPs) can apply many diverse actions on packets based on multiple header fields, and are allowed for direct expression of more flexible policies than the conventional Border Gateway Protocol (BGP) based hop-by-hop, destination-based forwarding. SDX also enables the seamless integration of SDN networks with the conventional networks.

The goal of this project is to develop a Mininet test suite that facilitates the SDX research. Mininet is a network emulator that creates a virtual network on a single machine. It provides a simple and inexpensive network testbed for research and development. The initial phase of the project will focus on expanding the existing SDX emulator to include additional nodes and switches that are linked in various setups. The test suite will support arbitrary wide area networks with both traditional and software-defined sub-networks, and support flexible traffic forwarding policies. As a use case, the test suite will be used to study the novel BGP security technology that is made possible by SDX.
Material Measurement Laboratory (MML)

Chemical & Biochemical Sciences
- Bezio, Aaron
- Bier, Imanuel
- Collet, Cayla
- Cross, Ebony
- Filteau, Jeremy
- Galvin, Connor
- Hernandez, Cristopher
- Jin, Emily
- Knobloch, Emmie
- Knowlden, Steven
- Lee, Abigail
- Martin, Ann Marie
- McDonald, Natalie
- Morse, Matthew
- Patel, Nimit
- Rich, Graham
- Routkevitch, Denis
- Rubino, Angela
- Shevchuk, Mariya
- Tran, Anh
- Ufot, Aniekabanasi
- Young, Jessica

Materials Science
- Anderegg, David
- Barret, Timothy
- Bleakney, Matthew
- Boigenzahn, Hayley
- Boligitz, James
- Borah, Preetom
- Brandt, Samuel
- Brooks, Sydney
- Collini, John
- Correa-Hernandez, Andres
- Dasgupta, Anushka
- Elquist, Aline
- Gayle, Andrew
- Gayvert, James
- Gonzalez-Lopez, Lorelis
- Hood, Sarah
- Huff, Jonathan
- Jeon, Heetae
- Lagnese, Joseph
- Lee, Erica
- Locke, Michael
Luu, Norman Panigrahi, Atman Stetsyuk, Karina
McCann, Gordon Peterman, Nathan Stracka, Kailey
Moskalenko, Andrey Plavchak, Christine Wade, Matthew
Mullin, Kathleen Schuberth, Austin White, Keith
Nguyen, Ai Singer, Lauren Wu, Richard
Nusinovich, Edward Smith, Sarah

NIST Center for Neutron Research (NCNR)

Ayala, Anthony Scott, Douglas
Bonk, Ryan Super, Nathan
Fangmeyer, Ryan Villa, Danielle
Hugh, Daevin Weiss, Abdullah
Hunt-Isaak, Ian
Isaac, Samantha
Leos, Richard
Neves, Paul
Pasco, Madeleine
Schankler, Aaron

MML

ChemBio
Title of Talk: Development of the Next Generation of Hydrogen/Deuterium Exchange Mass Spectrometry Apparatus

Abstract:

Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) is used to determine the structure of proteins, including active site identification and conformational changes. In an aqueous environment, hydrogens on amino acids will exchange with hydrogens of water molecules. While aliphatic hydrogens rarely exchange and hydrogens involved with hydrogen bonds on amino acid side chains exchange too rapidly to measure, hydrogens of backbone amides will exchange at rates that are quantifiable. The rate at which they exchange is dependent on their location within the protein as well as the type of amino acid and other nearby amino acids.

When amino acids are placed in deuterated solutions, backbone amide hydrogens will similarly exchange with deuterium in solution. When the solution is quenched, meaning the temperature is lowered and the pH is decreased to 2.5, the rate of exchange between the hydrogen and deuterium is minimized. This allows for mass analysis using mass spectrometry in order to determine which peptides exchanged for deuterium. Using this information, location of specific peptides within the protein can be determined. Typical quench conditions of 0°C and a pH of 2.5 do not slow the exchange rates enough, resulting in 25% to 30% backexchange. This means that the backbone amines continue to exchange even under quench conditions, causing less accurate mass analysis.

The objective of this project was to develop a chromatography system that could run at -30°C to further eliminate backexchange. We hypothesize that the system will lower backexchange to 6% or lower. My involvement has been with determining an ideal mobile phase A, or a solvent, or combination of solvents, that could be used so that samples cooled to -30°C would not freeze while also maintaining peak intensity of the mass spectra. Construction of the system and 3D printing of various parts have been main focuses as well.
Title of Talk: Protein Aggregation: Characterizing Particles Formed in Therapeutic Protein Drugs

Abstract: Therapeutic protein drugs are antibodies that provide a unique treatment option for many diseases and disorders. The stressful conditions of manufacturing these drugs can cause protein aggregates to form. These particles are considered undesirable for they can induce an immunogenic response that develops antidrug antibodies, limiting the efficacy of the drugs. Little is known about the exact levels of protein aggregates that cause a heightened immune response. My project involved studying the density of protein aggregates formed by mechanical and thermal stress using particle count, size, and sedimentation data obtained using micro flow imaging measurements. Proteins were stirred, heated, pumped through a syringe, and frozen and thawed to produce aggregates whose characteristics mimic those produced during formulation and delivery of the protein drugs. Beads of controlled shape and known density were first used to determine the accuracy of the measurements. By placing these particles in a narrow tube, they can be magnified and photographed as they fall through fluid using a commercial microscope. By analyzing these particles with variable thresholds, a more accurate depiction of size is achieved. Density can then be determined using stokes law by analyzing the tracks of the particles as they fell. The results obtained by this method will be cross checked using Quantitative phase microscopy.

Title of Talk: Bioinformatic Analysis for the Standardization of Mouse Cell Line Authentication

Abstract: Cell line authentication is used extensively in biomedical research and drug development. It is required by FDA for the production of pharmaceutical drugs and is often mandated for publication in journals to ensure the validity of those cell cultures employed. Nevertheless, historically, the frequency of cell line misidentification and cross-contamination has been effectively high. As a result, many of the assumed origins of cell lines used in scientific research and referenced in published papers are inaccurate. The scientific community has confronted the concerns of cell line misidentification and interspecies/intraspecies contamination for human cell lines by creating validated methods to authenticate these cells. While validated procedures to verify human cells lines have been implemented, very few assays exist for nonhuman cell line identification. Consequently, the focus of this research is the design and development of new multiplex polymerase chain reaction (PCR) assays that target specific STR markers found in the mouse genome. This multiplex assay is the first of its kind, providing unique STR profiles for individual mouse samples as a means to authenticate mouse cell lines.

For this project, bioinformatic analysis was conducted on the STR profiles for the individual mouse samples. Data from the Sanger sequenced DNA was then collectively assembled and aligned using the software tool Lasergene SeqMan Pro from the DNASTAR software suite. Lasergene software and electropherograms for the individual samples were used to comparatively analyze the resulting tetranucleotide sequences of mouse samples. Using Lasergene software, allele mutations, sequence anomalies, and consistency in allele distributions were detected and repeat motifs were determined. Fragment lengths were correlated to actual number of repeats based on the Sanger Sequencing data. These tools are used to characterize and validate the mouse cell line authentication assay. An electronic notebook for completed analysis was created using Microsoft Office suite to create a referential database to be dispersed to the scientific community.
Name: Jeremy Filteau
Academic Institution: Worcester Polytechnic Institute
Major: Chemical Engineering
Academic Standing (Sept. ‘16): Junior
Future Plans (School/Career): Pursuing a career in chemical engineering, hoping to work with pharmaceuticals and drug discovery.
NIST Laboratory, Division, and Group: Material Measurement Laboratory - ChemBio, Chemical Sciences Division, Environmental Chemical Sciences Group
NIST Research Advisor: Frank Mari
Title of Talk: Optimizing preparation methods for venomics analysis of Conus purpurascens

Abstract:
Marine mollusks of the genus Conus (cone snails) have the ability to synthesize venom to immobilize their prey, which consist of fish, mollusks and worms. Their venom, though tremendously complex, is mainly comprised of highly modified peptides – known as conopeptides - that target specific ion channels and cell receptors. These compounds can serve as drug leads for numerous ailments such as neurodegenerative diseases and chronic pain. The analysis of Conus venom is challenging as there is a unique set of conopeptides that can vary greatly between snails of the same species. Sample preparation methods for tandem mass spectrometry introduces further variety in analyzing venom. These protocols, which feature different reagents and techniques, can cause variations in venom data, even if gathered from the same exact snail. It is difficult to identify conopeptide variations in a snail due to crosslinking and modifications. However, the preparation protocol, specifically reduction and alkylation, can be optimized to yield greater coverage of identified conopeptides, improving analysis. Predatory venom was extracted from a Conus purpurascens and five reduction and alkylation procedures were tested while the rest of the preparation protocol was kept constant (i.e., sample homogenization and digestion). Methods were evaluated by comparing spectral counts of proteotypic peptides resulting from the digestion via database searching: higher counts indicated more complete reduction and alkylation. The set of reagents and organic solvents that yielded the largest amount of quality matches was deemed the most optimal preparation method for Conus purpurascens analysis. The results will serve as the foundation for future studies optimizing cone snail venom proteomic analysis. A standard preparation protocol will aid in the ability to define the molecular landscape of Conus venom and lead to the discovery of natural product based drugs.

Name: Connor Galvin
Academic Institution: Miami Dade College
Major: Biology
Academic Standing (Sept. ‘16): Junior
Future Plans (School/Career): I plan to finish my undergraduate studies and pursue an advanced degree in hopes of one day conducting research in protein engineering and biocatalysis.
NIST Laboratory, Division, and Group: Material Measurement Laboratory - ChemBio, Biomolecular Measurement Division, Macromolecular Structure and Function Group
NIST Research Advisor: Travis Gallagher
Title of Talk: Exploring a Novel pH-based Strategy for Protein Crystallization

Abstract:
This project has focused on a major challenge in the field of structural biology – the low success rate in structure determination due to the difficulty of growing diffraction-quality crystals of a given protein. While most crystals are grown by slowly removing water to induce precipitation, our approach has been to precipitate the protein by gradually shifting the pH to a value where the protein is less soluble. Proteins are polyionic and their solubility is typically a complex, multimodal function of pH. The pH can be shifted slowly (over a time course of hours, which is consistent with crystallization) by means of vapor diffusion of acetic acid, which is volatile. Since this method has received little prior attention, we began by measuring the inducible pH shift in a simplified system. We explored the effect as a function of starting and final pH, buffer concentration and concentration of sodium chloride as cosolute. Finally, we applied the method to crystallize the protein lysozyme, by reducing its pH from 5.6 to 4.8 over 6 hours.
Abstract:
Serine proteases, such as trypsin and chymotrypsin, play an important role in the body, in laboratories, and increasingly, in industry. In humans, they are involved in various physiological processes, primarily regulating digestion. In analytical laboratories, they are often used for the characterization of other proteins by mass spectrometry (MS). While in industry, they have been shown to be useful in the manufacturing of new protein products. With novel analytical and bioengineering techniques being used in industry, the need for reliable enzymes will only continue to grow, especially as they begin to be used in the development of biotherapeutics. As such, it is important to continue to expand our understanding of these enzymes, in order to prevent the development of unexpected protein products or unexpected analytical results.

A process that may lead to unexpected protein products during proteolysis is known as transpeptidation, or reverse-proteolysis. This process involves the reversal of catalytic hydrolysis, enabling for new peptides to be synthesized from that enzyme’s own hydrolysis products, as well as other peptides present. While this process has been observed in vitro since the 1930s, there is much that remains unknown, including its potential impact inside the body, as well as its effects on protein quantification. A major barrier that has prevented further exploration of this topic has been the lack of instrumentation and database search algorithms capable of detecting these transpeptidation products. Throughout the years, researchers have found ways around this and almost always, they have documented this process to occur at higher rates than previously thought.

This project aims to understand transpeptidation through the identification and quantification of trypsin-catalyzed transpeptidation products using UHPLC-MS (Ultra-High-Performance Liquid Chromatography-MS). UHPLC-MS provides both, quantitative and qualitative data with a high degree of resolution and mass accuracy. By limiting the amount of peptides analyzed, transpeptidation products were predicted and closely monitored for various sets of initial conditions; through this, general trends were observed regarding the rate of trypsin-catalyzed transpeptidation. As one of the most commonly used serine proteases, trypsin can reveal much about this general process and the implications it could have inside laboratories and ourselves. Given enough information, transpeptidation could reshape the way we understand proteolysis altogether.

Abstract:
While most people are familiar with the fact that proteins and carbohydrates play an essential role in biology, an understanding of the mechanisms behind the formation of protein-carbohydrate complexes is less widely known. A protein is comprised of a long string of amino acids that partially determines its structure and function. Proteins are often glycosylated – a process in which a carbohydrate binds to a protein. Glycosylation is essential for the folding, function, and stability of the protein. Defects in glycosylation can indicate the presence of many severe diseases, such as cancer. Knowing the location and occupancy rates of specific glycosylation sites can help us diagnose and treat some of these diseases.

In this project, we used bioinformatics to align the amino acid sequences of thousands of proteins to try and predict which potential N-linked glycosylation sites actually become glycosylated based on how well the N-X-S/T/C consensus motif is conserved across species. We theorized that the more highly conserved the consensus motif is at a given site, the more likely that site will become glycosylated. Using Python and its BioPython module, we were able to data mine the UniProt website, a comprehensive database of protein sequences and functional information, for sequences with experimentally proven N-linked glycosylation sites. We then aligned those with the corresponding sequences of other species to perform our statistical analysis. With this data, we can quickly and economically predict the most likely sites of protein glycosylation and apply that knowledge to perform targeted laboratory experiments on select samples.
Title of Talk: Assessing Standard Assays for Cytotoxicity of Dental Materials

Abstract:
The cytotoxic effects of all medical devices and materials are a concern, but especially those in dental materials. Fillings and adhesives may remain in the mouth for decades, giving them ample opportunity for any possible cytotoxicity to take effect. Over time, residual uncured resin composite from fillings can leach monomers such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), and 2-hydroxyethyl methacrylate (HEMA) into the body. Understanding the cytotoxic effects these monomers have on our cells is important for assessing the safety of both novel and existing dental materials.

Current standards for assessing the cytotoxicity of dental materials have been published by several organizations, including the American Dental Association (ADA), the International Organization for Standardization (ISO), and the American Society for Testing Materials (ASTM). These usually involve either placing the solid material or an extract in direct contact with a cell culture or allowing them to diffuse through a filter or layer of agar.

While these standards do provide a reference point for the toxicity of dental materials, they do not accurately represent the environment in which these materials are used. Most suggest the use of animal cell lines, the most common being mouse fibroblasts, which do not closely resemble the types of human cells that are most likely to come into contact with these materials. While it is possible to expose these cells directly to solid materials that will realistically only ever come in contact with the tooth, this project aims to provide an alternative to these standards by comparing the response of traditionally tested cell lines like mouse fibroblasts with those of more appropriate human gingival cells. Three cell lines (human gingival keratinocytes, human gingival fibroblasts, and mouse subcutaneous fibroblasts) were exposed to monomers that are known to leach from dental materials (HEMA, TEGDMA, UDMA, and TiO2) in varying concentrations for either 24 or 72 hours. Their cytotoxicity was then measured using metabolic assays and fluorescent live/dead staining. Results indicate that the minimum concentrations at which cytotoxic effects are observed from these monomers are significantly above an amount that could realistically be released, and so are not biologically relevant.

These results will eventually be coupled with the development of a microfluidic device to more accurately simulate gingival tissue and the environment of the oral cavity in which these materials are used, to some degree bridging the gap between traditional in vitro and in vivo testing.
Determination of Vitamin C in NIST Food-Matrix Standard Reference Materials

Well-characterized reference materials and reliable analytical methods are needed in the food testing and nutrition communities to help facilitate compliance with nutritional labeling laws and improve the accuracy of nutrition information that is provided to assist consumers in making sound dietary choices. As a result of the Nutrition Labeling and Education Act (NLEA) of 1990, the National Institute of Standards and Technology (NIST) has developed a series of food-matrix Standard Reference Materials (SRMs) characterized for nutrient concentrations. The NLEA requires food processors to provide specific nutrition information on labels of products distributed in the United States. Information about vitamin C content is required on nutrition labels, thereby making certified reference materials with assigned values for vitamin C useful.

Vitamin C concentrations will be determined in 3 new NIST food-matrix Standard Reference Materials (SRMs) using a liquid chromatographic (LC)-absorbance method developed at NIST. These SRMs include SRM 1869 Infant Formula, SRM 2386 Avocado Powder, and SRM 3233 Breakfast Cereal. The procedure used to extract vitamin C from the different matrices, a description of the LC method employed, and the results from the measurement of vitamin C in each material will be presented.

Optimization of 3D Molecular Structures for the NIST Chemistry WebBook

The NIST Chemistry WebBook is a widely used resource for scientists, engineers, and students. It is comprised of experimental information such as molecular structure, and spectral data on approximately 140,000 molecules. Our objective this summer is to optimize molecular geometries using Gaussian09, a computational chemistry computer program. Furthermore, we are adding and verifying roughly 20,000 optimized 3D molecules to the WebBook, as well as suggesting changes to the nomenclature and/or 2D structures in the WebBook. The 3D structures are important in areas such as space exploration, experimental simulations as well as drug development.

The 3D structures were optimized using a series of quantum theories ranging from classical mechanics force field approximations to quantum mechanics methods such as Density Functional Theory Method (DFT). First, we utilized the molecular mechanics method (MM2) which gives a cheap approximation of the optimized 3D structure from a 2D drawing. Then, these structures were optimized by the Gaussian program at the semi-empirical PM6 and more accurate B3LYP/6-31g* DFT levels of theory to produce a more accurate result. The B3LYP method is the most accurate method we employ, but also the most time consuming calculation to run and thus is computed last. As the B3LYP method is known to produce reliable molecular geometries, the optimized structures should be in good agreement with the experimental results. After optimization, we verified that the computed 3D structures agreed with the other data in the NIST Chemistry WebBook as well as analyzed the nomenclature, making the appropriate corrections as needed.

Overall, we expect to complete optimization and verification of 20,000 molecules this summer, completing a project to enhance and verify the WebBook that began 5 years ago.
Title of Talk: Characterization of protein aggregation using Asymmetric Flow Field Flow Fractionation (AF4) and Multi-Angle Light Scattering (MALS)

Abstract:

Aggregation is a critical concern in the development of many protein-based biologic drugs. The aggregation of proteins can lead to a variety of detrimental effects in biologic drug performance, including; embolisms, increased immunogenicity, decreased efficacy, and altered pharmacokinetics. There are several approaches to characterize protein aggregation, including; types of High Performance Liquid Chromatography (HPLC) analysis, such as Size Exclusion Chromatography (SEC), Gel Permeation Chromatography (GPC), Reversed-Phase (RP-HPLC), Normal Phase (NP-HPLC) and Fast Protein (FP-HPLC). Here, we present Asymmetric Flow Field Flow Fractionation (AF4) coupled with Multi-Angle Light Scattering (MALS) to measure the extent of aggregation of the model protein Bovine Serum Albumin (BSA) under a variety of thermal and mechanical stresses. Additionally, we measure the time course of the aggregation to calculate the kinetics of BSA aggregation.

AF4 is a fractionation method that is used in characterizing nanoparticles, polymers and proteins. In contrast to traditional types of chromatography, AF4 separates materials via hydrodynamic forces instead of interaction with a stationary phase. This allows for the separation of "delicate" materials that might damage or be damaged by a traditional HPLC column and avoids some instrumental artifacts encountered in traditional HPLC systems.

In this work, protein aggregates are separated via AF4; these separated particles are then characterized by MALS, which measures both the molar mass and particle size. This allows an understanding of how protein therapeutics behave as they are stored and manipulated. To this end, BSA sample solutions at concentrations of 1 mg/mL, 5 mg/mL, 10 mg/mL, 20 mg/mL and 30 mg/mL were stored at different temperatures, to include 45, 50, and 60°C, in either a quiescent water bath or with the storage vial rotated at five rpm for periods ranging from 8 hours to 232 hours.

Fitting the amount and molar mass of the aggregate to kinetic models polymerization showed first order kinetics with a rate constant of 0.193 hr⁻¹ for quiescent sample and 0.293 hr⁻¹ for rotated sample. Characterizing the rate constant can give an estimate of shelf life under various storage conditions and lead to safer and more effective protein therapeutics. In the future, this technique could possibly be applied to work with more complex proteins, such as immunoglobulin-like proteins (IgG), vaccines, and other types of biologic drugs.
Abstract: The NIST Chemistry WebBook is a widely used resource for scientists, engineers, and students. It is comprised of experimental information such as molecular structure, and spectral data on approximately 140,000 molecules. Our objective this summer is to optimize molecular geometries using Gaussian09, a computational chemistry computer program. Furthermore, we are adding and verifying roughly 20,000 optimized 3D molecules to the WebBook, as well as suggesting changes to the nomenclature and/or 2D structures in the WebBook. The 3D structures are important in areas such as space exploration, experimental simulations as well as drug development.

The 3D structures were optimized using a series of quantum theories ranging from classical mechanics force field approximations to quantum mechanics methods such as Density Functional Theory Method (DFT). First, we utilized the molecular mechanics method (MM2) which gives a cheap approximation of the optimized 3D structure from a 2D drawing. Then, these structures were optimized by the Gaussian program at the semi-empirical PM6 and more accurate B3LYP/6-31g* DFT levels of theory to produce a more accurate result. The B3LYP method is the most accurate method we employ, but also the most time consuming calculation to run and thus is computed last. As the B3LYP method is known to produce reliable molecular geometries, the optimized structures should be in good agreement with the experimental results. After optimization, we verified that the computed 3D structures agreed with the other data in the NIST Chemistry WebBook as well as analyzed the nomenclature, making the appropriate corrections as needed.

Overall, we expect to complete optimization and verification of 20,000 molecules this summer, completing a project to enhance and verify the WebBook that began 5 years ago.
Analysis of metals in electronic cigarette vapor

Electronic cigarettes have been gaining popularity as a supposedly safer alternative to traditional cigarettes. Currently, over 400 companies in the US are selling products with minimal local, state or federal regulations. However, several studies have shown that the e-cigarette vapor contains harmful compounds, including metal nanoparticles that could be released from the heating coil. Additionally, some users have reported sensing a metallic taste from their e-cigarettes after a certain amount of use. Little is known about which metals are present in the vapor, how to quantify those metals, and how they interact with the human body. This study aims to (1) identify metals in the vapor, (2) measure their levels over time and use, and (3) determine the critical point where they may be toxic to humans.

Vapor was produced under published parameters using a standardized e-cigarette testing device filled with e-liquid reference material consisting of propylene glycol, vegetable glycerin, and nicotine with no flavor added. For determination of metal content, the vapor was collected using chilled nitric acid in a gas condenser. A simulated nine days’ worth of vapor was collected in each sample for a total of six samples (54 days). The samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). Silicon, potassium, and magnesium were definitively found in the sample along with trace amounts of copper, calcium, iron, zirconium, and nickel. Many of these have been shown to contribute to upper respiratory irritation. In the near future, this study will quantify the metal content of the samples by comparing their emission peaks with those of standard solutions. Additionally, human oral and lung epithelial cells will be exposed to vapor, collected and analyzed using ICP-OES to determine the cellular uptake rates and pathways of the metals.
Name: Mariya Shevchuk
Academic Institution: University of Maryland College Park
Major: Chemical Engineering
Academic Standing (Sept. ’16): Junior

Future Plans (School/Career): Pursuing a career in the biomedical field.
NIST Laboratory, Division, and Group: Material Measurement Laboratory - ChemBio, Chemical Sciences Division, Chemical Informatics Research Group
NIST Research Advisor: Tom Allison Karl Irikura Peter Linstrom
Title of Talk: Optimization of 3-Dimensional Chemical Structures for NIST Chemistry WebBook

Abstract:
The NIST Chemistry WebBook is a widely used resource for scientists, engineers, and students. It is comprised of experimental information, such as molecular structure and spectral data, on approximately 140,000 molecules. Our objective this summer is to optimize molecular geometries using Gaussian09, a computational chemistry computer program. Furthermore, we are adding and verifying roughly 20,000 optimized 3D molecules to the WebBook, as well as suggesting changes to the nomenclature and/or 2D structures in the WebBook. The 3D structures are important in areas such as space exploration, experimental simulations, and drug development.

The 3D structures were optimized using a series of quantum theories ranging from classical mechanics force field approximations to quantum mechanics force field approximations. First, we utilized the molecular mechanics method (MM2) which gives a cheap approximation of the optimized 3D structure from a 2D drawing. Then, these structures were optimized by the Gaussian program at the semi-empirical PM6 and more accurate B3LYP/6-31g* DFT levels of theory to produce a more accurate result. The B3LYP method is the most accurate method we employ, but also the most time consuming calculation to run and thus is computed last. As the B3LYP method is known to produce reliable molecular geometries, the optimized structures should be in good agreement with the experimental results. After optimization, we verified that the computed 3D structures agreed with the other data in the NIST Chemistry WebBook as well as analyzed the nomenclature, making the appropriate corrections as needed.

Overall, we expect to complete optimization and verification of 20,000 molecules this summer, completing a project to enhance and verify the WebBook that began 5 years ago.
<table>
<thead>
<tr>
<th>Name: Aniekanabasi Ufot</th>
<th>Grant Number: 70NANB16H131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution: University of Maryland College Park</td>
<td>Major: Biochemistry/Spanish</td>
</tr>
<tr>
<td>Academic Standing (Sept. '16): University of Maryland graduate</td>
<td>Future Plans (School/Career): Pursuing a career in biomedicine</td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group: Material Measurement Laboratory - ChemBio, Chemical Sciences Division, Environmental Chemical Sciences Group</td>
<td>NIST Research Advisor: Michael B. Ellisor</td>
</tr>
</tbody>
</table>
| **Title of Talk:** Analysis of Trace Elements in Marine Mammal Tissues | **Abstract:** The presence of contaminants in the marine ecosystem is an important concern worldwide. These contaminants negatively impact the health of the marine organisms as well as the health of the local populations that depend on these organisms as a significant source of diet. Exposure to high concentrations of trace elements is a contributing factor to the decline in the population of marine mammals. The Arctic marine environment in Alaska is an important geographic location for monitoring as predators such as beluga whales and ringed seals have the potential to accumulate contaminants within their tissues. These predators within the marine food web are good indicator species of the environmental contamination present in the area. The objective of this project is to investigate the concentration of 14 select trace elements (Ag, As, Ca, Cd, Cr, Cu, Fe, Mn, Pb, Rb, Se, Sn, V, and Zn) in liver tissues of ringed seals and beluga whales using inductively coupled plasma mass spectrometry. Tissue samples were obtained from seals and whales ranging from pup to adult in order to analyze any age-related correlations. The results from these analyses will help assess the risk of consuming contaminated food from marine animals as well as contribute to a greater understanding of the impacts of contaminants in the Arctic marine ecosystem.

<table>
<thead>
<tr>
<th>Name: Jessica Young</th>
<th>Grant Number: 70NANB16H131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution: University of Maryland College Park</td>
<td>Major: Chemical & Biomolecular Engineering</td>
</tr>
<tr>
<td>Academic Standing (Sept. '16): Junior</td>
<td>Future Plans (School/Career): Earn a B.S. Degree in Chemical and Biomolecular Engineering</td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group: Material Measurement Laboratory - ChemBio, Biomolecular Measurement Division, Macromolecular Structure and Function Group</td>
<td>NIST Research Advisor: Vitalii Silin</td>
</tr>
</tbody>
</table>
| **Title of Talk:** Study of Interaction of Peptides with Tethered Bilayer Phospholipid Membranes | **Abstract:** Membrane-lytic peptides exhibit antimicrobial properties and some show selective inhibition of cancerous cells and viruses. These properties of the peptides could prove advantageous in the development of novel antibiotics and chemotherapies. For our study, we chose two peptides: polybia-MP1 (MP1), an antibacterial peptide (found in the venom of the Brazilian wasp) which selectively kills cancer cells over healthy cells, and AH, a synthetic antiviral peptide (derived from the membrane anchor of the hepatitis C virus protein, NSSA) which shows excellent potency to selectively treat flaviviruses, which includes the Zika virus and West Nile virus among others. To understand the mechanisms of action of these peptides, we investigated the interactions of MP1 or AH with model phospholipid membranes of different compositions and degrees of fluidity. MP1 was synthesized, purified using High Performance Liquid Chromatography (HPLC) and analyzed using Mass Spectrometry. As model membranes, we employed tethered bilayer phospholipid membranes (T-BLM) created by rapid solvent exchange. For these studies, we utilized two measurement techniques simultaneously on the same sample substrate: Surface Plasmon Resonance (SPR), an optical technique that measures the amount of peptide and membrane on our sample substrate, and Electrochemical Impedance Spectroscopy (EIS), an electrochemical technique that measures electrical conductance through the membrane and provides information on the presence of defects or pores in our model membrane. We found the combined SPR/EIS technique is an extremely sensitive tool for detecting peptide/membrane interaction. Our data shows that MP1 destroys membranes made from a mixture of (70:30) phosphatidylcholine (PC) and phosphatidylethanolamine (PE) more readily than membranes of (70:30) PC and phosphatidylserine (PS). At high concentrations, MP1 desorbs portions of phospholipids from the membrane, while, like MP1, AH also caused defects in the membrane, but with much smaller rate. Unlike MP1, AH did not significantly desorb phospholipids from the membrane at any concentration.
SURF Student Colloquium

NIST – Gaithersburg, MD
August 2-4, 2016

Name: David Anderegg
Grant Number: 70NANB16H094
Academic Institution: Virginia Polytechnic Institute & State University
Major: Materials Science and Engineering/Chemistry
Academic Standing (Sept. ‘16): Senior
Future Plans (School/Career): Pursuing a master’s degree in Materials Science and Engineering at Virginia Polytechnic Institute and State University
NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Chemical Sciences Division, Chemical Informatics Research Group
NIST Research Advisor: Daniel Siderius
Title of Talk: Developing a System to Encode Multicomponent Adsorption Isotherms for Standard Reference Data Use
Abstract: Adsorbent materials have been used for over a century for important applications including gas purification and separation, water purification, and desiccants. In the past two decades, advances in chemistry have led to the development of new adsorbent materials including activated carbons, silicates, and metal organic frameworks. Because of their high surface areas and selectivities, these new materials can be used to develop more efficient and cost-effective methods to remove pollutants from the air, purify solutions, and catalyze reactions. However, due to the extensive number of ways in which they can be modified such as processing temperature, chemical treatment, and composition, they require a substantial amount of research. Currently, there is poor communication between researchers because they lack standardized experimental procedures, material naming conventions, reference adsorption data, and standard formats for data exchange. This has hindered the development of materials capable of solving issues.

A need to improve communication has led NIST to develop a database of Novel and Emerging Adsorbent Materials to aid researchers in accessing and comparing adsorption data. This database is under continuous development and includes only a fraction of the isotherms data that has been published. This summer we helped resolve this issue by digitizing single component isotherms, thereby increasing the reach of the database. Additionally, we expanded the database system to include multicomponent gas adsorption. Multicomponent isotherms are more difficult to digitally encode as the composition of the gas adds constraints that must be recorded to fully describe a multicomponent adsorption experiment. By reviewing several hundred articles on multicomponent adsorption we were able to develop, test, and refine a file format that can robustly and accurately encode this data. This addition is important as it allows for the inclusion of data on selective adsorption of mixtures to represent gases like those found in nature and industry.

Name: Timothy Barrett
Grant Number: 70NANB16H
Academic Institution: University of New Hampshire
Major: Mechanical Engineer
Academic Standing (Sept. ‘16): Senior
Future Plans (School/Career): Attending graduate school at the University of New Hampshire
NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Material Science and Engineering Division, Mechanical Performance Group
NIST Research Advisor: Mark Iadicola William Luecke
Title of Talk: Uncertainty of the Impulse Excitation Technique
Abstract: Accurate measurements of elastic properties in sheet metals allow for a more reliable prediction of the forming of automotive parts. Higher strength materials can reduce vehicle weight and result in better fuel efficiency, but must be properly characterized. For sheet metals, the impulse excitation technique can be implemented to characterize the directional dependence of the elastic properties.

The impulse excitation technique is a non-destructive method that requires only a small amount of material to measure Young’s modulus, Shear modulus, and Poisson’s ratio. This technique requires meticulous preparation for each specimen and accurate measurement of its mass and physical dimensions. Using a microphone and a resonance frequency analyzer, an impulse is applied to the specimen and its natural frequency is calculated using a Fast Fourier Transform. With these measurements the elastic properties of a material can be determined using vibrating beam or plate theory.

Our goal is to determine if this technique allows for an efficient and accurate measurement of elastic properties compared to complicated static bending and uniaxial testing. Results show that the repeatability depends on key parameters including machining technique, edge condition, supports, and accuracy of micrometer measurements. Limitations and uncertainties of this technique based on geometry and physical measurement capabilities are evaluated allowing for the determination of an optimized geometry for sheet metals. For ease of testing, a 20mm x 50mm x 1mm was selected. Specimens 10mm x 20mm x 1mm can be measured as well, but with a more difficult and time consuming process. After extensive testing a finalized sample preparation and testing technique was selected that can measure Young’s modulus repeatedly up to ± 1 GPa and with similar in-plane directional dependence seen in static testing.
Determining and comparing skeletal density of NIST RM-8852 from different gas measuring techniques/principles

Gas state molecules play a huge part in today's world, ranging from energy production to greenhouse gas, and when coupled with gas adsorbing materials, we can better manage these resources and mitigate their environmental effects. The ability of a material to adsorb a gas is typically determined from an adsorption isotherm, which is a plot of gas uptake at different gas equilibrium pressures, from which properties, such as surface area, pore size distribution, pore volume, and gas uptake capacity can be derived. While gravimetric and volumetric gas measurement techniques exist, both methods need to account for the sample volume in order to compensate for buoyancy or adjust for dead volume, respectively. The problem lies with the variety of conditions and techniques used to observe the sample volume. Our group aims to investigate the ability of three different gas measurement instruments (helium pycnometer, low pressure volumetric, high pressure volumetric) to measure the sample volumes (and consequently density) of zeolitic Reference Material (RM) 8852, and determine their impact on the resulting gas adsorption isotherms. We will also investigate whether a machine's ability to measure volume will affect the accuracy of other derived data. Currently, we have studied the effects of fill percent and temperature on the helium pycnometer's ability to measure density using Silicon Shot, a non-porous material with a known density. Preliminary results show significant differences in the low pressure volume measurements compared to those from the helium pycnometer, yet this has an insignificant effect on the machine's ability to analyze the sample area. Our next step is to complete the low pressure experiments and duplicate the high pressure volumetric experiments in the high pressure system. At high pressure, we expect to see large discrepancies in adsorption data. As errors in volume measurement will be more pronounced.
Title of Talk: Investigation of phase equilibria in binary Co-W surrounding the μ-phase via mechanical alloying

Abstract:
Precipitate strengthened Co-based alloys have emerged as a promising material for the next generation of high temperature turbine engine applications. One of the key foundational alloy systems for these alloys is the Co-W binary phase diagram. The goal of this project is to investigate the Co-W phase diagram and, in particular, the compound Co17W6, or the μ-phase. To this point, the Co-W phase diagram is well defined in the Co-rich region (less than 20% W by mole fraction), but the area surrounding the μ-phase is still relatively uncertain. Because pure W is the first phase to precipitate from the liquid phase at compositions greater than roughly 33% W, it is difficult to investigate the phase equilibrium below 1600°C. As the alloy is cooled to the temperature range we are interested in (700°C to 1600°C), this nearly pure W remains, and sluggish diffusion does not allow the microstructure to reach equilibrium.

To overcome these issues, mechanical alloying is used to form the Co-W alloy at lower temperatures. Ball milling is used to create an alloy powder with nearly homogenous composition that is cold compacted into a Co-W pellet. The pellet is then annealed at temperatures where the μ-phase forms, in our case 800°C, 1000°C, and 1200°C. The premise is that the homogeneous starting composition combined with the significant plastic deformation energy imparted in the material as a result of ball milling will promote a more rapid approach toward phase equilibrium. Once the pellets are heat treated, the samples are observed using a scanning electron microscope (SEM) with energy dispersive x-ray spectroscopy (EDS) and X-ray diffraction (XRD). The tests are used to investigate the microstructure, phase identification, and phase compositions of each sample.

The detection of contraband materials such as narcotics and explosives is of continued importance in forensics, safety and security. Laboratory methods used for detection include ion mobility spectrometry (IMS), surface-enhanced Raman scattering (SERS), and ambient ionization mass spectrometry (MS) among others. Here, one such ambient ionization method, Direct Analysis in Real Time (DART), was coupled with thermal desorption (TD) in a confined geometry for the detection of contraband materials. This coupling provides a high sensitivity and selectivity technique for the rapid analysis of swipe samples, a common sampling method in forensic and security arenas, relevant to the border patrol, law enforcement, and prisons. Initial studies investigated two main parameters of the TD-DART-MS system, specifically desorption temperature and the gas/analyte transport flow rate. To overcome these issues, mechanical alloying is used to form the Co-W alloy at lower temperatures. Ball milling is used to create an alloy powder with nearly homogenous composition that is cold compacted into a Co-W pellet. The pellet is then annealed at temperatures where the μ-phase forms, in our case 800°C, 1000°C, and 1200°C. The premise is that the homogeneous starting composition combined with the significant plastic deformation energy imparted in the material as a result of ball milling will promote a more rapid approach toward phase equilibrium. Once the pellets are heat treated, the samples are observed using a scanning electron microscope (SEM) with energy dispersive x-ray spectroscopy (EDS) and X-ray diffraction (XRD). The tests are used to investigate the microstructure, phase identification, and phase compositions of each sample.

To gain work experience in a government or industry lab before attending graduate school, Preetom Borah is pursuing a career in Mechanical Engineering. Recent graduate of The College of Wooster, his major is Chemistry/Music. He is pursuing a career in Mechanical Engineering. The College of Wooster, his major is Chemistry/Music.
<table>
<thead>
<tr>
<th>Name:</th>
<th>Sydney Brooks</th>
<th>Grant Number</th>
<th>70NANB16H158</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution:</td>
<td>West Virginia University</td>
<td>Major:</td>
<td>Chemistry and Forensic Science</td>
</tr>
<tr>
<td>Academic Standing (Sept. ’16):</td>
<td>Junior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Plans (School/Career):</td>
<td>Planning on attending graduate school for forensic chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group:</td>
<td>Material Measurement Laboratory - MatSci, Materials Measurement Science Division, Security Technologies Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Research Advisor:</td>
<td>Amanda Forster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title of Talk:</td>
<td>Fiber Trace Evidence: Quantification of Sample Bleaching During UV-vis Microspectrophotometry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract:

Textiles are mass-produced around the world and used in many different ways. Consequently, textile fibers are one of the most common types of trace evidence recovered from crime scenes. Identifying and matching a fiber to a known source is a difficult task, and the final conclusion is often accompanied by a significant degree of uncertainty. Fiber examiners often have limited resources and heavy caseloads, further compounding the investigative process. The National Institute of Standards and Technology has taken on multiple projects pertaining to the examination of fibers with the goal of simplifying and standardizing forensic fiber examination. This particular project focuses on one of the most common methods for analyzing fiber color, measuring the absorption of electromagnetic radiation in the ultraviolet-visible light (UV-vis) region using a microspectrophotometer (MSP). However, due to the fact that the instrument utilizes UV light, extended exposure while the fiber is under the microscope can lead to bleaching of the sample. The bleached color then affects the data and can prevent the examiner from being able to make a definitive match between unknown and known fibers. The goal of this research is to quantify the bleaching over time in order to provide guidelines for interpreting data when extended time under the MSP cannot be avoided.

<table>
<thead>
<tr>
<th>Name:</th>
<th>John Collini</th>
<th>Grant Number</th>
<th>70NANB16H091</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institution:</td>
<td>Rochester Institute of Technology</td>
<td>Major:</td>
<td>Physics/Math</td>
</tr>
<tr>
<td>Academic Standing (Sept. ’16):</td>
<td>Graduate Student: University of Maryland, College Park</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Plans (School/Career):</td>
<td>Pursuing a career in condensed matter physics/engineering in either government or industry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Laboratory, Division, and Group:</td>
<td>Material Measurement Laboratory - MatSci, Materials Measurement Science Division, Nanomechanical Properties Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST Research Advisor:</td>
<td>Brian Bush, Richard Gates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title of Talk:</td>
<td>Nanomechanical time-dependent properties of PEG Hydrogels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract:

Hydrogels have become attractive materials for use in biomedical and biomechanical fields for their ability to function like natural tissues and act as biological scaffolding. Their biocompatible nature and material characteristics make them ideal candidates for use in tissue engineering and drug delivery methods. To better understand their mechanical properties for use in these applications, time-dependent nanomechanical load testing experiments are performed on polyethylene glycole (PEG) hydrogels of varying PEG weight concentration via a Au colloidal atomic force microscope (AFM) probes. During experimentation, the gels are indented to a maximum load ranging from 5 nN to 20 nN and then subjected to a displacement-controlled hold period for 30 seconds. The load-relaxation response during the hold period is captured and modeled to extract time-dependent visco- and poroelastic mechanical properties. The knowledge gained here will assist future researchers in measuring nanomechanical properties of their hydrogels, as well as, provide the specifications needed for future biomedical engineered devices.
Title of Talk: Density Functional Theory Studies of Nanoporous Materials

Abstract:
Carbon capture and sequestration (CCS) technologies aim to reduce the ever-increasing carbon emissions entering the atmosphere from coal-burning power plants. The advances that have been made in the field of nanoporous solids make these types of materials excellent candidates for innovative solid-CCS technologies which can, in principle, sequester carbon with less energy compared to currently implemented liquid-CCS technologies.

Metal-organic frameworks (MOFs) consist of metal ions bridged by organic linkers, held together by a coordinated covalent network, forming finely tuned nanopore arrays. The flexibility and control of the MOF pores give unique adsorption and desorption affinity towards selected gases. It is the fine control of the nanoporous materials which also gives rise to many possible MOF structures and configurations.

Two MOFs of interest, Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4] and Cu-1,3,5-benzenetricarboxylate, or Ni2(CN)4-bpene and Cu-BTC respectively, were investigated through density functional theory (DFT) calculations using the Vienna ab-initio simulation package (VASP). Scripts were devised to generate multiple configurations for the Ni2(CN)4-bpene structure with different orientations of the bpene molecules, as well as for positioning of CO2 molecules in the Cu-BTC pores. The DFT calculations used to solve the electronic structure for these configurations ran in parallel on a computer cluster. The van der Waals' interactions in Ni2(CN)4-bpene play an important role in determining the structure. A candidate structure is found for the as-yet unknown structure of empty Ni2(CN)4-bpene. In Cu-BTC, the rigidity of the Cu-BTC pores makes structural relaxation studies simpler. Hence, analyzing the interactions of CO2 guest molecules with the pores becomes readily accessible through a DFT approach.
Abstract:

One of the biggest challenges associated with renewable resources is energy storage and transfer. Developing devices to solve these problems, such as batteries and fuel cells, require improved models of electrochemical systems. Predicting the charge at the interface is necessary for accurate modeling of electrochemical reactions, and design of improved catalysts. The complex interplay between the ion, dielectric, and electrode make accurate models of the change in charge with voltage, or differential capacitance, difficult to produce. Attempting to create a more comprehensive picture, we used two different modeling techniques to simulate measurements of differential capacitance. Our first approach combines density functional theory with a continuum solvation model. Density functional theory uses the electronic structure to calculate the free energy at the ground state of the system. The complex interplay between the ion, dielectric, and electrode make accurate models of the change in charge with voltage, or differential capacitance, difficult to produce. The second approach is a mesoscale model using the phase field method. Phase field is derived from continuum thermodynamics and measures the microstructural evolution at the mesoscale. The two models use different approaches to simulate the same measurements. We calculate surface charge and differential capacitance as functions of potential from both models, and compare the results to each other, as well as those found in experiment.
Title of Talk: Molecular Dynamics Study of the Conformational Properties of Polymers in an Explicit Solvent and the Identification of the θ-Temperature

Abstract:

Numerous biological processes that are critical for life involve polymers in aqueous solutions, and it is important to understand the changes in polymer shape that take place due to variation of thermodynamic conditions and applied perturbations such as flow. Many polymer models are developed with an implicit solvent, rendering these models less useful for the study of such off-equilibrium phenomena. Inspired by the nature of these biological processes, we use a coarse-grained bead-spring model with an explicit solvent to identify the θ-temperature of polymers of different molecular architectures at equilibrium, with the intention of later using this model to simulate the behavior of polymer solutions in off-equilibrium conditions more akin to those we see in nature. The conformational properties of a polymer chain in solution depend on the quality of the solvent, which varies with temperature and chemistry. In a good solvent, the effective interactions between the polymer segments are repulsive, causing the chain to swell in order to maximize polymer-fluid interactions. On the other hand, in a poor solvent the effective interactions between segments are attractive, causing the chain to collapse. At the θ-temperature, the attractive and repulsive interactions between polymer segments cancel each other out, resulting in the polymer conformation having dimensions that of a random walk. The θ-temperature is of particular interest to scientists, because these conditions mark the boundary between polymers exhibiting a tendency to remain in solution versus exhibiting a tendency to precipitate. In this molecular dynamics study, linear chains, rings, and branched polymers of varying molecular masses and chemistries are modeled with a bead-spring model in an explicit solvent. The generated trajectories are investigated with the ZENO numerical path integration package to obtain the conformational properties of these polymers such as the radius of gyration, hydrodynamic radius and diffusion.
Sarah Hood

Grant Number: 70NANB16H136

Academic Institution: Hood College

Major: Mathematics

Academic Standing (Sept. ’16): Senior

Future Plans (School/Career): I plan to pursue a master’s degree in a Mathematics field.

NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Materials Science and Engineering Division, Thermodynamics & Kinetics Group

NIST Research Advisor: Benjamin Burton

Title of Talk: Domain Structures and Dynamics of Polar Ordering in Pb(Sc$_2$Nb$_2$)O$_6$ with Pb-O Divacancies

Abstract: Ferroelectrics are materials that exhibit spontaneous electric polarization, which can be reversed by the application of an external electric field. Chemical disorder and/or short-range order in relaxor ferroelectrics creates a low-temperature polar microstructure that is characterized by nano-scale polar domains, and exhibits no macroscopic polarization. Relaxor ferroelectrics have incredible dielectric and electromechanical properties that make them attractive for real life applications such as ultrasonics, energy harvesting, signal processing devices, transducers and actuators. The goal of this research is to simulate, characterize, and understand relaxor domain structures and their dynamics; most importantly including the glassy freezing of domains at low temperatures. In conclusion, the results found are shown in simulation movies that were made at various temperatures, and they show that polar ordering is strongly correlated with chemical order, even at high temperatures. More results were found in graphs of the average temporal correlation functions which shows the glassy regions are present around the 200K temperatures identified by unsmooth plot points.

Jonathan Huff

Grant Number: 70NANB16H045

Academic Institution: Boise State University

Major: Materials Science

Academic Standing (Sept. ’16): Graduate

Future Plans (School/Career): I plan to attend graduate school at Boise State University and attain a Master's in Materials Science.

NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Materials Measurement Science Division, Nanomechanical Properties Group

NIST Research Advisor: Douglas Smith

Title of Talk: Software Development for a Precision Nanoindenter

Abstract: The viscoelastic properties of polymers can be measured through instrumented indentation testing (IIT), also known as nanoindentation, whereby a rigid probe is driven into the surface of a material sample while simultaneously measuring the applied force and resulting indentation depth. Most commercial nanoindenters measure the displacement of the indenter tip relative to the load head where the tip is mounted. When performing long duration experiments such as those used to measure stress relaxation or creep in polymers, the displacement of the sample surface relative to the load head due to thermal drift within the instrument load frame becomes a significant source of error that scales with time. This typically limits the maximum duration of polymer indentation creep experiments to hundreds of seconds, precluding the measurement of slower creep mechanisms.

A custom nanoindenter has been constructed at NIST that addresses the problem of thermal drift by incorporating optical interferometry-based surface and probe displacement sensing to allow for surface-referenced displacement measurements. This nanoindenter, known as the Precision Nanoindentation Platform II (PNP-II), will use feedback control to dynamically track a sample surface and perform creep experiments of arbitrarily long durations.

The presented research will detail progress on the development of control and data acquisition software for the PNP-II, as well as results of preliminary surface-referenced creep experiments on poly(methyl methacrylate) (PMMA).
Name: Hee-tae Jeon
Grant Number: 70NANB16H131

Academic Institution: University of Maryland College Park
Major: Chemical & Biomolecular Engineering

Academic Standing (Sept. '16): Senior

Future Plans (School/Career): Plan to pursue career in polymer science

NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Biosystems and Biomaterials Division, Biomaterials cell Group

NIST Research Advisor: Jirun Sun

Title of Talk: The Unique Functions of Urethane dimethacrylate in Photo-copolymerization with an Ether-based Divinylbenzyl Monomer

Abstract:

Objective: Ester-based dental resin composites are the dominant restorative materials in treating dental caries, but their average service life is only 7 years due to ester decomposition and secondary caries. Ether-based monomers were invented to replace the dimethacrylate resins because they are hydrolytically and enzymatically stable. However, the polymerization of vinylbenzyl groups was slow to be used in dental clinic. The objective of this research is to enhance the polymerization rate of triethylene glycol divinylbenzyl ether (TEG-DVBE) and understand the kinetics and mechanism of the polymerization process.

Materials and Methods: Real time Fourier transform infrared spectroscopy (FTIR) equipped with Attenuated Total Reflectance (ATR) was used to evaluate the kinetics of polymerization. Urethane dimethacrylate (UDMA), ethoxylated bisphenol-A dimethacrylate (EDMA), bisphenol A glycerolate dimethacrylate (Bis-GMA), and TEG-DVBE were homo-polymerized with either camphorquinone (CQ)/ethyl 4-dimethylaminobenzoate (4E) in 0.2 wt% to 0.8 wt% or Irgacure 819 (I819) in 0.5 mol% as photoinitiators. All the samples were cured for 20 seconds with blue light at 400 mW/cm². Each dimethacrylate was also copolymerized with TEG-DVBE in equimolar ratio. After processing the FTIR spectra with Fityk, the degree of vinyl conversion (DC) was determined by monitoring the reduction of -C=C- stretching peak heights using -N-H-(Amide II) as an internal standard. The composition of the copolymer was determined based on the ratio of the remaining monomers.

Results: The polymerization rate of TEG-DVBE was significantly improved by copolymerizing with dimethacrylate monomers. After copolymerization with UDMA for five minutes, the DC was approximately 57% (±3%) with CQ/4E and 61% (±0.5%) with I819 as initiators, respectively. After an hour, both systems achieved about 70% DC. TEG-DVBE polymerized faster with UDMA than it did with EDMA or BisGMA when CQ/4E was used. In addition, the composition of the UDMA/TEG-DVBE remained constant during the polymerization process, while composition shift was observed when TEG-DVBE was copolymerized with EDMA or BisGMA. The functions of UDMA as co-initiators were furthered confirmed by homo-polymerizing UDMA without the presence of 4E. The DC of UDMA reached the same level with and without 4E by varying the amount of CQ, while other dimethacrylate monomers did not cure without 4E.

Conclusion: The copolymerization results suggest that UDMA may serve as a co-initiator with CQ, while other dimethacrylates do not. The unique function of UDMA during copolymerization includes increasing the polymerization rate and controlling the composition of the copolymer. UDMA and TEG-DVBE copolymer system could serve as a longer-lasting dental resin.
Erica Lee

Grant Number: 70NANB16H131
Academic Institution: University of Maryland College Park
Major: Materials Science & Engineering
Academic Standing (Sept. '16): Sophomore

Future Plans (School/Career): Graduate School
NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Materials Measurement Science Division, Security Technologies Group
NIST Research Advisor: Aaron Forster
Title of Talk: Durability of Carbon Nanotube Reinforced Alumina Fiber - Epoxy Composites

Abstract:
Fiber reinforced composites are often used as structural elements in aerospace, transportation, and energy applications due to their high strength to weight ratio. Unfortunately, traditional fiber reinforced plastic composites are prone to failure due to out-of-plane loading via delamination and matrix cracking. Multwall carbon nanotubes (CNTs), attached directly to the reinforcing fibers, have been shown to significantly improve out of plane fracture toughness and interlaminar shear strength. These improvements have been attributed to the nanotubes' ability to increase the energy required for crack propagation through the epoxy matrix. However, there are few studies on the durability of these CNT modified fiber composites.

A durability study was performed by immersing CNT and non-CNT reinforced alumina fiber-epoxy composites in water at 25°C and 60°C up to 90 days. Mechanical and chemical changes in the composites were characterized through a 3 point bend test combined with acoustic emission and electrical resistance monitoring, water uptake measurements, X-Ray diffraction, and SEM imaging.

We found that there was no change in strength at ambient conditions. On the other hand, the alumina composites exhibited a loss in flexure strength and absorbed more water than the CNT composites at the elevated temperature. FTIR and X-ray diffraction confirmed the presence of Al(OH)₃ peaks on the outer alumina fiber surfaces. Dry alumina fibers absorb water, causing the formation of oxide hydroxides. These oxides weaken the bonding between the fiber and polymer, thereby reducing the composite’s mechanical strength. While the nanotubes did not prevent alumina hydration, CNT reinforcement prevented strength reductions as the composite degraded. The impacts of this research on applications of CNT reinforced fiber composites will be further discussed.

Michael Locke

Grant Number: 70NANB16H051
Academic Institution: University of New Hampshire
Major: Mechanical Engineering
Academic Standing (Sept. '16): Junior

Future Plans (School/Career): I plan to attend graduate school to further my studies in the field of Mechanical Engineering
NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Materials Science and Engineering Division, Mechanical Performance Group
NIST Research Advisor: Steven Mates
Title of Talk: Characterizing Material Behavior Via High-Rate Mechanical Testing Using a Split Hopkinson Pressure (Kolsky) Bar and Pulse Heating System

Abstract:
To accurately simulate rapid deformation processes such as forming, impact welding, and subtractive manufacturing, we need to understand how materials behave at high strain rates and, usually, elevated temperatures. Efforts during this fellowship included the characterization of 1018 steel, 6061 Aluminum, and 1100 Aluminum, which are currently being examined as part of a rapid deformation research at the University of New Hampshire. The typical method used to measure high strain rate mechanical properties is a Split Hopkinson Pressure (Kolsky) Bar. In this work, I use a specialized Kolsky bar method that is outfitted with a pulse heating system to perform tests over a range of temperatures. This form of material testing provides measurements of stress, strain, strain rate, and temperature. These measurements are then used to calibrate the Johnson-Cook flow stress model, which is a popular and simple empirical model of material strength at high strain rates and temperatures that can be used to simulate rapid deformation processes being examined at the University of New Hampshire. Mechanical measurements were performed on these materials at strain rates between 2000 s⁻¹ and 4000 s⁻¹, and temperatures from 25°C up to about 100°C below the melting point. Johnson-Cook model coefficients were obtained by finding the lowest deviation between the model data and experimental data using a customized MATLAB script that I developed. The results of the fitting showed good agreement with the data for 6061 Al and for steel up to about 400°C. However, the Johnson Cook model was unable to capture the steel behavior above this temperature due to dynamic strain aging and phase transformation phenomena in this material, revealing the fact that this simple model cannot capture many real material effects.

"The Future Belongs to Those Who Believe in the Beauty of Their Dreams" - Eleanor Roosevelt
Title of Talk: Property Calculations Within the Interatomic Potentials Repository Framework

Abstract:

Molecular dynamics (MD) is a quick and inexpensive computational method that can describe both the kinetic evolution of an atomistic system and its thermodynamically favorable states. However, MD results depend largely on the interatomic potentials used to define the energy landscape of the system. With this in mind, NIST actively maintains the Interatomic Potentials Repository (IPR), which hosts dozens of potentials for various elements and elemental compounds. That said, it is often difficult for researchers to determine which potential is most appropriate to use. A solution is to use standardized Python scripts that can aid high-throughput screening of potentials while also allowing users to vary values for different computational parameters. Versions of these scripts have already been developed to model point defects and dislocations in crystals, and in support of this ongoing project, we have developed modular scripts to calculate surface energy, generalized planar fault energy, and Bain transformation energy landscapes. We will demonstrate the use of the Python notebooks, discuss the calculations as implemented, and discuss plans to integrate them into the IPR framework.

Title of Talk: Simulation of Superquadric and Supertoroid Particles to Examine the Effects of Particle Shape upon Self-Assembly Behavior

Abstract:

This talk discusses the development of a Monte Carlo simulation of three-dimensional particles, which are defined superquadrics and supertoroids, to examine self-assembly and particle packing behaviors of real-world particles with a wide variety of shapes, such as red blood cells or proteins. A superquadric is an object defined by a set of parametric equations which can represent shapes such as cubes, cylinders, or spheres. A supertoroid is similar to a superquadric, but has a hole in the middle. This work focuses on the extension of existing particle interaction simulation of identical superquadrics to include supertoroid particles and non-identical particles. This could lead to an increased understanding of binding sites for proteins, phase transitions, or development of new materials from self-assembly behavior.
Title of Talk: Developing the Cloud of Reproducible Records (CoRR) and evaluating its performance compared to existing tools.

Abstract:
Due to the irreproducibility of computational research, there has been a recent push for a reliable, automated, and effective method of capturing simulations. Thus, the scientific community has seen the appearance of tools such as mcerual and Git for source code version control; Sumatra for execution control; virtual machines, docker and ReproZp for environment control; Tavern and gally for workflow control. Each of these tools is appropriate for very different needs, however they are not integrated with each other or other systems. We are working to develop a tool called the Cloud of Reproducible Records (CoRR). The goal is to integrate various systems such as version control, environment control and possibly workflow control with a new system of tracking simulation execution, and uploading reproducible records to the cloud platform counterpart of the project. This way a scientist has the ability to collaborate by downloading a record, then rerun it to get the same results or modify it to extend their own research.

We were able to make progress by developing simple phase-field benchmark problems which simulate the phase transitions between materials. These benchark problems would serve as a way to determine how the previously mentioned systems of execution control perform. Then we replicate the effective features, and incorporate new features such as cloud storage and more intensive metadata tracking. Once CoRR is complete, it will enable users to easily identify causes of failures, crashes and result variations. Users could also perform extensive parameter studies all while CoRR autonomously ensures that the research is reproducible and easily sharable with others.
Name: Ai Nguyen
Grant Number: 70NANB16H
Academic Institution: Montgomery College
Major: Biochemistry

Academic Standing (Sept. ’16): University of Maryland, College Park, sophomore

Future Plans (School/Career): I plan to pursue a career in toxicology or organic synthesis

NIST Laboratory, Division, and Group: Material Measurement laboratory, Materials Science and Engineering division, Functional Polymers group

NIST Research Advisor: Christopher Stafford, Bradley R. Frieberg

Title of Talk: A performance of water and light: Characterizing water purification membranes using ellipsometry

Abstract:
Polymer has become an essential material in everyday use, especially in the water purification industry. A thin polymer layer (~100 nm) acts as a permeable membrane that separates salt ions from water. The conventional method in fabricating this active layer is interfacial polymerization due to its scalability and simplicity. However, the chaotic polymerization process prohibits a detailed understanding the membrane’s structure and transport. Solution-based molecular-layer-by-layer (mLbL) film growth overcomes this problem by enabling nanoscale control of the selective layer thickness and roughness, but slow film formation and the use of volatile solvents make it undesirable in manufacturing. As a result, NIST researchers are working with the University of Colorado on a vapor-phase process that eliminates the use of volatile solvents and can deposit faster. It is hypothesized that the properties of these membranes will be similar to those that are made via solution-based approaches.

To this end, I have conducted a series of swelling tests to investigate the connectivity of both the solution-based and vapor-based membranes. I employed spectroscopic ellipsometry in conjunction with a liquid cell, where humidity is introduced to the chamber using mass flow controllers that bubble dry Nitrogen through a water container. I then build an optical model that best matches the ellipsometry data in order to extract the film’s properties, such as refractive index, surface roughness, and thickness. Since ellipsometry can continuously and quickly measure how the film’s thickness responds to changes in humidity, I also hope to extrapolate its diffusion coefficient to better understand how water interacts with these membranes.

Name: Edward Nusinovich
Grant Number: 70NANB16H131
Academic Institution: University of Maryland College Park
Major: Mathematics - Applied

Academic Standing (Sept. ’16): Sophomore

Future Plans (School/Career): Pursuing a career in artificial biomechanics and rehabilitation of amputees with trans-tibial and trans-femoral amputations. Planning to go to graduate school in the field.

NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Materials Science and Engineering Division, Thermodynamics & Kinetics Group

NIST Research Advisor: Shengyen Li, Carelyn E Campbell

Title of Talk: The application of data mining techniques for efficient material design

Abstract:
For materials that have been in use for an extensive period of time, there is often an established underlying physical model with parameters that account for the behavior of the material. For new materials, the model parameters governing the material properties may not be known. The aim of this research is to automate the process of determining material properties from a limited (and potentially noisy) set of experimental data, and to use this knowledge to help design new materials for specific applications.

A software package was developed that allows a user to input a physical model and an experimental dataset. Based on these inputs the software determines the optimal parameters for the model to best fit the experimental data. Specifically, the software provides the ability to enter a stress-strain dataset, and then determine the tensile and yield stress of the material. Using these inputs, the user can then use a constitutive model for plastic deformation to predict the strain hardening rate of the deformation. The advantage of this approach is that it enables the prediction of the material behavior in both the elastic and plastic regions without extensive material property data and without having to specify the yield stress to determine the behavior.

Another useful feature of the software is its versatility. A user can automatically upload data from a text document, a data file, or an XML schema, without having to transform the files. This significantly reduces the time needed to setup an analysis and provides a powerful way to easily aggregate data from myriad sources.
As our demand for freshwater for irrigation, energy generation, and manufacturing rapidly grows, it is imperative that we implement methods of water purification that are efficient and cost effective. Currently, reverse osmosis (RO) is the most widespread method of water desalination, in which a pressure exceeding the osmotic pressure between the salt ions and pure water is applied to selectively permeate water across a semipermeable membrane while retaining the salt ions. At present, polyamide membranes are the material of choice for most RO membranes due to their ideal combination of water permeability and selectivity to salt. However, the salt transport of these membranes is not well understood and we seek to develop a complete understanding of their behavior. Based upon prior research, it was hypothesized that polyamide membranes exhibit both solution diffusion through the polymer matrix and pore diffusion, where diffusants move through the pores in the membrane. In this project, model membranes were studied to characterize the mechanism(s) of salt transport in those commercial membranes. A model polymer was chosen, poly(2-vinylpyridine) (P2VP) that was shown to exhibit solution diffusion. Spin coating and quaternization allowed us to tune membrane thickness and permeability respectively. Electrical Impedance Spectroscopy was used to examine the influence of these properties on the impedance of the membrane. A novel 3-groove experimental setup was also examined, which allowed for direct placement of films of any thickness onto one of the metal electrodes. We compared the impedance results of the P2VP films at the same electrolyte solution concentration with that of the polyamide membranes by analyzing the changes in the characteristic time constant of the membrane.
Finite Element Analysis (FEA) is a numerical technique used to approximate solutions to common engineering problems. Engineers often employ FEA to simulate engineering processes under different scenarios, which could have different governing equations (e.g., heat, static equilibrium). This makes it a helpful tool to increase our understanding of the physical world. FEA discretizes a domain of interest into smaller entities called elements and obtains field variables (e.g., displacement, temperatures etc.) at specified points called nodes to approximate the governing equations. In this project, a commercially available software package, Abaqus, was used to conduct FEA of two problems.

The first problem comprises studying the environmental degradation of the U.S.S. Arizona, which is a battleship constructed by the Navy from 1914-1915. The attack on Pearl Harbor left her critically damaged on the front side. Ultimately, she sank and has stayed there under water ever since serving as a symbol and monument of the Second World War. Unfortunately, the corrosive oceanic environment degrades the structural integrity of the ship. In order to analyze the ship, a 3-D FEA model, covering an 80-foot midsection, was created using SOLIDWORKS software. Old blueprints and construction photographs provided the dimensions and structure of the ship. The FEA model will ultimately help predict the effects of corrosion and wear from her surroundings to estimate the life of the ship before collapsing.

The second problem involves studying the effects of load reversal in sheet materials used in automotive manufacturing. Researchers are working to develop testing techniques to apply in-plane tension and compression to thin sheets of metal without the occurrence of buckling. FEA is being used to as part of the design process. Baseline experiments were conducted to allow for validation and calibration of the FEA model. The comparison between the model and these experiments is presented in the current work. Once validated, the FEA model will ultimately be used to determine the optimum specimen geometry.

Electrospinning, a process that uses electric charge to produce polymeric nanofibers, is rapidly gaining traction in the scientific community due to its versatility and wide range of applications. Electrospun fibers have a high surface area to volume ratio, high tensile strength, and controllable topography. These properties make electrospun fibers ideal for implementation in tissue engineering, protective clothing, and filtration technology. The most prominent obstacle to commercialization of electrospinning in fabrication operations is lack of reproducibility. Environmental variables such as temperature and humidity significantly affect fiber diameter and morphology, and equipment that adequately controls these parameters can cost tens of thousands of dollars. The continued advancement of electrospinning technology would be enhanced by an inexpensive and publicly available system for controlling fiber production.

This need was addressed through the development of an open source, easily-modified system for controlled electrospinning and improved process reproducibility. An open source design for a 3D-printable syringe pump was used in a custom-built acrylic glovebox to reduce costs. The environment and electrospinner were controlled through programs written in Python using a simple, open-source computer (Raspberry Pi 3). The program contains a graphical user interface (GUI) that allows the user to track humidity and temperature in the electrospinning environment, control a humidifier to change the humidity, and send commands to the syringe pump. This talk will address the cost, reproducibility, and safety advantages of this open source method of electrospinning, as well as its effectiveness in regulating fiber diameter and fiber surface morphology.
Sarah Smith

Name: Sarah Smith
Grant Number: 70NANB16H064
Academic Institution: University of Kentucky Research Foundation
Major: Chemical and Materials Engineering
Academic Standing (Sept. '16): Senior
Future Plans (School/Career): Pursue a graduate degree in chemical engineering focusing in polymer science
NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Materials Measurement Science Division, Surface & Trace Chemical Analysis Group
NIST Research Advisor: Shin Muramoto
Title of Talk: Potential Age Dating of Fingerprints using Time-of-Flight Secondary Ion Mass Spectrometry: Looking at the Diffusion of Fatty Acids on Model Surfaces that Mimic Real World Surfaces
Abstract:

In forensics, there is enormous value in being able to age date a fingerprint, since the knowledge of the time of its deposition could reveal a suspect’s connection to a crime scene, which can at the same time eliminate unrelated suspects and potentially reduce a backlog of evidence waiting to be analyzed. In previous work, the extent of diffusion of fatty acids from the fingerprint onto a surface was used as a marker for determining the age of a fingerprint, using time-of-flight secondary ion mass spectrometry (ToF-SIMS) as an imaging tool. In this subsequent study, the diffusion of palmitic acid was observed on a variety of surfaces for the development of models that can be used to predict its diffusivity and behavior on real world surfaces, accomplished using self-assembled monolayers (SAMs) with (-OH, -COOH, -COOC, -OCH3, -NH2, -CF3, -C6H6) terminated alkane thiolds that mimic surfaces such as glass (-OH), polyester (-COOCH3), polystyrene (-C6H6), and cooking utensils (-CF3). The polar interface energy of the surfaces ranged from (36.8 ± 1.1) mJ/m² to (0.2 ± 0.2) mJ/m², which were consistent with energies found on surfaces of commercialized products designed for everyday use. The extent of diffusion of palmitic acid was monitored everyday using ToF-SIMS for 15 days, and the intensity profile of its outward flow was fit to a power model. The diffusivity, determined assuming a semi-infinite plane error-function for mass diffusion, ranged from (2.1 ± 1.8) x 10^-5 mm²/h on a (-CH3) terminated surface to (8.3 ± 2.9) x 10^-5 mm²/h on a (-OH) terminated surface, indicating the need to know the properties of the surface for accurate age determination. While the extent of diffusion of palmitic acid was discrete for an average of five days, its extent beyond this time was more difficult to distinguish and more prone to errors, suggesting a need for another marker for measuring the age of older fingerprints.

Karina Stetsyuk

Name: Karina Stetsyuk
Grant Number: 70NANB16H136
Academic Institution: Hood College
Major: Math & Computer Science
Academic Standing (Sept. '16): Senior
Future Plans (School/Career): Will attend graduate school to study Environmental Engineering.
NIST Laboratory, Division, and Group: Material Measurement Laboratory - MatSci, Materials Science and Engineering Division, Thermodynamics & Kinetics Group
NIST Research Advisor: Lucas Hale Zachary Trautt
Title of Talk: Adding automated uncertainty estimates to temperature- and pressure-dependent property calculations of iron from molecular dynamics
Abstract:

As atomistic simulations become increasingly widespread and easy to do, it becomes even more important for researchers to learn the proper applications of the classical interatomic potentials for optimal, and believable, results. The Interatomic Potentials Repository (IPR) project at the National Institute of Standards and Technology has for years hosted interatomic potentials (force fields) of known provenance, primarily for metallic materials. Now the project is expanding to include an open-source framework to calculate material properties for potentials on the IPR website. This framework can also be downloaded and used outside of the IPR. A number of calculations are being developed in this framework to help users select potentials best suited for their needs, which can include a wide range of applications.

In this study, we focus on measuring lattice parameters of a crystal structure for iron at different temperatures and pressures using molecular dynamics. In order to do this, we implement a method for finding an appropriate section of data in which the structure is at equilibrium. Routines are constructed to properly estimate mean and standard deviation of mean for the lattice parameters and potential energy. We implemented the pymbar method to estimate, via interpolation, properties and their standard deviations at intermediate temperatures and pressures. This improves understanding of potentials and their associated material properties by demonstrating how they behave over a wider range of values than just those explicitly calculated. Results for potentials of pure iron are compared to experimental values. This system serves as a prototype for other elements and alloys and is being integrated into the framework under development.
Title of Talk: Developing a System to Encode Multicomponent Adsorption Isotherms for Standard Reference Data Use

Abstract:
Adsorbent materials have been used for over a century for important applications including gas purification and separation, water purification, and desiccants. In the past two decades, advances in chemistry have led to the development of new adsorbent materials including activated carbons, silicates, and metal organic frameworks. Because of their high surface areas and selectivity, these new materials can be used to develop more efficient and cost-effective methods to remove pollutants from the air, purify solutions, and catalyze reactions. However, due to the extensive number of ways in which they can be modified such as processing temperature, chemical treatment, and composition, they require a substantial amount of research. Currently, there is poor communication between researchers because they lack standardized experimental procedures, material naming conventions, reference data, and standard formats for data exchange. This has hindered the development of materials capable of solving issues.

A need to improve communication has led NIST to develop a database of Novel and Emerging Adsorbent Materials to aid researchers in accessing and comparing adsorption data. This database is under continuous development and includes only a fraction of the isotherm data that has been published. This summer we helped resolve this issue by digitizing single component isotherms, thereby increasing the reach of the database. Additionally, we expanded the database system to include multicomponent gas adsorption. Multicomponent isotherms are more difficult to digitally encode as the composition of the gas adds constraints that must be recorded to fully describe a multicomponent adsorption experiment. By reviewing several hundred articles on multicomponent adsorption we were able to develop, test, and refine a file format that can robustly and accurately encode this data. This addition is important as it allows for the inclusion of data on selective adsorption of mixtures to represent gases like those found in nature and industry.
Title of Talk: Calculation of Radial Distribution Functions using Histogram and Spectral Monte Carlo Methods on a Graphical Processing Unit

Abstract:

A radial distribution function (RDF) represents the probability of an atom being present at a certain distance away from a reference atom. The resulting function summarises pair-wise interactions from a complex atomic or molecular system and provides insight into its underlying structure, which, in turn is directly related to many macroscopic properties of a material. Since RDFs can be determined for both experimental and simulated systems, these functions are often used to characterize the accuracy of a computational model. In computational studies, RDFs are typically calculated by determining the distance between all distinct interaction pairs and then binning the results to generate a normalized histogram. Unfortunately, this method is computationally expensive and often produces noisy, discontinuous results. A number of available RDF calculators partially resolve these issues by using the parallel processing capabilities of Graphical Processing Units (GPUs) to reduce calculation time. However, these programs often fail to properly account for the molecular topology within simulated systems, resulting in inaccurate RDFs that cannot be used in further calculations. In an attempt to rapidly generate viable RDFs, we present a new GPU-based algorithm that takes into account the molecular structure of the considered system. Different iterations of this algorithm were tested to determine how to best take advantage of the processing power of a GPU. The final version of the program calculates the histogram for all possible interaction pairs and then subtracts contributions from the molecular structure. This method achieves computational speeds on par with other GPU-based RDF calculators. We also setup a second algorithm that uses the recently introduced Spectral Monte Carlo (SMC) in an effort to see if similar speeds could be achieved when compared to the histogram method described above. Though the final version of the SMC method ran slower than the histogram method, the resulting RDFs are more accurate than those calculated by the histogram method. In addition, the RDFs generated by the SMC method converged after processing significantly less data than the histogram method. Both the SMC and histogram method were at least one order of magnitude faster than RDF calculators running on a Central Processing Unit.
Abstract:

Block copolymer blends are known to self-assemble into a wide range of nanoscale morphologies, such as lamellae, cylinders, and spheres. By adjusting factors such as constituent chemistry, relative molecular weights, and concentrations, the length scales of those morphologies can be tuned for nanopatterning applications. Lamellar structures, in particular, have been extensively investigated for potential uses in next-generation lithography, and lamellae with simple spacing patterns have been produced in directed self-assembly of diblock-homopolymer blends and in triblock-homopolymer blends. However, lamellae with multiple spacings remain difficult to synthesize, and may require alternative blend compositions.

One possible solution could involve triblock-diblock copolymer blends with A-B-A/B’-C compositions (B’ comprising the same polymer as B but with different molecular weight). Previous studies on A-B-A triblocks have shown that the lack of a free chain end in the middle B block causes a restricted conformation, which lowers the B block’s miscibility, especially with higher molecular weight additives. It is thus hypothesized that in lamellar structures formed from an A-B-A/B’-C triblock-diblock blend with miscible A and C blocks, the triblock A block and the diblock C block will readily mix, but miscibility of the triblock B block and diblock B’ block will depend on the relative molecular weights of the B and B’ blocks. By fine-tuning the composition of an A-B-A/B’-C triblock-diblock blend with A/C miscibility but B/B’ immiscibility, it may be possible to produce novel A-B-A-C lamellar structures with multiple spacings.

The objective of this project is to assess structural morphologies of various triblock-diblock blends with small-angle x-ray scattering testing and MATLAB simulations, and to evaluate the effectiveness of using differential scanning calorimetry to determine triblock-diblock blend miscibility. The triblock-diblock blends were compared with triblock-homopolymer reference blends, and the morphology and miscibility data compiled to create phase diagrams for the triblock-diblock blends and triblock-homopolymer blends.
Selective separations of light hydrocarbons are primarily performed by cryogenic distillation, an energetically costly process that could potentially be lowered by the development of solid adsorbents that operate at higher temperatures. Metal organic frameworks (MOFs) represent a promising route for this application. MOFs are made by linking inorganic and organic units, which leads to a high degree of flexibility in the material's geometry, functionality, and pore geometry. MOFs can possess high surface areas, making them ideal candidates for the capture of hydrocarbon gasses. There are strong differences in adsorption selectivity if we change the framework just by using, for example, a different metal and maintaining the overall atomic arrangement of the MOF, or by using a different ligand isomer to make the framework.

Here, we studied the structure and properties of Co$_2$(m-dobdc) (dobdc$^-$: 2,5-dioxido-1,4-benzenedicarboxylate), and its affinity for hydrogen and several light hydrocarbons. High resolution powder neutron diffraction was applied in order to probe the interactions of the gas molecules with Co$_2$(m-dobdc). Thermal neutrons are highly penetrating, their scattering does not have a strong dependence on atomic number, and are very sensitive to hydrogen/deuterium. Powder diffraction patterns of the MOF, with and without gases, were analyzed using the Rietveld refinement method to determine the atomic scale structure and locations of the molecules. Ultimately, this approach will allow us to rationalize why we observe such different adsorption characteristics for each different MOF and allow the accurate use of theoretic computation methods to get even more detailed understanding of the MOF-adsorbate interactions in order to design ever better suited materials for application.
Name: Ryan Fangmeyer
Grant Number: 70NANB16H146
Academic Institution: North Carolina State University
Major: Mechanical Engineering
Academic Standing (Sept. ’16): Sophomore
Future Plans (School/Career): Graduate and pursue a master’s degree in mechanical engineering
NIST Laboratory, Division, and Group: NIST Center for Neutron Research, Reactor Operations and Engineering Group
NIST Research Advisor: Michael Middleton and Bryan Eyers
Title of Talk: System Control: Upgraded Refrigerator

Abstract:
A planned conversion of the NBSR to low enriched uranium will cause a loss of 10% in neutron flux. Compensation for this loss is key to maintaining the NCNR standards of operation, and will partially be achieved by replacing the existing liquid hydrogen cold neutron source with a deuterium cold source. Deuterium is a far more efficient moderator and will significantly reduce the chance of neutrons being absorbed or wasted. The new cold source will require an upgraded 7 kW helium refrigerator, compared to the existing 3.5 kW helium refrigerator. Commissioning of the refrigerator is expected in 2017.

The system control of the new refrigerator consists of HMI programming, extensive wiring, and physical installations. The Programmable Logic Controller (PLC), which contains control logic software, maintains a direct link to the Factory Talk viewer we use to operate all components of the refrigerator. Memory variables that reference instruments, alarms, and display screens were all created for the operation of the HMI aspect of the refrigerator. Wiring diagrams as well as the wiring of each instrument related to the refrigerator must be up to date and accurate. Several controls for the refrigerator were wired, including the turbomolecular pump, various actuators and valves, as well as each PLC connection for the components.

The turbomolecular pump is used for insulation of the cold box of the refrigerator because all of the components within are at cryogenic temperatures. Installation of conduit for the wiring was created to have a permanent pathway for new and existing wires to the power source. Soldering of pins in a terminal box connected to the turbomolecular pump was done to establish a connection to the PLC.

Name: Daevin Bhat/Hugh
Grant Number: 70NANB16H131
Academic Institution: University of Maryland, College Park
Major: Mechanical Engineering
Academic Standing (Sept. ’16): Senior
Future Plans (School/Career): I plan to complete my B.S. in Mechanical Engineering at the University of Maryland and eventually pursue a Master’s Degree in Mechanical Engineering.
NIST Laboratory, Division, and Group: NIST Center for Neutron Research, Neutron Condensed Matter Science Group
NIST Research Advisor: Thomas Gnaupel-Herold, Justin Milner
Title of Talk: Characterizing and Verifying Parameters for Two New Mechanical Systems Through the Multi-axial Deformation of Automotive Sheet Metal

Abstract:
With modern car design’s focus on lowering the weight and increasing the safety of cars, the characterizing of the mechanical properties of the multi-axial deformation of various kinds of automotive sheet metal is an important area of research. The main focus of this project was to characterize parameters for future study of two straining devices through the multi-axial deformation of various types and geometries of automotive sheet metal.

To assist in characterizing parameters for these two straining devices, digital image correlation, a method to measure the deformation and strain of a material, was used to obtain data. Though various geometries were tested, they were all subsets of two main geometries; specifically, eight-armed and planar specimens. Eight-armed specimens were deformed using octo-strain, an eight armed device capable of stressing a specimen in eight directions along a single plane, either through tension or compression. Planar specimens were deformed using an in-plane shearing device, a device which uses one clamp to hold the top of a specimen stationary, in tension, or in compression and a second clamp to move the bottom of a specimen in-plane horizontally.

Through many multi-axial deformation tests of both eight-armed and planar specimens, parameters for each device were determined. In addition, the results show that a suitable force control and displacement control loop for both devices have been verified for operation in future tests for uniaxial, equi-biaxial, and strain change paths. Future work includes, testing and verification of control loops for other multi-axial deformations and testing of other metals and geometries; such as, twinning-induced plasticity steel (TWIP) and thicker spot welded specimens of 1030 steel.
Name: Ian Hunt-Isaak

Academic Institution: Oberlin College
Grant Number: 70NANB16H130
Major: Physics
Future Plans: Pursue a PhD in Physics

NIST Laboratory, Division, and Group:
NIST Center for Neutron Research, Neutron Condensed Matter Science Group

NIST Research Advisor:
Steven Howell, Joseph Curtis

Title of Talk:
Small Angle Scattering Calculator for Periodic Boundary Conditions.

Abstract:
Tools to calculate the small angle scattering of simulated molecular structures are critical to identifying models, which agree with experimental scattering data. Unfortunately, existing calculators are only effective for simulations of dilute molecules, not for dense simulations employing periodic boundary conditions (PBC). A calculator capable of handling PBC would allow for study of scientifically novel and medically applicable systems. Unfortunately no generic calculator for systems with PBC exists, largely because of the difficulty imposed by the finite box. In the parallel field of metallic liquids, efforts have been expended toward understanding and developing the statistical mechanics that allow for intelligent minimization of the effects of the finite size of the simulation box. Drawing from this work, as well as modifying existing calculators to handle simulations of multiple molecules, we have developed software to perform the scattering calculations of interest. A small angle scattering calculator capable of handling dense simulations with PBC will facilitate comparison of molecular simulations to experimental scattering measurements, thereby furthering the study of dense protein solutions that are important in medicine.

Name: Samantha Isaac

Academic Institution: West Virginia University
Grant Number: 70NANB16H158
Major: Physics & Mathematics
Future Plans: I plan on attending graduate school and eventually earning a PhD in physics.

NIST Laboratory, Division, and Group:
NIST Center for Neutron Research, Neutron Condensed Matter Science Group

NIST Research Advisor:
Leland Harriger

Title of Talk:
Monte-Carlo Exploration of Focused Neutron Guide and Monochromator Geometries

Abstract:
A new cold neutron source will soon be built at the NIST Center for Neutron Research (NCNR). At this time, the current cold triple axis spectrometer, SPINS, and its neutron guide, NGS, will also be redesigned in order to increase data collection by at least one order of magnitude. A neutron guide contains surface coatings that line the inner walls which allow the neutrons to bounce down the guide. Currently SPINS is fed by an older generation straight, rectangular guide with Ni58 coating. Newer supermirror guide coatings can greatly increase neutron acceptance, but at a cost of lower reflectivity. Using Monte Carlo simulations, we have explored focusing guide geometries with ballistic transfer of neutrons from source to monochromator. A second focusing of the neutron beam is accomplished using a double focusing monochromator. Thus, neutron extraction from the moderator is first focused by the guide into a source image and then again, by the monochromator, to the sample position. By including the monochromator into the Monte-Carlo, we are able to fully optimize the flux from source to sample.

After the sample, several cold neutron instruments are under consideration. Two possibilities are the Low Energy Anti-Focusing Spectrometer (LEAF) and the Continuous Angle Multi-Energy Analysis spectrometer (CAMEA). Both spectrometers simultaneously analyze multiple neutron energies over wide scattering angles – something SPINS lacks. Once optimization of the guide and monochromator is complete, similar Monte-Carlo studies will use this front end to compare different back end designs and optimize their performance.
Enhanced Safety Analysis Code Suits for the Reactor Design at NCNR

Abstract:
A complete safety analysis is imperative for the development and implementation of a nuclear reactor. Part of the new reactor design project at NIST Center for Neutron Research (NCNR) involves intensive thermal-hydraulics based safety analyses. The purpose of this study is to enhance the safety analysis code suites we are currently using by incorporating state-of-the-art critical heat flux correlation into it. There are two goals for the study: (1) Analyze whether or not the reactor will be able to remain within the desired margin of safety for the critical heat flux ratio (CHFR) and onset of flow instability ratio (OFIR), and (2) determine whether the Sudo-Kaminaga correlation (the new correlation) is a viable successor to the Minshak correlation (the old correlation) in regard to the critical heat flux ratio (CHFR) calculations.

A MATLAB based program will be developed to extract the data from the safety analysis code - PARET/ANL, calculate the CHFR and OFIR values, and analyze the results. Data from several hypothetical design based accident cases will be processed by the program to demonstrate the efficiency and effectiveness of the utility. In doing so, the high probability of safety for the new reactor can be verified.

Designing an AC Magnetic Susceptometer Measurement Technique in Conjunction with High Pressures and Low Temperatures in Neutron Beam Experiments

Abstract:
The NIST Center for Neutron Research (NCNR) hosts numerous neutron spectroscopy instruments to measure the structure and dynamics of samples. Alternating current (AC) magnetic susceptibility has proven a valuable tool to probe the magnetic properties of a variety of materials. The ability to perform simultaneous structural and magnetic measurements on a sample at identical high pressure and low temperature conditions would be a valuable addition to NCNR sample environment capabilities. Through the course of this talk, I will highlight key steps taken in the development, construction, and calibration of a new AC susceptometer to operate around this preexisting infrastructure. Then, I will conclude with recently collected measurements demonstrating the efficacy of the new system.
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Madeleine Pasco
Academic Institution: Rose-Hulman Institute of Technology
Major: Biology
Academic Standing (Sept. '16): Junior

Future Plans (School/Career): Ph.D. in Synthetic Biology or Microbiology
NIST Laboratory, Division, and Group: NIST Center for Neutron Research, Neutron Condensed Matter Science Group
NIST Research Advisor: Antonio Faraone and Erkan Senses

Title of Talk: The effect of nanoparticle architecture and softness on the mechanical properties of the composite polymer

Abstract: Addition of nanoparticles into a polymer matrix allows for the fine manipulation of the composite material’s mechanical properties. While extensive work has been done to characterize the effect of the nanoparticles’ shape, size, and concentration on the composite polymer’s mechanical properties, the role of nanoparticles’ conformation and softness is not fully understood. This study investigates the effects of hard/inorganic and soft/polymeric nanoparticles of similar sizes on the macroscopic flow of the nanocomposites at various concentrations. Rheology was used to measure the viscoelastic properties of the composites, and small-angle neutron scattering was used to investigate the nanoparticle size and dispersion in polymer. With a better understanding of the effect of nanoparticles’ architecture and rigidity, polymer nanocomposites can be better optimized for final applications.

SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Aaron Schankler
Academic Institution: Haverford College
Major: Chemistry
Academic Standing (Sept. '16): Junior

Future Plans (School/Career): Pursuing an advanced degree in chemistry
NIST Laboratory, Division, and Group: NIST Center for Neutron Research, Neutron Condensed Matter Science Group
NIST Research Advisor: Paul Kienzle

Title of Talk: Refining a Markov Chain Monte Carlo Algorithm for Fitting Neutron Reflectometry Data

Abstract: Neutron reflectometry is a powerful tool for investigating subsurface interfaces, however we cannot calculate the structure of an interface directly from reflectivity data. Instead, we can build a parameterized model of the structure and adjust it until the calculated reflectivity agrees with the experimental reflectivity. At the NCNR, we use DREAM, a Markov chain Monte Carlo (MCMC) algorithm, which wanders the space of parameters describing the sample structure somewhat randomly, proposing a set of parameters for the model with each step. A candidate set of parameters is either accepted or rejected with a probability based on its agreement with the data. This type of algorithm is more robust to high dimensional, multi-modal search spaces, and when run for enough time, the distribution of accepted points can be used to generate confidence intervals and identify correlated parameters.

The current MCMC implementation has several issues. Most importantly, the fit can occasionally become stuck when dealing with especially complex or unconstrained problems. To determine the proper settings for the fitter and to determine whether a fit is stuck, still converging, or ready to draw conclusions from, users of the fitting program must have some understanding of the underlying fitting algorithm. To address these problems, we have constructed new statistical tests to determine when a fit is stuck and when a fit is converged. We will use these tests to relieve users of some of the tasks associated with fitting a model by making the fitting process more adaptive and less prone to becoming stuck. This will make the fit more robust and easier for non-experts to interpret.
Title of Talk: Structural and Mechanical Characterization of HPMC/SDS Aggregation through Rheological and Neutron Scattering Measurements

Abstract:
The incorporation of polymers into commercial surfactant solutions enables control over the consistency and flow properties of many consumer products such as soaps, shampoos, and detergents. However, producers encounter complexity in creating formulations which exhibit desirable consistency due to nonmonotonic changes in solution viscosity as surfactant concentration is varied. This phenomenon results from surfactant aggregation upon polymer chains, yielding proposed nanoscale structures with dimensions suitable for characterization by small angle neutron scattering (SANS). In this study, the structure and rheological behavior of aqueous solutions of highly substituted hydroxypropylmethyl cellulose (HPMC) in the presence of sodium dodecyl sulfate (SDS) was investigated for a wide range of surfactant concentrations. Conductivity measurements were utilized to determine the critical aggregation concentration (cac) and the polymer saturation point (psp) of the system. Subsequent rheological measurements were used to investigate the mechanical properties of solutions with intermediate surfactant concentrations to deduce the impact of aggregation on shear thinning. Static and rheological SANS were then employed to deduce the formation of network, pearl necklace, and micellar structures in addition to relevant size and spacing parameters. With an improved understanding of the interplay between aggregate structure and rheology, producers will be better informed to create products with not only intended functionality but also finely tuned flow properties.
Name: Danielle Villa
Grant Number: 70NANB16H047
Academic Institution: Eastern Washington University
Major: Physics and Chemistry
Academic Standing (Sept. '16): Junior
Future Plans: Pursuing a PhD in Physics
NIST Laboratory, Division, and Group: NIST Center for Neutron Research, Neutron Condensed Matter Science Group
NIST Research Advisor: Qingzhen Huang, Craig Brown
Title of Talk: Neutron Scattering studies of the Crystal and Magnetic Structures of Molecular Magnets

Abstract:
A particular class of molecular magnets consists of magnetic metal centers and organic ligands that can be coordinated together in a variety of ways. Crystal engineering controls these parameters to tailor the material depending on the desired traits. A general interest in molecular magnetism has risen due to these unique properties fueling the research in quantum magnetic phenomena. Antiferromagnets are of particular interest and are characterized by a magnetic exchange interaction (J) between magnetic moments of opposite sign and their tunable single-ion properties (D). Many different techniques, including magnetization and heat capacity, are used to identify and understand these interactions on a macroscopic level. Neutrons, being sensitive to magnetic moments, are an essential tool for measuring down to the single atoms or bonds. Neutron diffraction can identify atom locations as well as the orientation and magnitude of the magnetic moments even in powder samples. Inelastic neutron scattering directly measures the magnetic energy levels, providing determinations of (J) and (D). My research, focused on Ni(II) and Co(II) based molecular magnets, employs the BT-1 Powder Diffractometer for neutron diffraction and the Disk-Chopper Time-of-Flight Spectrometer for inelastic scattering. These experiments are currently in progress.

Name: Abdullah Weiss
Grant Number: 70NANB16H052
Academic Institution: Texas A&M University-Kingsville
Major: Mechanical Engineering (Nuclear Engineering Minor)
Academic Standing (Sept. '16): Junior
Future Plans: Pursue an engineering career in the nuclear industry
NIST Laboratory, Division, and Group: NIST Center for Neutron Research (NCNR), Reactor Operations and Engineering Group
NIST Research Advisor: Bryan Eyers
Title of Talk: Compton Suppressed Gamma Spectroscopy of Spent Fuel from NBSR

Abstract:
The Neutron Beam Split-core Reactor (NBSR) at the NIST Center for Neutron Research (NCNR) operated at a power of 20 MW. Recent studies performed in INL and Penn State suggested that Compton suppressed gamma-ray detection systems can capture more accurate burnup history of the spent fuel. The Compton suppressed instrument improves the accuracy of several analysis algorithms for different radioactive materials by unmasking peaks that are otherwise covered by the Compton continuum. In this project, the primary goal was to successfully measure accurate gamma spectra in order to detect the isotopes that are in the fuel. The obtained data can be used to calculate a burnup by correlating the 137Cs and 154Eu isotopes, and benchmark calculated fuel inventories.

An apparatus was constructed to allow High Purity Germanium (HPGe) and Bismuth Germanate (BGO) detectors to be suspended over the spent fuel pool. A collimator was hung beneath the detectors in order to channel the gamma rays from the fuel to the detectors. The collimator was held at a controlled distance from the fuel element laying at the pool’s floor; this was done to avoid oversaturating the detectors by shielding them from gammas using the pool’s light-water.

In order to find a safe starting distance between the collimator and the fuel element, a tenth value thickness was calculated using attenuation coefficients that were obtained from recently collected dose rates of four different fuel elements in the pool. Attenuation coefficients were calculated using the dose rates from each fuel element. The average tenth value layer came out to be approximately 1.27 ft. This value is the distance required in the pool’s light water to obtain a tenth of the on-contact dose rate for the fuel elements.

The obtained Compton suppressed gamma spectra gave us the integral of power with respect to time for the fuel elements that were measured, which enabled us to compare and contrast them to the burnup history of the NBSR.
Physical Measurement Laboratory (PML)

Electrical Engineering

Buttles, Robert
Chavali, Sai
Meghasena
Chiu, Arlene
Davis, Robert
Gamble, Claudia
Goebel, Michael
Guo, Anthony
Gurara, Firehiwot
Liu, Eileen
Montgomery, Karl
Motabar, Lily
Nikolaitchik, Theodore
Phan, Nhi
Rhodes, Corey
Vasilyev, Anton

Verrill, Nathan
Wade, Collin
Zirkle, Theodore
Physics

Barner, Lindsey
Brown, Samuel
Edgerton, Joshua
Graybill, Joshua
Hanson, Joshua
Hastings, Hannah
Lindsay, Maxwell
McClung, Samuel
Paseltiner, Daniel
Riley, Benjamin
Schafer, Benjamin
Townley-Smith, Keeley
Underwood, Samuel
Valdillez, Robert
Walecki, Peter
Ward, Jacob
PML - EE
SURF Student Colloquium

NIST – Gaithersburg, MD

August 2-4, 2016

Name: Robert Buttles
Grant Number: 70NANB16H
Academic Institution: University of Maryland College Park
Major: Mechanical Engineering/Physics

Academic Standing (Sept. ’16): Senior
Future Plans (School/Career): Graduate School in some form of physics

NIST Laboratory, Division, and Group: Physical Measurement Lab, Sensor Science Division, Thermodynamic Metrology Group
NIST Research Advisor: Jacob Ricker, Dr. Jay Hendricks
Title of Talk: Automation of an Optical Pressure Standard: Dante’s Divine Comedy of Pressure

Abstract:

The Sensor Science division is working to redefine the Pascal in terms of the Boltzmann’s constant and helium’s refractive index in order to create a new primary method of pressure realization. This device, which has outperformed the current method (mercury manometers), will allow NIST to remove 500 kg of mercury from the lab, drastically reduce the size of the current standards, and be fully automated. Key to this novel technique is the ability to make best in the world pressure measurements that are linked to the index of refraction of a pure gas. To do so, the group has built a device dubbed the “FLOC” or fixed length optical cavity. Because helium’s refractivity can be calculated from quantum mechanics, this enables a new and fundamental way to realize pressure. Part of the system involves a differential pressure indicator which cannot reach more than a 1 kPa difference. The current process to move the FLOC to different pressures is time-consuming and prone to error. The solution to this problem is to design a PID (Proportional, Integral, Derivative) control system that follows the FLOC’s current pressure while maintaining the 1 kPa difference. With the inclusion of this device, the time consuming process of changing the FLOC’s pressure will be automated and take less time to operate. Additionally, the elimination of errors in the control system will reduce the uncertainty of the differential pressure indicator and will therefore allow the highest possible accuracy in the comparison between the FLOC and the mercury manometers.

Name: Sai Meghasena Chavali
Grant Number: 70NANB16H131
Academic Institution: University of Maryland
Major: Electrical Engineering

Academic Standing (Sept. ’16): Junior
Future Plans (School/Career): I plan on attending graduate school and earning a Ph.D. in Electrical Engineering

NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Radiation Physics Division, Neutron Physics Group
NIST Research Advisor: Jeff Nico
Title of Talk: Measuring the wavelength of a cold neutron beam for a neutron lifetime experiment

Abstract:

Measuring the neutron lifetime is an important way to test the standard model of particle physics and provide insight about the early evolution of elements in the cosmos. To improve the precision of the neutron lifetime value and understand systematic uncertainties, we are conducting a new experiment at the NIST Center for Neutron Research (NCNR). Since the neutrons in the beam have varying wavelengths (i.e., energies) and the cross section when calculating the neutron beam flux. Error in the calculating the flux results in an error in the value for neutron lifetime. As a result, one must determine the wavelength spectrum in order to decrease this systematic uncertainty. We measured the wavelength spectrum using a beam chopper system and collected the neutron time-of-flight spectra. In my presentation, I will discuss the motivation for this measurement, the method of determining the wavelength, and the results of my measurements.
Title of Talk: Temperature Coefficients on Guarded Hamon Transfer Standards

Abstract:
Guarded Hamon transfer standards enable 10:1 or 100:1 scaling to high resistances; they are composed of a main resistor network and a guard resistor network. Each individual resistor within the networks is susceptible to drift and thus the entire guarded Hamon transfer standard drifts as well. One variable that causes deviation from predicted drift rate is temperature, which affects the accuracy of measurements but has not been experimentally studied in depth with respect to guarded Hamiltons. In order to better understand the impact of the individual temperature coefficients of the individual resistors on the guarded Hamilton transfer standards the following process was used. Measurements of the main resistor networks were made at 20 °C, 21.5 °C, 23 °C, 24.5 °C and 26 °C in both positive polarity and negative polarity using a high resistance bridge and an automated measurement process with a digital multi meter (DMM), scanner, and software. Measurements of the guard resistor networks and its individual resistor elements were completed in a similar fashion with the exception that no measurements were made using the high resistance bridge for the guard network.

Using the data collected, temperature coefficients of each individual element was calculated and the temperature dependency of each individual resistor was used to generate a simulation of the guarded Hamon transfer standard. The results from the simulation were compared to the actual measured data of the Hamons and different representations for insulation in the LTspice simulation was tested in order to build an accurate model. Having an accurate model will enable resistors of higher nominal value and larger temperature coefficients to be studied and investigated for temperature dependence that may explain variations from the predicted drift rates.
Title of Talk: Testing Smart Watthour Meter Accuracy

Abstract: As developments are made to transform the electric grid into a “smart grid”, new electrical meters are needed. Many are familiar with mechanical watthour meters with rotating disks. They measure energy usage similarly to newer smart meters, but smart meters are built to have greater accuracy and capabilities to communicate with electric companies, allowing each company to better understand energy distribution on the grid. The data transmitted allows more efficient energy allocation and provides knowledge of strains on the electric grid.

Electric power is typically thought to be delivered through sine waves; however, harmonics and distortions are increasingly prevalent in the electric system, and communication signals will be extensive as well. Distorted signals have been previously shown to affect meter accuracy; thus, smart meters must also be tested.

Accuracy tests were conducted on approximately seven electric meters using software to simulate energy consumption. Each meter was tested with sine waves to provide undistorted accuracies and with four different distorted signals, including harmonics modeled after observed signals. The test system measured each meter accurately to 0.04%, and each meter was accurate to 0.2%.

Before testing, we had to understand the software, meters, and test systems. The meters were from multiple manufacturers, so they required different equipment. Some used laser optics for testing, while others used optical couplers to connect to the meter. Occasionally, some meters reported erroneous readings as high as 2000%, possibly due to slight laser misalignments or incorrect test pulses. These were not found to significantly impact our data.

Ultimately, the majority of the smart meters proved able to read distorted signals, as average accuracy results were within the limits of 99.8% and 100.2%. Once harmonics were applied, the mechanical meter had more readings outside the accuracy limits, indicating that smart meters seem better equipped to interpret distorted signals. Time permitting, we intend to test meter accuracy with higher currents, more communication, and different temperatures in order to confirm this in other conditions.
Spintronics refers to the electronics where information is stored and changed by utilizing electron spins, and is making its way to a multitude of applications such as read heads of hard drives, magnetoresistive random-access memory (MRAM), and magnetic field sensors. The vast majority of devices are made of inorganic materials, but switching to organic-based devices may offer several advantages such as low production cost, light weight, and mechanical flexibility. One of the major effects stemming from spintronics is magnetoresistance (MR). MR is the property of a material or a device to change its electrical resistance due to an applied external magnetic field. There are various types of MR. For example, anisotropic magnetoresistance (AMR) occurs when the angle between the magnetization direction of a material and the direction of electrical current changes. There is also magnetoresistance which occurs due to the intrinsic spin-related properties of an organic material. Giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR) is produced by transport (or tunneling) of spin carriers through an organic material sandwiched between two ferromagnetic electrodes. Developing software programs to acquire data from organic-based spintronic devices is necessary to accurately obtain and analyze spintronic signals such as MR.

We set up electronic instruments to control an electromagnet and a device, and measure its MR effects. A uniform magnetic field is applied to the spintronic device by the electromagnet, and the electrical resistance is measured by a multimeter. The measurements are taken and the instruments are controlled by using a program written with LabView. With this setup, we are able to measure and observe the different types of MR in organic and inorganic spintronic devices. Progress in the field of organic spintronics is dependent on the development of its metrology. Organic devices tend to have more noise compared to inorganic devices. Obtaining accurate data is crucial to push organic spintronics into more applicable situations in the near future.
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Yasmine Kehnemouyi
Grant Number: 70NANB16H
Academic Institution: University of California, Berkeley
Major: Bioengineering
Academic Standing (Sept. ‘16): Sophomore
Future Plans (School/Career): Pursuing a career in designing and producing medical devices
NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Engineering Physics Division, Nanoscale Metrology Group
NIST Research Advisor: Darwin Reyes-Hernandez and Kiran Bhadriraju
Title of Talk: How to Produce a Microfluidic Device in No Time

Abstract:
Microfluidic devices allow the manipulation and control of micro- to picoliter fluid flow in channels that are a few micrometers in width. Researchers principally employ the process of soft lithography using polydimethylsiloxane (PDMS) to fabricate microfluidic devices. While PDMS has several advantages for microfabrication, fabricating the main component of such a device, the microfluidics channel, involves a laborious molding procedure which typically requires designing and fabricating a photomask, preparing a photolithographic mold, and casting and curing PDMS for several hours. Going from a mask print file to a finished device is costly, takes several days, and is time prohibitive for rapid design iteration. 3D printing technologies have been proposed to alleviate some of these issues. While there are several approaches for 3D printing, fused deposition modeling (FDM) based printers have several advantages in terms of design flexibility and print cost. Currently FDM printers have mostly been used for printing millimeter scale microfluidic devices that have poor optical transparency.

The goal of our research is to extend the limits of FDM printing for fabricating reproducible microfluidic devices in smaller usable dimensions, with good optical characteristics. To accomplish this, CAD files were designed in 123D software and sliced in Cura, the slicer program for the Ultimaker 2+ printer. A simple test object was designed, which allowed tracking day-to-day printer performance as well as characterizing printer limits. Prints were made using HIPS (high impact polystyrene). Channel height was measured using a digital micrometer and channel width was measured using light microscopy. Based on the results, we have developed a protocol to reproducibly print simple microfluidic channels in less than 30 seconds. We are currently exploring methods for bonding and assembling the microfluidic channels into optically transparent devices using a combination of solvents such as limonene and the addition of heat and pressure.

SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Eileen Liu
Grant Number: 70NANB16H
Academic Institution: University of Maryland, College Park
Major: Computer Engineering
Academic Standing (Sept. ‘16): Junior
Future Plans (School/Career): Pursuing a career in computer or software engineering
NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Engineering Physics Division (683), Nanoscale Metrology Group (683.03)
NIST Research Advisor: Ravikiran Attota
Title of Talk: Using MATLAB in the Development and Optimization of Nanoscale Measurement Techniques

Abstract: In recent years, nanoparticles and other nanometer-scale structures have become a heavily researched field of study, with many varied applications in technology and medicine. Conventional optical microscopes are both cheap and readily available but are believed to be limited by the resolution limit, which depends on the wavelength. However, techniques which allow for optical microscopes to be used for measurement of nanometer-scale structures are being developed to be used in nanoscale research.

One of these techniques is through-focus scanning optical microscopy (TSOM), which can provide three-dimensional information about structures on a nanometer scale. This technique uses a conventional optical microscope and takes a series of images at various focus points. These images are then used to construct a unique TSOM image which can identify changes in various three-dimensional features. The process of creating TSOM images can be computationally intense depending on the size and complexity of images involved. The process of TSOM image construction was optimized for faster and more accurate TSOM image creation. Various MATLAB optimization techniques were utilized in the process to allow for faster processing, improving the throughput.

In addition, a Matlab program was developed to validate the highest accuracy volume determination method for quasi-spherical irregularly-shaped nanoparticles, which is to combine top-down projection areas with peak-heights. The program simulates random, irregularly-shaped nanoparticles, measures volume using the combined method and compares the volume with the correct volume of the simulated nanoparticles. A good agreement was achieved between the volume measured using the combined method and the correct volume.

Both of these projects enhance 3D shape measurement at the nanoscale, which is one of the core missions of NIST.
Title of Talk: Broadband Spectroscopic Characterization of Low-k Dielectric Thin Films for Micro- and Nanoelectronic Applications

Abstract:
Micro- and nano-electronic devices use different materials of varying dielectric constants for specific applications. The chemistry and physics of these materials play crucial roles in determining the performance and reliability of these electronic devices, especially in low-voltage devices. We discuss the use of broadband microwaves (MW) (up to 20 GHz) to characterize hybrid silicon-organic thin films meant for insulation applications. Specifically, we will take advantage of MW propagation characteristics to extract and examine the relationships between electrical and mechanical properties, and the chemistry of prototypical materials. We use (MW) transmission spectra (S21 amplitude) and FTIR (Fourier Transform Infrared) spectra to detect electrical and chemical changes respectively. Our experiments involve observing the impact of moisture and thermal stress on the (MW) transmission characteristics of selected hybrid silicon-organic thin films. These studies will shed light on the chemical and electrical changes that occur within the dielectric films. These changes could impact the performance and reliability, as well as provide basis for rational selection of organic dielectrics for integrated devices.
Abstract:

In modern commercial electronics, inorganic semiconductors, such as silicon, are used almost exclusively. However, electronics fabricated using organic semiconductors offer several advantages such as lower cost and better mechanical flexibility. Organic materials can also be engineered to have specific electrical properties. By manipulating the materials used in the fabrication of organic field effect transistors (OFETs), it has been demonstrated (Takahashi et al, 2006) that the type of transfer characteristics can be controlled by changing the organic metal. Most organic semiconductors display p-type characteristics but these findings confirm the possibility that organic semiconductors can be engineered to a certain functionality. The possibility of being able to control carrier injection in organic electronics increases their viability as an alternative to silicon electronics.

My research seeks to reproduce the electrical results of Takahashi et al and physically characterize the interfaces involved in those OFETs. Both the organic metal and organic semiconductor are charge transfer complexes, where a donor (p-type) and acceptor (n-type) molecules are combined and formed in solution. Top contact bottom gate OFETs were fabricated using an organic metal (either tetraethylvalene-difluorotetracyanoquinodimethane or tetraethylvalene-7,7,8,8-Tetracyanoquinodimethane) for the source/drain contacts and DBTTF-TCNQ (Dibenzo tetraethylvalene-7,7,8,8-Tetracyanoquinodimethane) as the semiconductor. Devices were fabricated via vacuum sublimation and deposition onto silicon wafers. Devices were physically characterized using Fourier Transform Infrared Spectroscopy (FTIR) and device behavior was measured using a probe station. From FTIR, we are able to observe shifts in the carbon-nitrogen vibration in DBTTF-TCNQ and TTF-TCNQ/DBTTF-TCNQ samples. Some devices have been measured, but do not display FET behavior. Successful device fabrication has been challenging and is currently ongoing.

Citations:

1. APPLIED PHYSICS LETTERS, 88, 2006, 073504
Name: Corey Rhodes
Grant Number: 70NANB16H
Academic Institution: West Virginia Wesleyan College
Major: Applied Physics
Academic Standing (Sept. '16): 1st year graduate school
Future Plans (School/Career): Pursuing Masters' degree in electrical engineering at Virginia Tech
NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Engineering Physics Division, CMOS and Novel Devices Group
NIST Research Advisor: Joseph Kopanski
Title of Talk: Designing a Charge-Based Capacitance Measurement Circuit for Interfacing with an Atomic Force Microscope
Abstract:

Measuring the intrinsic properties of devices, such as capacitance, becomes increasingly difficult as the scale of the devices shrinks. Knowledge of such properties is critical to ensuring that computer simulations of these devices match closely with real-world operation. In the case of capacitance, traditional measurement techniques become ineffective for nanoscale devices due to the stray capacitance present in the measurement environment. In order to measure the intrinsic capacitance of these nanoscale devices, a charge-based capacitance measurement (CBCM) system is being developed. This system will allow for accurate capacitance measurements down to the femtofarad level, even in the presence of picofarads of stray capacitance. At this stage in the project, the CBCM circuit die has been mounted and wire bonded inside of a SOIC-16 package. Additionally, the differential amplifier present in the circuit has been completely redesigned to employ a true RMS-to-DC converter integrated circuit. This change allows the AC capacitance measurements to be converted to DC signals, which results in a simpler layout and higher accuracy. The final stage of this project will be to layout the CBCM chip and the amplifier circuit on a PCB, and then to interface this system with an atomic force microscope to perform the capacitance measurements.

Name: Anton Vasilyev
Grant Number: 70NANB16H
Academic Institution: University of Delaware
Major: Electrical Engineering
Academic Standing (Sept. '16): Junior
Future Plans (School/Career): Graduate School
NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Quantum Measurement Division, Applied Electrical Metrology Group
NIST Research Advisor: Jason Underwood
Title of Talk: Evaluating Distortion Correction Methods for High-Resolution Digitizers
Abstract:

High-fidelity conversion of data between analog and digital domains is a critical requirement in industry and defense. Traditionally, the method for characterizing the performance of data converters is to use a calibration instrument with a higher resolution than the device under test. For example, an 8-bit ADC (analog-to-digital converter) could be calibrated with a 16-bit DAC (digital-to-analog converter). While static tests of the data converter’s transfer function error are relatively straightforward, dynamic tests are significantly more complicated, as the errors arise from additional nonlinear effects. In my talk, I will discuss my development of two dynamic testing algorithms, their performance with respect to each other and to static testing. I will also show how the algorithms would be used to characterize high-resolution instruments, such as a 24-bit ADC, for which the only pure calibration source is a quantum voltage standard.
Abstract:
Modern electrical power transmission and distribution systems are becoming increasingly dependent upon power system synchronized measurement devices such as Phasor Measurement Units (PMUs) for wide area measurement, protection, and control (WAMPAC). PMUs measure power system events and output synchrophasors, which are a windowed estimate of the actual values of power system magnitude, phase, frequency, and rate of change of frequency. Many power system applications consider this synchrophasor data to represent “actual values” on the power system. However, this data is impaired by errors introduced from various sources, including PMU synchrophasor estimation algorithms and network effects. The goal of this project is to create a Labview application that will serve as a framework for testing the effects of impaired measurement data on various WAMPAC applications. This framework uses a module-based, object-oriented programming (OOP) approach to generate both “ideal” and “impaired” synchrophasor data based on a set of customizable parameters and configurations. Once the project is completed, users will be able to generate a wide range of simulated power system events and data impairments in order to test their own application’s ability to appropriately handle impaired synchrophasor data.

Title of Talk: Power System Synchrophasor Data Impairment using Labview
Abstract:

Light-based, three-dimensional coordinate measuring devices such as articulating arms and fringe projection systems are vital to industry because they can be used to characterize produced parts. However, the effect that different roughness and machining operations have on the measurement quality is unknown. This research project investigated the influence of varying roughness and machining operations on measurement quality.

After initial research, several test configurations were produced and their effectiveness analyzed before a final test protocol was chosen. The protocol’s effectiveness was determined by comparing the repeatability of the measurements and the ability of MATLAB to draw meaningful conclusions from the data. A MATLAB script was used to analyze the data, and the standard deviation of the sample, point density returned, and effect of scan direction were all able to be extracted and compared between different surface roughness samples.

Several results have been obtained thus far. For one, the type of machining operation affects values such as the point density returned and standard deviation. Machining operations which produce relatively flat, specular areas have lower returned point densities and higher standard deviations. Additionally, the scan direction has a greater impact on sample measurements which display these qualities when compared to operations which create less specular surfaces. Furthermore, it has been observed that the measurement noise is generally orders of magnitude larger than the surface roughness parameter, Ra.

Overall, the type of machining operation as well as the roughness has an effect on the measurement quality. More research is needed to quantify the characteristics of the machining operations that produce the above results. Ultimately, this research will provide information about measuring various machining types and roughness levels using light-based, three-dimensional coordinate measuring devices.
PML - PL
Abstract:

While helium ion microscopy (HIM) has proven valuable for imaging on the nanometer scale, its excellent resolution coupled with non-negligible mass make substrate sputtering or “machining” capabilities promising as well. When the helium beam is applied to silicon substrates at high doses, however, sputtering (removal) rates of silicon are surpassed by implantation rates, which induce swelling of the substrate surface. When helium implants in the silicon at high doses beyond normal imaging levels (>10\(^{17}\) ions/cm\(^2\)), bubbles form and eventually coalesce to form large cavities. This causes the silicon to swell, forming an interesting balloon-like protrusion on the surface. With controlled dose patterning, larger and longer cavities can form to make tube-like structures on the silicon surface. Although a considerable amount of research has been done on helium implantation and bubble formation in various substrates, there have been few studies on the bubble coalescence and swelling phenomenon in silicon, which only occurs at very high doses (>10\(^{17}\) ions/cm\(^2\)). This will be the first effort to thoroughly explore and exploit this phenomenon for the purpose of fabricating silicon “nanopipes.” Such a technique could be useful in the design of nanofluidic devices to transport nanoliter volumes of fluids between reservoirs.
Title of Talk: Standardizing Firefly Luminescence

Abstract:

Luminescence is a non-invasive, quantifiable measure used in many bioassays, such as in vivo imaging, cell viability assays, and reporter gene assays. One source of bioluminescence is the firefly enzyme luciferase or chemically altered versions of this enzyme. Luciferase is an effective bioluminescent marker because of its sensitivity, energy efficiency, and simple reagents. Bioluminescent output is measured in Relative Light Units (RLUs), failing to be on the International System of Units (SI) scale. Luminometers and other instruments to measure luminescence are not correlated with one another, meaning instruments are individually calibrated using their own light source. This makes the RLU an arbitrary unit of measurement, incapable of facilitating measurement comparisons between different instruments due to the inconsistent light standards. The objective here is to have these instruments on a SI scale that ensures reproducibility regardless of the reagent, assay, or wavelength.

Light emitted from a commercial luminometer calibrator was measured using a photodiode, to give the voltage equivalence. Next, a 560 nm LED, set to match the typical wavelength of firefly luciferase bioluminescence, was fixed to the same voltage as the commercial luminometer calibrator using a calibration power source. The LED was fashioned into a centrifuge tube with a diffuser, to mimic an ATP assay. The LED was then measured with a luminometer in terms of Relative Light Units (RLUs). The RLU measurements were expressed in voltage using the calibrated LED and then converted to watts. This information defined RLU in terms of watts, a derived SI unit of power. ATP assays at various concentrations were then performed to quantify RLU luminometer readings in terms of watts.

Title of Talk: Quantification of PET Imaging Using NIST-calibrated Radionuclide Sources

Abstract:

Positron emission tomography (PET), especially paired with computed tomography (CT), is a powerful qualitative technique that can be used to diagnose many diseases, such as cancer and Alzheimer’s, and locate areas of interest for treatment. However, PET quantification allows for a wider variety of applications, such as measuring the uptake of fluorodeoxyglucose (FDG) in tumors over an extended period of time to advise treatment. To most accurately measure the biological processes that are the target of PET imaging, the variability and accuracy of the scanner itself must be well known.

To assess the performance of NIST’s PET/CT scanner, phantoms containing a homogeneous mixture of water or epoxy and a radionuclide were scanned and compared to the known activity concentration of a master solution. The scans were performed before and after a new calibration of the scanner. The radionuclides used were Ge-68, F-18, and Cu-64. Recovery coefficients were calculated as a ratio of the activity concentration, C, measured by PET and the NIST-calibrated C_{NIST} to measure the accuracy of the scanner. A better understanding of the calibration protocol and the calibration factors was also developed. It was found that there was a 2.7 % difference between the calculated recovery coefficients between calibrations for the same Ge-68 phantoms, and the last six calibration factors differed by a maximum of 3.4 %. A statistical analysis concluded that the data sets from both calibrations were significantly different. From this data and new knowledge of the calibration protocol, a correction factor may ultimately be derived to return true activity values. Improved quantitation and standardization of PET will facilitate the monitoring of smaller changes in tumor size and disease progression to assess the effectiveness of treatment. In turn, this provides physicians with a more robust basis for diagnosis and treatment planning, leading to more favorable outcomes and saved lives.
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Name: Joshua Reeves Graybill
Grant Number: 70NANB16H131
Academic Institution: University of Maryland, College Park
Major: Mechanical Engineering
Academic Standing (Sept. ’16): Graduated spring 2015: BS Mechanical Engineering
Future Plans (School/Career): Graduate school
NIST Laboratory, Division, and Group: Far Ultraviolet Neutron Detection, Quantum Measurement, Physical Measurement Laboratory
NIST Research Advisor: Charles Clark, Michael Coplan, Alan Thompson, Chandra Shahi
Title of Talk: Excimer-based Neutron Detection using Far Ultraviolet Noble Gas Emission
Abstract:
In a noble gas environment, ions liberated from the 10B(n, α)7Li reaction, form noble gas excimers (NGE) which have been shown to emit far ultraviolet radiation during radiative decay with 30% efficiency. The product ions 7Li and 4He create thousands of short-lived excimer molecules along their ionization path lengths, which yield between 5,000 to 15,000 far ultraviolet (FUV) photons per neutron capture. Excimer-based neutron detection (END), therefore, produces an unambiguous neutron signature, proving it a practical design concept for thermal neutron detection. With the current shortage of 3He, an increased incentive for developing alternative neutron detection methods has become paramount. END helps fulfill this incentive by providing many attractive properties compared to conventional 3He detection methods. Among its many attributes, END is affordable, immune to radiation damage, has a large signal gain, and fast response times. These benefits combined with END’s unrestricted geometry help to provide a flexible detector platform with robust characteristics.

Name: Joshua Hanson
Grant Number: 70NANB16H137
Academic Institution: Clemson University
Major: Physics and Electrical Engineering
Academic Standing (Sept. ’16): Junior
Future Plans (School/Career): Attending graduate school for Physics.
NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Quantum Measurement Division, Atomic Spectroscopy Group
NIST Research Advisor: Dr. Joseph Tan
Title of Talk: Capturing Highly Charged Ions in a Radio-Frequency Paul Trap
Abstract:
Highly charged ions (HCIs) are atoms that have lost all or nearly all of their bound electrons due to high-energy photoionization or collisions with other particles. While HCIs are common in space (e.g., in solar flares, accretion disks, and astrophysical plasma), the earth consists nearly entirely of neutral matter. The NIST Electron Beam Ion Trap (EBIT) can produce and trap ions with very high charge states using a high current density electron beam concentrated by a pair of superconducting Helmholtz coils. The electron beam ionizes atoms injected into the EBIT by stripping away bound electrons until the ionization energy exceeds the beam energy. Having control over the motional degrees of freedom of the ions opens up the possibility for precision spectroscopy, including measurements of fundamental constants (such as the fine-structure constant and Rydberg constant) and novel atomic clocks and frequency standards, and the utilization of HCIs for quantum information encoding and processing. The HCIs produced by the NIST EBIT can be slowed to low energy and captured by two different types of traps: a radio-frequency Paul trap, which uses a combination of static and oscillating electric fields to confine ions, and a Penning trap, which uses a magnetic field in addition to a static electric field. The combined Penning-Paul ion-capture apparatus enables new methods for manipulating HCIs and measuring atomic properties and quantum processes.
The tandem Penning-Paul trap was modeled using SIMION 8.1, and ion trajectory simulations for Kr17+ and Na10+ were performed to determine optimal trapping parameters and understand the ion dynamics within the trap. The results from these simulations were used to generate a number of stability diagrams and figures that describe the motion and dynamics of the ions within the trap for different combinations of trapping parameters. This information can be used in determining the ideal conditions for recapturing HCIs using the experimental setup.
Name: Hannah Hastings
Grant Number: 70NANB16H135
Academic Institution: Bryn Mawr College
Major: Physics
Academic Standing (Sept. '16): Graduate
NIST Laboratory, Division, and Group: PML, Sensor Science Division 685, Optical Radiation Group
NIST Research Advisor: Dr. Cameron Miller
Title of Talk: Not All AC Power Supplies Are Equal, According to an LED Source

Abstract:
Solid State Lighting (SSL) products, also known as Light Emitting Diodes (LEDs), have become popular because of benefits they provide such as durability, energy efficiency, and longer lifetimes. As SSL products are now widely used for general lighting purposes, NIST began a Measurement Assurance Program (MAP) in 2010 with support of the Department of Energy to provide proficiency testing for laboratories around the world to make sure that as SSL product use increased, laboratories existed that were capable of measuring these products. MAP 1, the first version of the MAP (another version, MAP 2, began in 2015), consisted of six different lamps and 118 participating laboratories. Measurements of each lamp’s total luminous flux, RMS voltage and current, electrical power, luminous efficacy, chromaticity coordinates x and y, correlated color temperature, and color rendering index were taken by NIST, then by the laboratory, and then by NIST again. Last year, the differences between NIST’s measurements and the laboratories’ measurements for each property were calculated and analyzed along with secondary data about NMI and equipment manufacturers. A major finding of MAP 1 was that laboratories had issues measuring the RMS current of certain SSL products. An experiment was designed to investigate the effect of impedance in the wiring system on the measurements of electrical properties of SSL products.

This Summer NIST focused on collecting data looking at the effect of impedance in the wiring system on measurements of RMS current and voltage, luminous flux, electrical power, and luminous efficacy. The data will be used to improve laboratories’ measuring procedure for electrical properties of SSL products to ensure more accurate measurements. We aim to determine a value of inductance and resistance that laboratories can add to their wiring system so that measurements of electrical properties more accurately reflect their values when plugged into a wall outlet.

Our results show the appearance of a red-shifted, defect-induced photoluminescence peak and an increased D/G intensity ratio in Raman, indicating successful covalent functionalization. Direct comparison of Raman spectra from (6,5) chiral SWCNTs before and after functionalization showed significant intensity drop in the Raman graphitic G-peak, suggesting that covalent functionalization on SWCNT sidewalls causes more dramatic effects on the G-peak than on the D-band. Also under investigation is the change in D-band spectral features caused by covalent functionalization.
Title of Talk: Unusual Phenomena in Convective and Sonic Gas Flows

Abstract:

In recent published work, the pressure \(p \) and the acoustic resonance frequency \(f_a \) of argon gas in a 300 L tank were measured, and the ratio \(p f_a^2 \) (proportional to the mass \(M \) of gas) determined the fractional leak rate \(\frac{\Delta M}{M} \approx -24 \times 10^{-6} \text{hr}^{-1} \) from the tank. The measurements were performed when the tank was exposed to sunshine-driven temperature and pressure fluctuations that were 1000 times larger. The reason why the acoustic measurements were insensitive to the temperature profile generated by the asymmetric heating of the tank remains unclear. To study this phenomenon, we developed and calibrated a thermometer probe to measure the temperature profile in pressurized argon gas within the tank when the tank is heated asymmetrically. The measurements provide evidence of convective currents that carry most of the heat between the hot and cool regions, leaving a linear temperature gradient in the bulk of the gas volume. The results of this investigation will help to determine the effectiveness of acoustic methods for flow calibrations and leak detection in large volumes.

In other work, flow through a critical flow venturi was studied to examine the phenomenon of premature unchoking. The standard equation for mass flow, \(\dot{m} = C_d G_p A' \sqrt{M/R_p} \), is only accurate when the gas velocity is “choked,” i.e., when \(v \) reaches the speed of sound at the throat. At large ratios between exit and input pressures, the system begins to unchoke. However, researchers have noticed “premature unchoking,” which occurs at ratios lower than the threshold predicted by theory. This project hopes to provide clues as to why this occurs. We recorded mass flow as air passed through a venturi at input pressures ranging from 80 kPa to 140 kPa, at which premature unchoking ceased to occur. Results will lead to a better understanding of how premature unchoking depends on input pressure.
Abstract:
X-Ray CT scanning is a valuable medical diagnostic tool, allowing for the imaging of internal structures based on the attenuation of photons as they pass through the body. The attenuation of the photons is affected by the composition and density of the scanned materials, in addition to the energy of the incident photons. By conducting scans at different 'energy levels' (different x-ray tube potentials), we can compare the Hounsfield Unit variations of a material from one scan to the next due to spectral dependence. Characterizing this dependence enables us to recover information about the scanned material. In this work, the dual-energy method was used to analyze the composition of several substances, including a whole egg, and other tissue simulating phantoms. By scanning known materials, a machine and energy specific calibration parameter, α, was calculated based on the average Hounsfield Unit of the calibration material. This parameter can then be used to back calculate the effective atomic number and electron density of a material, which can give insight into its chemical composition. This was done for a compressible lung phantom, where the effective atomic number of a bronchial substitute was obtained by minimizing the standard deviation of the electron density values determined. The calibrated CT number histogram was then used to calculate the mass of the 'lung' material when the phantom was compressed and uncompressed. This method worked well when calculating the electron densities, and found limited success calculating the effective atomic number. It was also found that the quality of data improved significantly when larger energy gaps were used.

Title of Talk:
An Evaluation of a Dual-Energy Method for CT Imaging

Future Plans (School/Career):
Attend graduate school and pursue a career in physics

NIST Laboratory, Division, and Group:
Physical Measurements Laboratory, Radiation Physics Division, Radioactivity Group

NIST Research Advisor:
Dr. Heather Chen-Mayer

Future Plans (School/Career):
Graduate school for either physics or chemistry. Will pursue a career in physics or chemistry in academia or research and development.

NIST Laboratory, Division, and Group:
Physical Measurement Laboratory, Division 682, aCORN Group

NIST Research Advisor:
Scott Dewey

Title of Talk:
Neutron Polarization Measurement on the NG-C Beamline for aCORN

Abstract:
The aCORN (a CORelation in Neutron decay) experiment measures the angular correlation between the electron-antineutrino and electron following neutron beta decay. The apparatus is currently stationed on the NG-C beamline in the NIST Center for Neutron Research (NCNR). Earlier data taken on the NG-6 beamline suggested a systematic effect due to small residual polarization of the neutron beam. In order to properly account for this effect, the neutron polarization must be determined. This is done by measuring neutron transmission through a polarized 3He spin filter at the end of the beamline. A magnetic field is applied to end of the beamline in order to maintain neutron spin alignment parallel or antiparallel to the 3He polarization as the neutrons approach the spin filter. After passing through a 6Li collimator and fission chamber monitor, the neutrons pass through the spin filter, which is housed in a solenoid in order to maintain the 3He polarization. Transmitted neutrons pass through a second fission chamber. The transmission is calculated by dividing the number of neutrons detected by the downstream fission chamber by that of the upstream fission chamber. Adiabatic fast passage (AFP) is then used to reverse the polarization of the 3He and a second transmission value is calculated. The difference between the two transmission values is used to calculate neutron polarization. Difficulties due to inefficient 3He polarization reversal will be discussed.
Title of Talk: Line identification and level analysis of Ti II in the ultraviolet region

Abstract:
Atomic spectroscopy is the analysis of light emitted from plasmas and is used to determine the chemical composition and the dynamics of the plasma. An ongoing project in the Atomic Spectroscopy Group at NIST is to obtain comprehensive spectral data for all neutral and singly ionized iron-group elements (Sc through Ni) and through analysis, obtain more accurate wavelengths and energy level values. The heavy abundance of these elements makes them of interest in astrophysical observations.

The last published study of Ti II in the vacuum ultraviolet region, which ranges from 300-2000 Å, was Huldt et al in 1982. They report wavelength uncertainties of 0.02 Å and have identified 1,240 lines from 1,100-11,000 Å. We obtained better resolved VUV grating spectra from 830 to 3,500 Å at the end of last summer using the 10.7 meter normal incidence spectrograph at NIST and a Ti/Ne hollow cathode lamp, capturing spectra on SWR Kodak photographic plates. Tracks were read with an optical comparator, which has an uncertainty of the position measurement of around 3 mÅ. Based on a similar analysis done for Fe II using the same instrument and methodology, we expect to reduce wavelength uncertainties by an order of magnitude. At the end of the summer, we aim to have a completed linelist with identified transitions between 1,130-2,900 Å. Ti tracks are calibrated with Pt standards when possible. When unavailable, we use Ti II lines taken from FTS spectra and gas lines from Ne and O for calibration. To help sort through spurious incidences in line identification, we look to Kurucz’s calculations of the log(gf) of Ti II and Ti III lines. Another program takes the energy level values of the ion and predicts transitions based on the difference between energy levels. The program can also take observed lines and predict new energy level values. It is our hope to not only identify never before observed transitions but also to identify new energy levels that we could use to break into the lower level region of the atom to aid in the analysis of lines below 1,130 Å. This region is in desperate need of attention but whose analysis is beyond the scope of a summer project.
SURF Student Colloquium
NIST – Gaithersburg, MD
August 2-4, 2016

Peter Walecki

Grant Number: 70NANB16H138

Academic Institution: Florida Atlantic University

Major: Electrical Engineering

Academic Standing (Sept. ’16): First year of Graduate School

Future Plans (School/Career): Brown University Graduate School

NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Radiation Physics Division, Dosimetry Group

NIST Research Advisor: Dr. Ronald Tosh

Title of Talk: Radiation Dose Metrology through Water Calorimetry

Abstract:

In the medical field, it is important to know and control the precise amount of radiation dose that a patient receives during various procedures. This talk covers research into potential ways in which current radiation standards can be updated in order to expand the scope and improve the accuracy of existing metrology schemes.

The main technique to be discussed is water calorimetry through interferometry, in which an interferometer is used to monitor changes in the index of refraction caused by temperature increases due to an absorbed radiation dose. Several methods for simulating such temperature increases are presented, including sample rotation, Peltier heater/coolers, as well as actual X-Ray radiation. These methods were then tested by using a Mach-Zehnder Interferometer setup, in which one of the beams is passed through the water to be tested. The resulting fringe phase shifts in the interferogram was then extracted and analyzed in order to determine the relationship between phase shift and temperature change.

Jacob Wolfgang Ward

Grant Number: 70NANB16H079

Academic Institution: Arizona State University

Major: Physics and Computer Science

Academic Standing (Sept. ’16): 1st Year Graduate School

Future Plans (School/Career): Graduate school at UMD in chemical physics

NIST Laboratory, Division, and Group: Physical Measurement Laboratory, Quantum Measurements Division, Atomic Spectroscopy Group

NIST Research Advisor: Dr. Gillian Nave

Title of Talk: Energy Level Optimization of Quadruply Ionized Nickel (Ni V)

Abstract:

Quality spectroscopic measurements that elucidate atomic features such as wavelengths, energy levels, and oscillator strengths are of critical importance to many disciplines in astrophysics. The NIST Atomic Spectroscopy Group provides the astronomy community with the most modern and accurate atomic reference data possible in order to support the wide array of astronomy projects supported by institutions such as NASA. In particular, the iron group elements (chromium through nickel) have been highly useful to the astronomy community, but have serious deficiencies in regards to their available reference data.

As a part of a larger project to improve the atomic reference data for the iron group elements, I will discuss my work with quadruply ionized nickel (Ni V), which was last studied in 1975. The focus of the discussion will be on the use of an energy level optimization program (LOPT) and its applications for Ni V. One of the results of the Ni V energy level scheme produced by LOPT is a set of Ritz wavelengths (derived from energy levels) that often have lower uncertainties than the corresponding measured wavelengths.

In order to fully discuss the behavior and efficacy of LOPT with Ni V, I will also provide a brief presentation and comparison of the measured Ni V wavelengths and intensities I have worked on during my previous two summers at NIST to those found through LOPT. Ultimately, I will demonstrate the improvements in atomic reference data that are possible with the facilities available at NIST.
Special Programs

Ekwuru, Miriam
Emelike, Joseph
Gilpin, Anna
Resnick, Benjamin
Name: Miriam Ekwuru
Grant Number: 70NANB16H
Academic Institution: Coppin State University
Major: Biology
Academic Standing (Sept. ‘16): Senior
Future Plans (School/Career): After my undergrad, I plan on joining the Air Force
NIST Laboratory, Division, and Group: Technology Partnership Office/ Special Program
NIST Research Advisor: Paul Zielinski
Title of Talk: Commercialization of Inventions in the fields of Bio-manufacturing and Medical Devices

Abstract:
Technology Transfer is a foundational part of the commercialization of new technology. It is more than simply the transfer of documents; it deals with all aspects of the transfer of knowledge and technology to the commercial manufacturing unit to guarantee consistent, safe, and high-quality product. The Technology Partnerships Office is responsible for gathering information on inventions emerging from research conducted at NIST. When inventions occur at NIST, the inventions are then reviewed in order to decide whether or not filling a patent application will aid in commercialization. My project was to review and collect relevant information about inventions in the bio-manufacturing and medical devices sector that have resulted from NIST research. I developed a set of categories that grouped the technologies into related technology areas and summarized each invention. I wrote invention summaries in that translated complex scientific and legal language into terms that communicate the value of the invention in order to market the technologies to potential licensees. Creating these summaries required me to interview the inventors to get better understanding of the invention and its potential applications. I then compiled into brochure for marketing purposes that will be used at biology related technology events and prepared a summary review article on the state of NIST work in this sector.

In addition, I worked with Minority Business Development Agency (MBDA) to enable a nation-wide discussion between federal laboratories and MBDA Centers. This work entailed a review and categorization of thousands of MBDA customers into industrial and technology sectors. This information will later be aligned with technology data from across the federal laboratory network to better link the available research capacity of the labs with the business clients of the various MBDA Centers.

Name: Joseph Emelike
Grant Number: 70NANB16H
Academic Institution: Bowie State University
Major: Computer Science
Academic Standing (Sept. ‘16): Senior
Future Plans (School/Career): I am pursuing a career as a software engineer with a focus on machine learning software.
NIST Laboratory, Division, and Group: Special Programs
NIST Research Advisor: Reva Schwartz
Title of Talk: Golden Cross Section

Abstract:
Speaker recognition is a subfield of human language technology that focuses on identifying who is speaking. Forensic science is interested in speaker recognition because it often occurs as evidence in criminal investigations when there is no other lead. Improving speaker recognition is important because it can provide a more reliable source of evidence in criminal cases that are centered on, or supplemented by, audio recordings. The ability to identify an individual based on an audio sample is currently a difficult task to perform for machines and humans alike, because of the variable nature of the audio quality, speaker’s voice, or both. Even in everyday conversations the speaker’s mood or state of health can significantly impact how they speak. Also there is great variability in recording quality due to noise, recording conditions, or working condition of the recording equipment. For our study we will focus on determining where machines outperform human evaluators in identifying speakers. In order to accomplish our goal there will be two initial phases of listener testing. To collect data from naïve listeners, as well as professional listeners, a website will be developed that will allow for the survey to be taken and the responses will be recorded in a database. For the machines, we will do an all models against all files comparison which will output a score for each trial. The results will then be compared with the responses given by the human examiners. Both the machine trials and the human trials will be of paired audio files from the same data set. The portion of the data set we used consists of audio samples from 74 males with varying emotion and content. The machine results have been successfully collected and the human results will be collected over an extended time period.
Title of Talk: What is the Meaning of Life?: Terminology and Measurement Assurance for Biotechnology Standards

Abstract:

Biotechnology utilizes biological processes to create technologies that improve public health and encompasses a wide range of areas including cell and gene therapies and drug development. Recent innovation has led it to become one of the world’s most profitable and influential industries. The International Organization for Standardization (ISO) has formed Technical Committee (TC) 276 to create standards specific to this industry and to optimize the development and production of biotechnology products. ISO Standards have achieved consensus across international experts and are underpinned by high-quality measurements and processes. My work has supported two key aspects of standards development for ISO/TC 276: terminology and analytical methods. Clear and mutually understood definitions are critical to measurement assurance. In this work, terms were collected from current TC 276 working drafts on topics including cell counting, cell characterization, and nucleic acid quantification and aggregated into a Terminology Compendium. Terms were also extensively searched to identify definitions within reputed sources (i.e. existing standards, journal articles, and medical dictionaries) to serve as a resource for TC 276 working group experts. Standards to address analytical methods are based on validated and robust methods supported by measurement assurance. This work focused on improving the confidence of cell viability measurements, a key aspect in cell counting and characterization standards. Using design-of-experiment strategies, we evaluated image analysis parameters used by automated counters to generate cell viability data. Results demonstrate that viability analysis is sensitive to these parameters and specific settings may not be robust to all types of cell conditions that could potentially be found in a biotechnology process. As a consequence, appropriate strategies are suggested for establishing image analysis parameters to improve confidence in image-based cell viability analysis.
GUARDIANS OF THE STANDARD

SURF T-Shirt Designs
2016

SURF STUDENTS BY ORGANIZATIONAL UNIT
Appendix

<table>
<thead>
<tr>
<th>OU</th>
<th>Last Name</th>
<th>First Name</th>
<th>Mentor</th>
<th>University/ersity</th>
<th>Title of Talk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNST</td>
<td>Beck</td>
<td>Gillenhaal</td>
<td>Vladimir Aksyuk</td>
<td>Washington and Lee University</td>
<td>Modeling of surface plasmon polariton coupling on a periodic grating and electro-optic polymer for faster spatial light modulation</td>
</tr>
<tr>
<td>CNST</td>
<td>Scalaletta</td>
<td>John</td>
<td>Amit Agrawal</td>
<td>Williams College</td>
<td>High-Q Surface Plasmon Resonator for Terahertz Time-Domain Spectroscopy</td>
</tr>
<tr>
<td>CNST</td>
<td>Sloan</td>
<td>Arthur</td>
<td>Liya Yu</td>
<td>Auburn University</td>
<td>Self-Aligned Double Patterning as a Technique to Improve the Critical Dimension of Line projection lithography</td>
</tr>
<tr>
<td>CNST</td>
<td>Watson</td>
<td>Martha</td>
<td>Lei Chen</td>
<td>George Washington University</td>
<td>Etching Process</td>
</tr>
<tr>
<td>CNST</td>
<td>Wong</td>
<td>Gina</td>
<td>Robert McMichael</td>
<td>University of Maryland - College Park</td>
<td>Controlling a nitrogen-vacancy center diamond to measure magnetic properties at the nanoscale</td>
</tr>
<tr>
<td>EL</td>
<td>Aboul-Enein</td>
<td>Omar</td>
<td>Roger Bostelman</td>
<td>Salisbury University</td>
<td>Augmented Reality Marker Tracking for Multi-Robot Registration</td>
</tr>
<tr>
<td>EL</td>
<td>Auth</td>
<td>Eric</td>
<td>Rik Johnsson</td>
<td>University Maryland College Park</td>
<td>Wind and Separation Distance Effects on Fence Fire Spread in the Wildland Urban Interface</td>
</tr>
<tr>
<td>EL</td>
<td>Caren</td>
<td>Stephen</td>
<td>Li Pian Sung</td>
<td>Wayne State University</td>
<td>Artificial Sunny Days: Impact of Temperature on Polyethylene Photodegradation Under Accelerated Weathering</td>
</tr>
<tr>
<td>EL</td>
<td>De Jesus</td>
<td>Morales</td>
<td>Kenneth</td>
<td>Mauro Zamarano</td>
<td>University of Puerto Rico</td>
</tr>
<tr>
<td>EL</td>
<td>Goh</td>
<td>Justin</td>
<td>Karl Van Wyk</td>
<td>University Maryland College Park</td>
<td>Simulation Assisted Robot Hand and Arm Programming for Planning and Simplifying User Experience</td>
</tr>
<tr>
<td>EL</td>
<td>Halle</td>
<td>Bruk</td>
<td>Kathy Butler</td>
<td>University District Columbia</td>
<td>Developing a database using GIS for extreme fire behavior</td>
</tr>
<tr>
<td>EL</td>
<td>Han</td>
<td>Muhong</td>
<td>Zamarano/Shona</td>
<td>East Carolina University</td>
<td>Fire-Blocking Performance of Laminated Barrier Fabrics</td>
</tr>
<tr>
<td>EL</td>
<td>Hanson</td>
<td>Edward</td>
<td>Jennifer Helgeson</td>
<td>University Maryland Baltimore County</td>
<td>Mannmade Hazards</td>
</tr>
<tr>
<td>EL</td>
<td>Hoddinott</td>
<td>Philip</td>
<td>Glaser/Amanda</td>
<td>Rensselaer Polytech Inst</td>
<td>Design and Construction of Intelligent Building Agent Laboratory</td>
</tr>
<tr>
<td>EL</td>
<td>Johnson</td>
<td>Theodore</td>
<td>Nicholas Dagalakis</td>
<td>Georgia Institute of Technology</td>
<td>Control System Implementation for Motorized Dynamic Bending and Calibration Machine</td>
</tr>
<tr>
<td>EL</td>
<td>Kamieniecki</td>
<td>Daniel</td>
<td>Scott Jones</td>
<td>Stevens Institute of Technology</td>
<td>3D Printing Cement: Characterization of Printable Cement Pastes</td>
</tr>
<tr>
<td>EL</td>
<td>Krueger</td>
<td>Christina</td>
<td>Jarred Heigel</td>
<td>University Maryland College Park</td>
<td>Seeing between the Lines: Layerwise Imaging for Metal Additive Manufacturing</td>
</tr>
<tr>
<td>EL</td>
<td>Leader</td>
<td>Robert</td>
<td>Natalsha Milesi-Ferretti</td>
<td>Arizona State University</td>
<td>Tools for the Ongoing Commissioning of Buildings</td>
</tr>
<tr>
<td>EL</td>
<td>Li</td>
<td>Kevin</td>
<td>William Bernstein</td>
<td>University Maryland College Park</td>
<td>Defining a Similarity Metric for Manufacturing Processes</td>
</tr>
<tr>
<td>EL</td>
<td>McIntyre</td>
<td>Rachel</td>
<td>Mohammad/Mary</td>
<td>University Maryland College Park</td>
<td>Temperature Dependent Measurements of Photovoltaic Solar Cells</td>
</tr>
<tr>
<td>EL</td>
<td>Mennu</td>
<td>Matlock</td>
<td>Greg Vogl</td>
<td>University South Florida</td>
<td>Sensor-Based Diagnostics of CNC Linear Axes</td>
</tr>
<tr>
<td>EL</td>
<td>Nellis</td>
<td>April</td>
<td>Peter Denno</td>
<td>University Maryland College Park</td>
<td>Verifying Analyses of Manufacturing Processes Using Predictive Models and Ontologies</td>
</tr>
<tr>
<td>EL</td>
<td>Parsons</td>
<td>Matthew</td>
<td>Ferraris/White</td>
<td>Purdue University</td>
<td>Quantitative Analysis of Cement Paste Performance via Oscillatory Rheology</td>
</tr>
<tr>
<td>EL</td>
<td>Peterman</td>
<td>Nathan</td>
<td>Paul Withere</td>
<td>Purdue University</td>
<td>Creating Design Allowables for Additively Manufactured Parts</td>
</tr>
<tr>
<td>EL</td>
<td>Rebrov</td>
<td>Kirill</td>
<td>Randy McDermott</td>
<td>University Texas Austin</td>
<td>Dynamics Simulator (FDS)</td>
</tr>
<tr>
<td>EL</td>
<td>Seiler</td>
<td>Patrick</td>
<td>Tim Zimmerman</td>
<td>Texas Engineering Experiment Station</td>
<td>Assessing the Impact of Cybersecurity on Networked Control Systems</td>
</tr>
<tr>
<td>EL</td>
<td>Siddiqui</td>
<td>Tawsif</td>
<td>Yan Lu</td>
<td>University Maryland College Park</td>
<td>Schema and Ontology Development for the Additive Manufacturing (AM) Database</td>
</tr>
<tr>
<td>EL</td>
<td>Varma</td>
<td>Vaughn</td>
<td>Yan Lu</td>
<td>Rochester Institute of Tech</td>
<td>The Internet of Things on the Shop Floor: Design and Implementation of a Service-Oriented Architecture in Manufacturing Systems Utilizing B-SCADA’s Status Enterprise System</td>
</tr>
<tr>
<td>EL</td>
<td>Waxman</td>
<td>Katrina</td>
<td>Erica Kuligowski</td>
<td>American University</td>
<td>Altering the Public in Community-wide Disasters: A Literature Review on Outdoor Warning Sirens</td>
</tr>
<tr>
<td>EL</td>
<td>Weaver</td>
<td>Samantha</td>
<td>Xiaohong Gu</td>
<td>University Maryland College Park</td>
<td>Impact of Temperature on the Emission Characteristics of Yttrium-Doped YVO4 in the 1.2-1.5μm band</td>
</tr>
<tr>
<td>EL</td>
<td>White</td>
<td>Shawn</td>
<td>Brandon Lane</td>
<td>Arizona State University</td>
<td>Dynamic and Mechanical Properties of Metal Powder</td>
</tr>
<tr>
<td>EL</td>
<td>Winnard</td>
<td>Thomas</td>
<td>Greg Vogl</td>
<td>Andrews University</td>
<td>CNC Linear Axis Diagnostics via Sensors</td>
</tr>
<tr>
<td>EL</td>
<td>Yeh</td>
<td>Malachi</td>
<td>Eric O’Rear</td>
<td>University Maryland Baltimore County</td>
<td>BIRDS: Quantifying Sustainability in Commercial Buildings</td>
</tr>
<tr>
<td>EL</td>
<td>Youssel</td>
<td>Raoul</td>
<td>Gordon Shao</td>
<td>University Maryland Baltimore County</td>
<td>Improving the Quality of Data for the Optimization of HVAC-Related Aspects of Building Automation and Control Systems</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Addo</td>
<td>Derrick</td>
<td>Ya-Shian Li-Baboud</td>
<td>Bowie State University</td>
<td>Synchronizing Video Playback on a Tiled Display Wall</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Aliakbar</td>
<td>Soheil</td>
<td>John Libert/Mary Theofanos</td>
<td>Towson University</td>
<td>Can’t Touch This: Usability of Contactless Fingerprint Acquisition Devices</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Collazo-Martis</td>
<td>Ramon</td>
<td>Apostol Vassilev</td>
<td>University of Puerto Rico</td>
<td>Strong Key Generation on Conventional Computer Systems Enabled by a Remote Entropy Source</td>
</tr>
<tr>
<td>OU</td>
<td>Last Name</td>
<td>First Name</td>
<td>Mentor</td>
<td>University/Title of Talk</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Cooper</td>
<td>Samuel</td>
<td>Stephen Langer</td>
<td>Fayetteville State University</td>
<td>Detecting malicious users and compromised accounts using user behavioral models for the C-Force Enterprise’s cloud service</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Dare</td>
<td>Christopher</td>
<td>Larry Bassham</td>
<td>Virginia Polytechnic Institute and State University</td>
<td>Latency of Lightweight Cryptographic Algorithms</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Dash</td>
<td>Aditya</td>
<td>Lofd Benmohamed/Abd ella Battou</td>
<td>University Maryland College Park</td>
<td>Performance Monitoring and Instrumentation of Named-Data Networks</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Davila</td>
<td>Ian</td>
<td>Doug Montgomery</td>
<td>University of Puerto Rico</td>
<td>Test and Measurement of Software Defined Virtual Networks</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>de la Vega</td>
<td>Jose</td>
<td>Doug Montgomery</td>
<td>University of Puerto Rico</td>
<td>Test and Evaluation of Network Anomaly Detection Technologies</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Deng</td>
<td>Myra</td>
<td>Isabel Beichl</td>
<td>Columbia University</td>
<td>A Probabilistic Method for Counting the Number of Linear Extensions in a Partially Ordered Set</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Dougherty</td>
<td>Eric</td>
<td>Sandy Ressler</td>
<td>Millersville University of Pennsylvania</td>
<td>Virtual Reality on the World Wide Web</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Dunkers</td>
<td>Dan</td>
<td>Judy Terrill</td>
<td>Drexel University</td>
<td>Using the CIE-LAB color space to improve the analysis of tests across system differences for the CAVE (Computer Assisted Virtual Environment)</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Fulton</td>
<td>Kelsey</td>
<td>David Waltermire/Lee Badger/Dmitry Cousin</td>
<td>Millersville University of Pennsylvania</td>
<td>Unwinding the Runtime Stack: Application Runtime Analysis for Anomaly Detection Research</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Henrich</td>
<td>Janelle</td>
<td>Martin Herman</td>
<td>American University</td>
<td>Finding the Matching Pair: The Use of Graph Theory in Forensic Footwear Analysis</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Hockley</td>
<td>Stephen</td>
<td>Michaela Iorga/Martin Herman</td>
<td>Shepherd University</td>
<td>Building a Cloud Forensic Reference Architecture: Leveraging AWS CloudTrail to Identify Forensics Artifacts.</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Indictor</td>
<td>David</td>
<td>Timothy Hall</td>
<td>SUNY Binghamton</td>
<td>Machine Learning for Spectrum Prediction</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>James</td>
<td>Bruce</td>
<td>Alden Dima</td>
<td>University Maryland Baltimore County</td>
<td>Out of Time: Abstracting Temporal Constraints from Time-Based Data in Non-relational Databases</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Kasner</td>
<td>Jillian</td>
<td>Adam Pintar/Will Guthrie</td>
<td>Hood College</td>
<td>Simulation study of an automated threshold selection for Poisson process extreme value models</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Lamp</td>
<td>Curtis</td>
<td>Mark Przybocki/Mary Theofanos</td>
<td>Shippensburg University</td>
<td>Quantifying Latent Fingerprint Preprocessing</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Landen</td>
<td>Matthew</td>
<td></td>
<td></td>
<td>Chaining the Cloud, The C-Force’s Cryptographic Hash-Chaining Logging Approach</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Massey</td>
<td>Joshua</td>
<td>Lofti Benmohamed/Fre deric de Vaulx</td>
<td>University Maryland Baltimore County</td>
<td>C-Force Enterprise: Towards an Implementation of NCCP Cloud Metrics Model</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Mayer</td>
<td>Justin</td>
<td>Judy Terrill</td>
<td>University District Columbia</td>
<td>Investigating the mechanics of failure through visualization</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>McGovern</td>
<td>Emily</td>
<td>Lily Chen/Meltem Sonmez Turan</td>
<td>University Maryland Baltimore County</td>
<td>Analyzing the permutation testing methods of NIST SP 800-90B</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Murphy</td>
<td>Joie</td>
<td>Spencer Breiner</td>
<td>College of NJ</td>
<td>Implementing distributed interfaces: tools from natural language and mathematics</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Pan</td>
<td>Jane</td>
<td>Hari Iyer/Steve Lund</td>
<td>University Maryland Baltimore County</td>
<td>Impact of Model Uncertainty on Statistical Inferences</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Patel</td>
<td>Ankur</td>
<td>John Lu</td>
<td>University Maryland College Park</td>
<td>Evaluation of a Plenoptic Camera for Capturing 3D Footwear Impressions</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Ratliff</td>
<td>Zachary</td>
<td>Rick Kuhn/Raghu Kacker</td>
<td>Texas Engineering Experiment Station</td>
<td>Measuring the Combinatorial Coverage of Software in Real Time</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Reed III</td>
<td>Carroll</td>
<td>Scott Rose</td>
<td>Bowie State University</td>
<td>Scan and Analysis of HTTPS Certificates Used in the .gov Domain</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Rodriguez, Jr</td>
<td>Jose</td>
<td>Kerry McKay</td>
<td>Texas A&M International University</td>
<td>Health Tests of Entropy Sources on Arduino</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Rogers</td>
<td>James</td>
<td>Paul Black</td>
<td>University Maryland Baltimore County</td>
<td>Injection Preservation: Testing Code with Injected Vulnerabilities for Expected Results</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Smith</td>
<td>Ryan</td>
<td>Derek Juba/Walid Keyrouz</td>
<td>SUNY Binghamton</td>
<td>Accelerating -D Trees for Nearest Neighbor Search in Walk-on-Spheres</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Smith</td>
<td>Steven</td>
<td>Thao Nguyen</td>
<td>University Maryland Baltimore County</td>
<td>Calculation of Exclusion Zones for Radar Protection in the 3.5 GHz Spectrum Band</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Siram</td>
<td>Vinay</td>
<td>Judy Terrill</td>
<td>Stanford University</td>
<td>Sampling Techniques to achieve Color Fidelity and Anti-aliasing in the Conversion of Cubic Maps to Spherical Maps for Virtual Environments</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Strange</td>
<td>Sean</td>
<td>Anirudha Sahoo</td>
<td>Millersville University of Pennsylvania</td>
<td>Developing and Testing the Spectrum Access System: Path to Effective Spectrum Sharing</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Sutton</td>
<td>Kyle</td>
<td>Peter Bajcsy</td>
<td>Howard Community College</td>
<td>Inside a Meteorite: Volume Estimation from the Segmentation of Cross-Sectional Images</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>ITL/CTL</th>
<th>Last Name</th>
<th>First Name</th>
<th>Mentor</th>
<th>University</th>
<th>Title of Talk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITL/CTL</td>
<td>Tilva</td>
<td>Rohan</td>
<td>Lotfi Benmohamed/Frederic de Vaulx</td>
<td>Johns Hopkins University</td>
<td>C-Force Enterprise: A Model-based Definition and Management of Cloud Metrics</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Vargas</td>
<td>Daniel</td>
<td>Martin Herman</td>
<td>St. Mary's University of Texas</td>
<td>Forensic Analysis Automation: Determining Footwear Image Quality Using Machine Learning</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Wilkes</td>
<td>Matthew</td>
<td>Yang Guo</td>
<td>George Mason University</td>
<td>Developing a Mininet Test Suite for Software Defined Internet Exchange (SDX) Research</td>
</tr>
<tr>
<td>ITL/CTL</td>
<td>Xiong</td>
<td>Xinyu</td>
<td>Vincent Hu</td>
<td>City College on NY</td>
<td>Access Control Rule Logic Circuit Simulation (ACRLCS)</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Anderegg</td>
<td>David</td>
<td>Daniel Siderius</td>
<td>Virginia Polytechnic Institute and State University</td>
<td>Developing a System to Encode Multicomponent Adsorption Isotherms for Standard Reference Data Use</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Ayala</td>
<td>Anthony</td>
<td>Jacob Tarver</td>
<td>University Maryland College Park</td>
<td>Selective gas adsorption in metal organic frameworks</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Bleakney</td>
<td>Matthew</td>
<td>Huong Giang Nguyen</td>
<td>University Maryland Baltimore County</td>
<td>Determining and comparing skeletal density of NIST RM-8852 from different gas measuring techniques/principles</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Boigenzahn</td>
<td>Hayley</td>
<td>Debra Audus</td>
<td>Worcester Polytechnic Institute</td>
<td>Using Molecular Dynamics to Investigate the Structure of Polyelectrolyte Micelles</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Boligitz</td>
<td>James</td>
<td>Eric Lass</td>
<td>Temple University</td>
<td>Investigation of phase equilibria in binary Co-W surrounding the γ-phase via mechanical alloying</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Bonk</td>
<td>Ryan</td>
<td>Robert Williams</td>
<td>Le Moyne College</td>
<td>Optimization Study on the Cold Neutron Source for a Proposed LEU Reactor at NIST</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Borah</td>
<td>Preetom</td>
<td>Thomas Forbes</td>
<td>Wooster College</td>
<td>Optimization of thermal desorption direct analysis in real time mass spectrometry (TD-DART-MS) for the detection of illicit narcotics</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Collini</td>
<td>John</td>
<td>Brian Bush</td>
<td>Rochester Institute of Tech</td>
<td>Nanomechanical time-dependent properties of PEG Hydrogels</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Dasgupta</td>
<td>Anushka</td>
<td>Jonathan Guyer</td>
<td>Princeton University</td>
<td>Evaluating the Accuracy of Phase Field Codes Using Community-Developed Standard Benchmark Problems</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Elquist</td>
<td>Aline</td>
<td>Jonathan Guyer</td>
<td>Boise State University</td>
<td>New Models for Electrochemical Systems</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Fangmeyer</td>
<td>Ryan</td>
<td>Mike Middleton</td>
<td>North Carolina State University</td>
<td>System Control: Upgraded Refrigerator</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Gayle</td>
<td>Andrew</td>
<td>Robert Cook</td>
<td>Duke University</td>
<td>Nano-Scale Strain Mapping in Three Dimensions</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Gayvert</td>
<td>James</td>
<td>Alexandros Chemos</td>
<td>Le Moyne College</td>
<td>Molecular Dynamics Study of the Conformational Properties of Polymers in an Explicit Solvent and the Identification of the β-Temperature</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Gonzalez-Lopez</td>
<td>Lorelis</td>
<td>Christopher Liman</td>
<td>University of Puerto Rico</td>
<td>Using capillary force lithography to make oriented polymer nanogratings</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Hood</td>
<td>Sarah</td>
<td>Benjamin Burton</td>
<td>Hood College</td>
<td>Domain Structures and Dynamics of Polar Ordering in Pb[Sc]₀.₅[Nb]₀.₅O₃ with Pb-O vacancies</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Huff</td>
<td>Jonathan</td>
<td>Douglas T. Smith</td>
<td>Boise State University</td>
<td>Software Development for a Precision Nanoindenter</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Hugh</td>
<td>Daevin</td>
<td>Thomas Gnaupel-Herold</td>
<td>University Maryland College Park</td>
<td>Characterizing and Verifying Parameters for Two New Mechanical Systems Through the Multiaxial Deformation of Automotive Sheet Metal</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Hunt-Isaak</td>
<td>Ian</td>
<td>Steven Howell</td>
<td>Oberlin College</td>
<td>Small Angle Scattering Calculator for Periodic Boundary Conditions.</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Jeon</td>
<td>Heetae</td>
<td>Jirun Sun</td>
<td>University Maryland College Park</td>
<td>Monte-Carlo Exploration of Focused Neutron Guide and Monochromator Geometries</td>
</tr>
<tr>
<td>MML - MatSci/NC NR</td>
<td>Jeon</td>
<td>Heetae</td>
<td>Jirun Sun</td>
<td>University Maryland College Park</td>
<td>The Unique Functions of Urethane dimethacrylate in Photo-copolymerization with an Ether-based Divinylbenzyl Monomer</td>
</tr>
<tr>
<td>OU</td>
<td>Last Name</td>
<td>First Name</td>
<td>Mentor</td>
<td>University</td>
<td>Title of Talk</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>MML -</td>
<td>Lagnese</td>
<td>Joseph</td>
<td>Marcus Mendenhall</td>
<td>University Maryland Baltimore County</td>
<td>Analyzing the Analyzer: A Monte Carlo Investigation of X-Ray Diffraction Fits Generated by TOPASS</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Lee</td>
<td>Erica</td>
<td>Aaron Forster</td>
<td>University Maryland College Park</td>
<td>Durability of Carbon Nanotube Reinforced Alumina Fiber - Epoxy Composites</td>
</tr>
<tr>
<td>MML -</td>
<td>Leos</td>
<td>Richard</td>
<td>Zeyun Wu</td>
<td>Texas A&M University Kingsville</td>
<td>Morphology and Miscibility: Characterizing A-B-A/B'-C Triblock-Diblock Copolymer Blends</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Locke</td>
<td>Steven</td>
<td>Mendenhall</td>
<td>University New Hampshire</td>
<td>Characterizing Material Behavior Via High-Rate Mechanical Testing Using a Split Hopkinson Pressure (Kolsky) Bar and Pulse Heating System</td>
</tr>
<tr>
<td>MML -</td>
<td>Luu</td>
<td>Norman</td>
<td>Lucas Hale</td>
<td>Northwestern University</td>
<td>Property Calculations Within the Interatomic Potentials Repository Framework</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>McCann</td>
<td>Gordon</td>
<td>Harold Hatch</td>
<td>Gettysburg College</td>
<td>Simulation of Superquadric and Supertoroid Particles to Examine the Effects of Particle Shape upon Self-Assembly Behavior</td>
</tr>
<tr>
<td>MML -</td>
<td>Neves</td>
<td>Paul</td>
<td>Nicholas Butch</td>
<td>University Maryland College Park</td>
<td>Designing an AC Magnetic Susceptometer Measurement Technique in Conjunction with High Pressures and Low Temperatures in Neutron Beam Experiments</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Nguyen</td>
<td>Ai</td>
<td>Christopher M Stafford</td>
<td>Montgomery College</td>
<td>A performance of water and light: Characterizing water purification membranes using ellipsometry</td>
</tr>
<tr>
<td>MML -</td>
<td>Nusinovich</td>
<td>Edward</td>
<td>Shengyen Li</td>
<td>University Maryland College Park</td>
<td>The application of data mining techniques for efficient material design</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Panigrahi</td>
<td>Atman</td>
<td>Edwin Chan</td>
<td>University Pennsylvania</td>
<td>Investigation of Salt Transport of Model Polymer Thin Films Via Electrical Impedance Spectroscopy</td>
</tr>
<tr>
<td>MML -</td>
<td>Pasco</td>
<td>Madeleine</td>
<td>Erkan Senses</td>
<td>Rose-Hulman Institute of Tech</td>
<td>The effect of nanoparticle architecture and softness on the mechanical properties of the composite polymer</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Plavchak</td>
<td>Christine</td>
<td>Ryan Nieuwendaal</td>
<td>Washington & Jefferson College</td>
<td>Determination of 1H NMR spin diffusion coefficients via standard P3HT-PCBM bilayer films</td>
</tr>
<tr>
<td>MML -</td>
<td>Schankler</td>
<td>Aaron</td>
<td>Paul Kienzle</td>
<td>Haverford College</td>
<td>Refining a Markov Chain Monte Carlo Algorithm for Fitting Neutron Reflectometry Data</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Schuberth</td>
<td>Austin</td>
<td>Dilip K. Banerjee</td>
<td>Kansas State University</td>
<td>Finite Element Modeling</td>
</tr>
<tr>
<td>MML -</td>
<td>Scott</td>
<td>Douglas</td>
<td>Katie Weigandt</td>
<td>University Delaware</td>
<td>Structural and Mechanical Characterization of HPMC/SOS Aggregation through Rheological and Neutron Scattering Measurements</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Singer</td>
<td>Lauren</td>
<td>Nicholas Schaub</td>
<td>Bucknell University</td>
<td>Engineering a Low Cost, Open Source Electrospinning System for Nanofiber Production</td>
</tr>
<tr>
<td>MML -</td>
<td>Smith</td>
<td>Sarah</td>
<td>Shin Muramoto</td>
<td>University of Kentucky Research Foundation</td>
<td>Potential Age Dating of Fingerprints using Time-of-Flight Secondary Ion Mass Spectrometry: Looking at the Diffusion of Fatty Acids on Model Surfaces that Mimic Real World Surfaces</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Stetsyuk</td>
<td>Karina</td>
<td>Lucas Hale</td>
<td>Hood College</td>
<td>Adding automated uncertainty estimates to temperature- and pressure-dependent property calculations of iron from molecular dynamics</td>
</tr>
<tr>
<td>MML -</td>
<td>Stracka</td>
<td>Kailey</td>
<td>Daniel Siderius 2</td>
<td>University Maryland College Park</td>
<td>Developing a System to Encode Multicomponent Adsorption Isotherms for Standard Reference Data Use</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Super</td>
<td>Nathan</td>
<td>William Ratcliff</td>
<td>College Wm Mary</td>
<td>BLAND UI: User Friendly Neutron Diffraction Analysis</td>
</tr>
<tr>
<td>MML -</td>
<td>Underwood</td>
<td>Samuel</td>
<td>Justin Gorham</td>
<td>Reed College</td>
<td>Silver Nanoparticle-embedded Textiles: Preparing and Characterizing a Model System</td>
</tr>
<tr>
<td>MatSci/NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>Villa</td>
<td>Danielle</td>
<td>Qing Huang</td>
<td>Eastern Washington University</td>
<td>Neutron Scattering studies of the Crystal and Magnetic Structures of Molecular Magnets</td>
</tr>
<tr>
<td>OU</td>
<td>Last Name</td>
<td>First Name</td>
<td>Mentor</td>
<td>University</td>
<td>Title of Talk</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>MML-MatSci/NCNR</td>
<td>Wade</td>
<td>Matthew</td>
<td>Thomas Rosch</td>
<td>Case Western Reserve University</td>
<td>Calculation of Radial Distribution Functions using Histogram and Spectral Monte Carlo Methods on a Graphical Processing Unit</td>
</tr>
<tr>
<td>MML-MatSci/NCNR</td>
<td>Wu</td>
<td>Richard</td>
<td>Daniel Sunday</td>
<td>University TX Dallas</td>
<td>Enhanced Safety Analysis Code Suits for the Reactor Design at NCNR</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Barret</td>
<td>Timothy</td>
<td>Mark Iadicola</td>
<td>University New Hampshire</td>
<td>Uncertainty of the Impulse Excitation Technique</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Bezio</td>
<td>Aaron</td>
<td>Jeffrey Hudgens</td>
<td>Gettysburg College</td>
<td>Development of the Next Generation of Hydrogen/Deuterium Exchange Mass Spectrometry Apparatus</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Bier</td>
<td>Imanuel</td>
<td>Edward Sisco</td>
<td>Augsburg College</td>
<td>Understanding the Effects of Spices in Homemade Explosives Detection by Ion Mobility Spectrometry (IMS)</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Brooks</td>
<td>Sydney</td>
<td>Amanda Forster</td>
<td>West Virginia University</td>
<td>Fiber Trace Evidence: Quantification of Sample Bleaching During UV-vis Microspectrophotometry</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Collet</td>
<td>Cayla</td>
<td>Richard Cavicchi</td>
<td>West Virginia Wesleyan College</td>
<td>Protein Aggregation: Characterizing Particles Formed in Therapeutic Protein Drugs</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Cross</td>
<td>Ebony</td>
<td>Kenneth D. Cole</td>
<td>Capitol Technology University</td>
<td>Bioinformatic Analysis for the Standardization of Mouse Cell Line Authentication</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Galvin</td>
<td>Connor</td>
<td>Travis Gallagher</td>
<td>Miami Dade College</td>
<td>Exploring a Novel pH-based Strategy for Protein Crystallization</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Hernandez</td>
<td>Cristopher</td>
<td>Lisa Kilpatrick</td>
<td>University Maryland College Park</td>
<td>Observing Trypsin-Catalyzed Transpeptidation Products Using UHPLC-MS</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Jin</td>
<td>Emily</td>
<td>Mark Lowenthal</td>
<td>Columbia University</td>
<td>Engineering Biology, Using Bioinformatics to Predict N-Linked Glycosylation Sites in Proteins</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Knobloch</td>
<td>Emmie</td>
<td>Diane Bienek</td>
<td>Smith College</td>
<td>Assessing Standard Assays for Cytotoxicity of Dental Materials</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Lee</td>
<td>Abigail</td>
<td>Jeanice B. Thomas</td>
<td>University Maryland College Park</td>
<td>Determination of Vitamin C in NIST Food-Matrix Standard Reference Materials</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Martin</td>
<td>Ann Marie</td>
<td>Tom Allison 2</td>
<td>Mount St Mary's University</td>
<td>Optimization of 3D Molecular Structures for the NIST Chemistry WebBook</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>McDonald</td>
<td>Natalie</td>
<td>Wyatt Vreeland</td>
<td>University Maryland Baltimore County</td>
<td>Characterization of protein aggregation using Asymmetric Flow Field Flow Fractionation (AF4) and Multi-Angle Light Scattering (MALS)</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Morse</td>
<td>Matthew</td>
<td>T N Bhat</td>
<td>University of North Florida</td>
<td>Automatically Generated Terminology and Scalable Webtools for Semantic Searching</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Rich</td>
<td>Graham</td>
<td>Nathan Mahynski</td>
<td>Virginia Polytech Inst State University</td>
<td>Understanding the impact surface roughness has on gas adsorption</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Routkevitch</td>
<td>Denis</td>
<td>Jeffrey Kim</td>
<td>Johns Hopkins University</td>
<td>Analysis of metals in electronic cigarette vapor</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Shevchuk</td>
<td>Mariya</td>
<td>Tom Allison</td>
<td>University Maryand College Park</td>
<td>Optimization of 3-Dimensional Chemical Structures for NIST Chemistry WebBook</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Tran</td>
<td>Anh</td>
<td>Lee Yu</td>
<td>University Maryland Baltimore County</td>
<td>How Safe is Our Ginger? A Study of Arsenic Species in Standard Reference Material (SRM 3398) Ginger Rhizome</td>
</tr>
<tr>
<td>MML-ChemBio</td>
<td>Young</td>
<td>Jessica</td>
<td>Vitali Siin</td>
<td>University Maryland College Park</td>
<td>Study of Interaction of Peptides with Tethered Bilayer Phospholipid Membranes</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Buttrles</td>
<td>Robert</td>
<td>Jacob Ricker</td>
<td>University of Colorado Boulder</td>
<td>Broadly Tunable, Narrow Linewidth Lasers</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Chavali</td>
<td>Sai Meghasena</td>
<td>Jeffery Nico</td>
<td>University of Maryland College Park</td>
<td>Measuring the wavelength of a cold neutron beam for a neutron lifetime experiment</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Chiu</td>
<td>Arlene</td>
<td>Dean Jarrett</td>
<td>University of Maryland College Park</td>
<td>Temperature Coefficients on Guarded Hamon Transfer Standards</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Davis</td>
<td>Robert</td>
<td>John Lawall</td>
<td>University of Maryland College Park</td>
<td>Automation of an Optical Pressure Standard: Dante’s Divine Comedy of Pressure</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Gamble</td>
<td>Claudia</td>
<td>Richard Steiner</td>
<td>University of Maryland College Park</td>
<td>Testing Smart Watthour Meter Accuracy</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Goebel</td>
<td>Michael</td>
<td>Tom Lebrun</td>
<td>State University of New York at Binghamton</td>
<td>Locking Lasers Using a Digital Servo</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Guo</td>
<td>Anthony</td>
<td>Oleg Kirillov</td>
<td>State University of New York Binghamton</td>
<td>Metrology for Organic Spintron Devices</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Gurara</td>
<td>Firehiwot</td>
<td>Charles Cheung</td>
<td>Montgomery College</td>
<td>Magnetic Field Uniformity Through Pole Face Optimization</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Knowiden</td>
<td>Steven</td>
<td>Joseph T. Hodges</td>
<td>University Maryland College Park</td>
<td>A Comparative Analysis of Mercury Generator Certifications, Past and Present</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Liu</td>
<td>Eileen</td>
<td>Ravikiran Attota</td>
<td>University of Maryland College Park</td>
<td>Using MATLAB in the Development and Optimization of Nanoscale Measurement Techniques</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Montgomery</td>
<td>Karl</td>
<td>Yaw Obeng</td>
<td>University of Maryland College Park</td>
<td>Broadband Spectroscopic Characterization of Low-k Dielectric Thin Films for Micro- and Nanofabrication</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Motabar</td>
<td>Lily</td>
<td>Darwin Reyes</td>
<td>University of Maryland College Park</td>
<td>3D Printing Microfluidic Devices with Electronic Functionalities</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Patel</td>
<td>Nimit</td>
<td>Tom Allison 1</td>
<td>University Maryland College Park</td>
<td>Optimization of 3-Dimensional Molecular Structures for NIST Chemistry WebBook</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Phan</td>
<td>Nhi</td>
<td>Joe Rice</td>
<td>Worcester Polytechnic Institute</td>
<td>The Hadamard Transform Hyperspectral Image Projector</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Rhodes</td>
<td>Corey</td>
<td>Joseph Kopanski</td>
<td>West Virginia Wesleyan College</td>
<td>Designing a Charge-Based Capacitance Measurement Circuit for Interfacing with an Device</td>
</tr>
<tr>
<td>PML-EE</td>
<td>Vasilyev</td>
<td>Anton</td>
<td>Jason Underwood</td>
<td>University of Delaware</td>
<td>Evaluating Distortion Correction Methods for High-Resolution Digitizers</td>
</tr>
<tr>
<td>Last Name</td>
<td>First Name</td>
<td>Mentor</td>
<td>Universityersity</td>
<td>Title of Talk</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Verrill</td>
<td>Nathan Allen Goldstein</td>
<td>Andrews University</td>
<td>Power System Synchrophasor Data Impairment using Labview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wade</td>
<td>Collin Emily Bittle</td>
<td>Washington University in St. Louis</td>
<td>The electronic stability of polymer dielectrics for use in low temperature measurements of organic electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zirkle</td>
<td>Theodore Meghan Shilling</td>
<td>Walla Walla University</td>
<td>Experiment Design to Analyze the Effect of Roughness and Machining Operations on Light-Based Three-Dimensional Coordinate Measuring Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barner</td>
<td>Lindsey Andras Vladar</td>
<td>Messiah College</td>
<td>Machining of Fluidic Structures with Helium Ions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandt</td>
<td>Samuel Michael Huber</td>
<td>Valparaiso University</td>
<td>Measurement of Schwinger Scattering in Silicon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>Samuel Maritoni Litorja</td>
<td>Carleton College</td>
<td>Standardizing Firefly Luminescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wade</td>
<td>Collin Emily Bittle</td>
<td>Washington University in St. Louis</td>
<td>The electronic stability of polymer dielectrics for use in low temperature measurements of organic electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wade</td>
<td>Collin Emily Bittle</td>
<td>Washington University in St. Louis</td>
<td>The electronic stability of polymer dielectrics for use in low temperature measurements of organic electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wadleck</td>
<td>Peter Ronald Tosh</td>
<td>Florida Atlantic University</td>
<td>Radiation Dose Metrology through Water Calorimetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Anna Clare Allocca, Sumona Sarkar</td>
<td>West Virginia University</td>
<td>What is the Meaning of Life?: Terminology and Measurement Assurance of Biotechnology Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resnick</td>
<td>Benajmin Paul Zielinski</td>
<td>Case Western Reserve University</td>
<td>Marketing and Licensing of Microscopy Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emelike</td>
<td>Joseph Reva Schwartz</td>
<td>Bowie State University</td>
<td>Golden Cross Section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekwuru</td>
<td>Miriam Paul Zielinski</td>
<td>Coppin State University</td>
<td>Commercialization of Inventions in the fields of Bio-manufacturing and Medical Devices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>